JPH04293718A - Production of steel having high strength and high toughness - Google Patents
Production of steel having high strength and high toughnessInfo
- Publication number
- JPH04293718A JPH04293718A JP3080492A JP8049291A JPH04293718A JP H04293718 A JPH04293718 A JP H04293718A JP 3080492 A JP3080492 A JP 3080492A JP 8049291 A JP8049291 A JP 8049291A JP H04293718 A JPH04293718 A JP H04293718A
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- strength
- steel
- less
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 46
- 239000010959 steel Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000005496 tempering Methods 0.000 claims abstract description 28
- 230000009467 reduction Effects 0.000 claims abstract description 20
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 229910001566 austenite Inorganic materials 0.000 claims description 30
- 230000000694 effects Effects 0.000 claims description 23
- 238000005096 rolling process Methods 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 17
- 238000010791 quenching Methods 0.000 claims description 16
- 230000000171 quenching effect Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 229910052804 chromium Inorganic materials 0.000 claims description 13
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 238000001953 recrystallisation Methods 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 6
- 230000000630 rising effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 23
- 229910001563 bainite Inorganic materials 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 10
- 239000006104 solid solution Substances 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 8
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 230000008034 disappearance Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000004881 precipitation hardening Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 238000012733 comparative method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は引張強さ60kgf/m
m2 以上の強度を有し、且つ低温靭性に優れた高強度
高靭性鋼の製造方法に関するものである。[Industrial Application Field] The present invention has a tensile strength of 60 kgf/m.
The present invention relates to a method for manufacturing high-strength, high-toughness steel that has a strength of m2 or more and excellent low-temperature toughness.
【0002】0002
【従来の技術】近年、エネルギー需要が年々増加の傾向
にあり、海底資源開発につながる海洋構造物および海底
調査作業船の建造あるいは火力発電の夜間余剰電力調整
用の揚水発電用高落差ペンストックの建造が活発化して
いる。これら鋼構造物は大型化に伴い、使用される鋼材
には構造上高強度、高靭性、かつ高溶接性を具備する鋼
の開発が望まれている。[Prior Art] In recent years, energy demand has been increasing year by year, and high-head penstocks for pumped storage power generation are used for construction of offshore structures and seabed survey work vessels that lead to the development of seabed resources, and for adjusting surplus power at night from thermal power generation. Construction is picking up steam. As these steel structures become larger, there is a desire to develop steel materials that have high structural strength, high toughness, and high weldability.
【0003】従来から高強度材の熱処理としては焼入れ
焼戻し法がある。焼入れによりマルテンサイト又は下部
ベイナイトの変態組織とし、その後の焼戻し処理により
過飽和固溶炭素を炭化物として析出させている。この熱
処理法は、圧延した鋼板について再加熱焼入処理を必要
とするために経済性が低下する欠点があった。[0003] Conventionally, there is a quenching and tempering method as a heat treatment for high-strength materials. The transformed structure of martensite or lower bainite is formed by quenching, and supersaturated solid solution carbon is precipitated as carbide by subsequent tempering treatment. This heat treatment method has the disadvantage that the rolled steel plate requires reheating and quenching, which reduces economic efficiency.
【0004】しかし、最近になって、このような再加熱
焼入れ焼戻し法の欠点を補うべく圧延後一旦冷却するこ
となく直ちに焼入れを行なう直接焼入れ技術が開発され
、経済性を低下させることなく強度も増大できるという
ことから注目されるようになってきた。However, recently, in order to compensate for the shortcomings of the reheating quenching and tempering method, a direct quenching technique has been developed in which quenching is performed immediately after rolling without cooling, which improves strength without reducing economic efficiency. It has been attracting attention because it can be increased.
【0005】このような製造法としては、例えば特公昭
60−25494号公報のボロン含有低合金調質型高張
力鋼板の製造法のようにBの焼入れ性向上効果を十分に
発揮させるため、熱間圧延した後、焼入れまでの間に再
結晶を起こさせ、Bを粒界に偏析させた後水焼入れし、
その後焼戻しを行なうことにより強度、靭性の優れた高
張力鋼が得られる。又、特公昭63−66368号公報
の強度及び靭性の優れた高張力鋼板の製造方法のように
低N鋼に微量のTiを添加し、更にNbを含有した鋼を
直接焼入れ焼戻しを行なえば、Tiによって加熱オース
テナイト結晶粒の粗大化が防止され、再結晶温度域で熱
間圧延しオーステナイト粒が微細化され、焼戻し時のN
b(C,N)の析出で強度、靭性バランスの優れた高張
力鋼が得られる。[0005] Such a manufacturing method includes, for example, a method for manufacturing boron-containing low-alloy heat-treated high-strength steel sheets disclosed in Japanese Patent Publication No. 60-25494, in which heat is applied to fully exhibit the hardenability improvement effect of B. After inter-rolling, recrystallization is caused before quenching, B is segregated at grain boundaries, and then water quenched,
By subsequently tempering, a high tensile strength steel with excellent strength and toughness can be obtained. In addition, if a small amount of Ti is added to low N steel and the Nb-containing steel is directly quenched and tempered, as in the method for producing high-strength steel sheets with excellent strength and toughness disclosed in Japanese Patent Publication No. 63-66368, Coarsening of heated austenite crystal grains is prevented by Ti, and austenite grains are refined by hot rolling in the recrystallization temperature range, and N during tempering is
By precipitation of b(C,N), a high tensile strength steel with an excellent balance of strength and toughness can be obtained.
【0006】[0006]
【発明が解決しようとする課題】これらの製造法は、い
ずれも再結晶温度域でオーステナイトを加工し直接焼入
れを行なっている。すなわち、焼入れ前のオーステナイ
トを未再結晶温度域で加工し焼入れると焼入れ性が低下
するためで、マルテンサイト組織および下部ベイナイト
組織が生成されず上部ベイナイト組織が生成し強度・靭
性が低下するからである。しかし、再結晶域圧延を行な
っているためオーステナイト結晶粒の細粒化が不十分で
、粗粒オーステナイトからのマルテンサイト組織または
上部ベイナイト組織が生成した場合は、十分な靭性が得
られているとは言えない。[Problems to be Solved by the Invention] In all of these manufacturing methods, austenite is processed in a recrystallization temperature range and directly quenched. In other words, if austenite before quenching is processed and quenched in a non-recrystallized temperature range, the hardenability will decrease, and the martensitic structure and lower bainite structure will not be generated, but the upper bainite structure will be formed, resulting in a decrease in strength and toughness. It is. However, if the austenite crystal grains are not sufficiently refined due to recrystallization zone rolling and a martensite structure or upper bainite structure is formed from coarse-grained austenite, it is assumed that sufficient toughness has been obtained. I can't say that.
【0007】一方、焼入れ前のオーステナイトを未再結
晶温度域で加工し焼入れた場合でも、焼入れ組織がマル
テンサイトおよび下部ベナイト組織とした場合は、有効
結晶粒径(破面単位)がより微細化し、良好な強度・靭
性バランスが得られることが知られている。しかし、焼
入れ性の低下を補うべく合金元素の選択と多量添加が必
要であり、溶接性が低下する欠点がある。On the other hand, even when austenite before quenching is processed and quenched in the non-recrystallization temperature range, if the quenched structure is martensite and lower benite, the effective grain size (fracture surface unit) becomes finer. It is known that a good balance of strength and toughness can be obtained. However, in order to compensate for the decrease in hardenability, it is necessary to select and add a large amount of alloying elements, which has the disadvantage of decreasing weldability.
【0008】更に、これらいずれの技術でも、焼戻し処
理においては、昇温速度を考慮に入れない焼き戻し温度
のみを指定した従来技術のままである。すなわち、従来
の焼戻し処理は、■焼入れによって生じた内部応力を除
去する、■焼入れまま材、特にマルテンサイト組織の場
合、靭性および降伏強度が低いために、焼戻しによって
過飽和に固溶したCや合金元素をフェライト中に炭化物
として十分析出分散させ降伏強さの向上、および転位の
消滅により硬さを下げ靭性の向上を得るため等から行わ
れている。それ故に、焼戻し温度に重点をおき、焼戻し
時の加熱速度は考慮に入れず比較的徐加熱で且つ保持時
間を取っており、冶金面から見て最適な原組織からの焼
戻し析出強化状態が得られているとは言いがたい。又、
生産性が低下する問題もあり、更に高強度で且つ高靭性
な鋼の製造方法が強く求められてきた。Furthermore, in any of these techniques, the tempering process remains a conventional technique in which only the tempering temperature is specified without taking into account the temperature increase rate. In other words, the conventional tempering treatment is: (1) removing the internal stress caused by quenching; (2) removing the internal stress caused by quenching; This is done in order to improve the yield strength by decoupling and dispersing elements in the form of carbides in ferrite, and to reduce hardness and improve toughness by eliminating dislocations. Therefore, we place emphasis on the tempering temperature, do not take into account the heating rate during tempering, and instead heat relatively slowly and take a long holding time. From a metallurgical perspective, we can achieve the optimal tempered precipitation-strengthened state from the original structure. It's hard to say that it is. or,
There is also the problem of reduced productivity, and there has been a strong demand for a method for producing steel with even higher strength and toughness.
【0009】[0009]
【課題を解決するための手段】本発明は、上記課題を解
決した高強度・高靭性鋼の製造方法を提供するものであ
る。[Means for Solving the Problems] The present invention provides a method for producing high-strength, high-toughness steel that solves the above-mentioned problems.
【0010】本発明の要旨は、重量%で、C:0.03
〜0.15%、Si:0.05〜0.50%、Mn:0
.3〜2.0%、Mo:0.10〜2.0%、Al:0
.01〜0.10%、N:0.0050%以下を含有し
、あるいは、更にNi:0.3〜5.0%、Cu:0.
1〜1.5%、Cr:0.1〜1.5%、V:0.01
〜0.10%、Nb:0.005〜0.05%、Ti:
0.005〜0.03%、B:0.0005〜0.00
20%からなる強度靭性改善元素群、又は介在物形態制
御作用のあるCa:0.0005〜0.005%の一種
又は二種以上を含有し、残部がFeおよび不可避的不純
物からなる鋼片を1000〜1250℃に加熱した後、
熱間圧延においてオーステナイトが再結晶する温度域で
圧下率20%以上60%以下、ついでオーステナイトが
再結晶しない温度域で圧下率30%以上80%以下の圧
延を行なった後、Ar3 点以上の温度から水冷を開始
し150℃以下の温度で停止する焼入処理を行ない、続
いて500℃以上Ac1 点以下の温度域まで1℃/s
ec以上20℃/sec以下の昇温速度で加熱し焼戻し
処理することを特徴とする高強度高靭性鋼の製造方法で
ある。[0010] The gist of the present invention is that in weight %, C: 0.03
~0.15%, Si:0.05~0.50%, Mn:0
.. 3-2.0%, Mo: 0.10-2.0%, Al: 0
.. 01 to 0.10%, N: 0.0050% or less, or further Ni: 0.3 to 5.0%, Cu: 0.
1-1.5%, Cr: 0.1-1.5%, V: 0.01
~0.10%, Nb: 0.005~0.05%, Ti:
0.005-0.03%, B: 0.0005-0.00
A steel billet containing 20% of a group of strength and toughness improving elements, or one or more of 0.0005 to 0.005% of Ca, which has an effect of controlling inclusion form, and the balance consisting of Fe and unavoidable impurities. After heating to 1000-1250℃,
After hot rolling with a rolling reduction of 20% or more and 60% or less in a temperature range where austenite recrystallizes, and then rolling with a rolling reduction of 30% or more and 80% or less in a temperature range where austenite does not recrystallize, a temperature of Ar3 point or higher. The quenching process starts with water cooling and stops at a temperature of 150°C or lower, followed by 1°C/s to a temperature range of 500°C or higher and Ac1 point or lower.
This is a method for producing high-strength, high-toughness steel, characterized by heating and tempering at a temperature increase rate of ec or more and 20° C./sec or less.
【0011】本発明者らは、従来法の欠点を補い、更に
、高溶接性を考慮した高強度で且つ高靭性な鋼を開発す
ることを目的に、種々の製造方法について実験した結果
、Moを添加した比較的低い炭素含有量の低合金鋼片を
熱間圧延工程において、再結晶域圧延と未再結晶域圧延
を組合せ、加工転位が導入された細粒の未再結晶オース
テナイト状態から直接焼入れし、マルテンサイト組織お
よびベイナイト組織(下部ベイナイト組織および上部ベ
イナイト組織)とした後、更に変態後の組織中に引き継
がれた加工転位を消滅させないために、焼戻し温度に到
達するまでの昇温速度を速くすることにより、転位を多
く残存させながら固溶金属(Mo,Cr,V,Nb等)
を炭化物として析出させられることが分かり、高転位密
度からなる微細組織に析出強化が増大され、従来得るこ
とができなかったような良好な強度・靭性バランスを有
する高張力鋼を製造できることを知見した。[0011] The present inventors have conducted experiments on various manufacturing methods with the aim of compensating for the shortcomings of conventional methods and developing high-strength and high-toughness steel that takes into consideration high weldability. In the hot rolling process, a low-alloy steel billet with a relatively low carbon content, which has been added with After quenching to form a martensitic structure and a bainite structure (lower bainite structure and upper bainite structure), the temperature increase rate until the tempering temperature is reached is determined in order to prevent the dislocations carried over into the structure after transformation from disappearing. By speeding up the process, solid solution metals (Mo, Cr, V, Nb, etc.) can be removed while leaving many dislocations.
It was found that precipitation strengthening can be increased in the microstructure consisting of a high dislocation density, making it possible to produce high-strength steel with a good balance of strength and toughness that was previously impossible to obtain. .
【0012】0012
【作用】以下、本発明を作用とともに詳細に説明する。[Function] Hereinafter, the present invention will be explained in detail together with its function.
【0013】まず、本発明に適用する鋼を上記のような
鋼成分に限定した理由について述べる。First, the reason why the steel applicable to the present invention is limited to the above-mentioned steel components will be described.
【0014】C:Cは焼入れ性を向上させ強度を容易に
上昇させるのに有効な元素である。しかし、0.03%
未満では強度的に不十分であり、0.15%を超えると
溶接性を低下させる。従って、C含有量の範囲を0.0
3〜0.15%とした。C: C is an effective element for improving hardenability and easily increasing strength. However, 0.03%
If it is less than 0.15%, the strength is insufficient, and if it exceeds 0.15%, weldability will be reduced. Therefore, the C content range is 0.0
The content was set at 3% to 0.15%.
【0015】Si:Siは脱酸元素として、また鋼の強
度向上に有効であるが、0.05%未満ではその効果は
ない。しかし、0.50%を超えると靭性が低下する。
従って、Si含有量の範囲を0.05〜0.50%とし
た。Si: Si is effective as a deoxidizing element and in improving the strength of steel, but if it is less than 0.05%, it has no effect. However, if it exceeds 0.50%, toughness decreases. Therefore, the range of Si content was set to 0.05 to 0.50%.
【0016】Mn:Mnは焼入れ性を向上させ強度確保
に有効であるが、0.3%未満では十分な効果が得られ
ない。しかし、2.0%を超えると焼戻し脆性が大きく
なり靭性が低下する。従って、Mn含有量を0.3〜2
.0%とした。Mn: Mn is effective in improving hardenability and ensuring strength, but if it is less than 0.3%, sufficient effects cannot be obtained. However, if it exceeds 2.0%, temper brittleness increases and toughness decreases. Therefore, the Mn content is 0.3 to 2
.. It was set to 0%.
【0017】Mo:Moは焼入れ性の向上による強度確
保および焼戻し脆性の防止に有効である。又、本発明の
重要な元素である。すなわち、Moはオーステナイトの
再結晶を抑制する効果があり、更に加工によって導入さ
れた転位の消滅を抑制する効果があるため、焼戻し温度
に至るまでの昇温速度を速くすることにより転位を多量
に残存させながら固溶金属(Mo,Cr,V,Nb等)
を炭化物として析出させ靭性を低下させることなく効果
的な析出硬化を得ることができる。しかし、0.1%未
満ではその効果が小さく、2.0%を超えると粗大なM
o2 C等の炭化物が増加して靭性を低下させる。従っ
て、Mo含有量の範囲を0.1〜2.0%とした。Mo: Mo is effective in securing strength by improving hardenability and preventing temper brittleness. It is also an important element in the present invention. In other words, Mo has the effect of suppressing the recrystallization of austenite, and also has the effect of suppressing the disappearance of dislocations introduced by processing, so by increasing the heating rate up to the tempering temperature, a large number of dislocations can be generated. Solid solution metals (Mo, Cr, V, Nb, etc.) while remaining
is precipitated as a carbide, and effective precipitation hardening can be obtained without reducing toughness. However, if it is less than 0.1%, the effect is small, and if it exceeds 2.0%, the coarse M
Carbides such as o2C increase and reduce toughness. Therefore, the range of Mo content was set to 0.1 to 2.0%.
【0018】Al:Alは脱酸のために必要な元素であ
ると同時に、鋼片加熱時に窒化物を形成してオーステナ
イト粒の細粒化に有効である。しかし、0.01%未満
ではその効果が小さく、又、0.10%を超えるとアル
ミナ系介在物が増加して靭性を低下させる。従って、A
l含有量を0.01〜0.10%とした。Al: Al is an element necessary for deoxidation, and at the same time, it forms nitrides during heating of a steel billet and is effective in refining austenite grains. However, if it is less than 0.01%, the effect is small, and if it exceeds 0.10%, alumina-based inclusions increase and the toughness is reduced. Therefore, A
The l content was set to 0.01 to 0.10%.
【0019】N:NはAlやTiと結合して窒化物を形
成しオーステナイト粒の粗大化防止に有効に働く。しか
し、N量が多くなると溶接性が低下する。従って、N含
有量を0.0050%以下とした。N: N combines with Al and Ti to form nitrides and works effectively to prevent coarsening of austenite grains. However, when the amount of N increases, weldability decreases. Therefore, the N content was set to 0.0050% or less.
【0020】本発明では、上記基本成分のほかにNi,
Cu,Cr,V,Nb,Ti,Bからなる強度・靭性改
善元素群および介在物形態制御作用のあるCaの一種又
は二種以上を添加して所望の強度・靭性を得ることが可
能である。In the present invention, in addition to the above basic components, Ni,
It is possible to obtain the desired strength and toughness by adding one or more types of strength/toughness improving element group consisting of Cu, Cr, V, Nb, Ti, and B and Ca, which has the effect of controlling inclusion morphology. .
【0021】Ni:Niは鋼の低温靭性の向上および焼
入れ性を高めて強度を向上させるのに有効な元素である
。本発明においては、Niは未再結晶域圧延での加工転
位の消滅を抑制する作用があり、微細ラスからなるマル
テンサイト組織およびベイナイト組織の生成により靭性
および強度を向上させる。0.3%未満ではその効果が
なく、又、5.0%を超えると強度の割には靭性改善の
効果が小さく、コスト上昇を招く。従って、Ni含有量
を0.3〜5.0%とした。Ni: Ni is an element effective in improving the low-temperature toughness and hardenability of steel to improve its strength. In the present invention, Ni has the effect of suppressing the disappearance of work dislocations during rolling in the non-recrystallized region, and improves toughness and strength by forming martensitic and bainite structures consisting of fine laths. If it is less than 0.3%, there is no effect, and if it exceeds 5.0%, the effect of improving toughness is small compared to the strength, leading to an increase in cost. Therefore, the Ni content was set to 0.3 to 5.0%.
【0022】Cu:Cuは焼入れ性および靭性を確保す
るために有効である。しかし、0.1%未満ではその効
果がなく、又、1.5%を超えると靭性が低下する。従
って、Cuの含有量を0.1〜1.5%とした。Cu: Cu is effective for ensuring hardenability and toughness. However, if it is less than 0.1%, it has no effect, and if it exceeds 1.5%, the toughness decreases. Therefore, the Cu content was set to 0.1 to 1.5%.
【0023】Cr:CrもNiと同様に微細ラスからな
るマルテンサイト組織およびベイナイト組織を生成し、
強度を確保する上で0.1%以上必要である。しかし、
1.5%を超えると溶接性が低下する。従ってCr含有
量を0.1〜1.5%とした。Cr: Like Ni, Cr also produces martensitic and bainite structures consisting of fine laths,
0.1% or more is necessary to ensure strength. but,
If it exceeds 1.5%, weldability deteriorates. Therefore, the Cr content was set to 0.1 to 1.5%.
【0024】V:Vは析出硬化により鋼の強度を高める
のに有効である。しかし、0.01%未満ではその効果
がなく、又、0.10%を超えると靭性を低下させる。
従ってV含有量を0.01〜0.10%とした。V: V is effective in increasing the strength of steel through precipitation hardening. However, if it is less than 0.01%, it has no effect, and if it exceeds 0.10%, the toughness is reduced. Therefore, the V content was set to 0.01 to 0.10%.
【0025】Nb:Nbは微細なNb(C,N)を形成
し、圧延後のオーステナイト粒の微細化と析出硬化の面
で有効に機能する。しかし、0.005%未満では材質
上の効果がなく、又、0.05%を超えると溶接性が低
下する。従ってNb含有量を0.005〜0.05%と
した。Nb: Nb forms fine Nb(C,N) and functions effectively in refining austenite grains after rolling and precipitation hardening. However, if it is less than 0.005%, there will be no effect on the material quality, and if it exceeds 0.05%, weldability will deteriorate. Therefore, the Nb content was set to 0.005 to 0.05%.
【0026】Ti:Tiは微細なTiNを形成し、加熱
オーステナイト粒および溶接熱影響部の組織の細粒化、
つまり、靭性向上に効果的である。しかし、0.005
%未満ではその効果が小さく、又、0.03%を超える
とかえって靭性を低下させる。従って、Ti含有量を0
.005〜0.03%とした。Ti: Ti forms fine TiN and refines the structure of heated austenite grains and the weld heat affected zone.
In other words, it is effective in improving toughness. However, 0.005
If it is less than 0.03%, the effect will be small, and if it exceeds 0.03%, it will actually reduce the toughness. Therefore, the Ti content is reduced to 0.
.. 0.005 to 0.03%.
【0027】B:Bは鋼の焼入れ性を著しく高め、強度
、靭性を向上させるのに有効である。しかし、0.00
05%未満ではその効果が上がらず、又、0.0020
%を超えるとBの析出物を増加させて靭性を低下させる
。従ってB含有量を0.0005〜0.0020%とし
た。B: B is effective in significantly increasing the hardenability of steel and improving its strength and toughness. However, 0.00
If it is less than 0.05%, the effect will not increase, and if it is less than 0.0020
%, B precipitates increase and toughness decreases. Therefore, the B content was set to 0.0005 to 0.0020%.
【0028】Ca:Caは非金属介在物の球状化に有効
であり、靭性の異方性を小さくする効果がある。そのた
めには0.0005%必要であるが、0.0020%を
超えると介在物の増加により靭性を低下させる。従って
Ca含有量を0.0005〜0.0050%とした。Ca: Ca is effective in spheroidizing nonmetallic inclusions and has the effect of reducing the anisotropy of toughness. For this purpose, 0.0005% is required, but if it exceeds 0.0020%, the toughness decreases due to an increase in inclusions. Therefore, the Ca content was set to 0.0005 to 0.0050%.
【0029】上記の成分の他に、不可避的不純物元素と
してP,Sなどは靭性を低下させる有害な元素であるか
らその量は少ない方がよく、好ましくは、Pは0.02
0%以下、Sは0.01%以下である。In addition to the above components, unavoidable impurity elements such as P and S are harmful elements that reduce toughness, so it is better to have a small amount of them.Preferably, P is 0.02.
0% or less, and S is 0.01% or less.
【0030】次に、本発明のもう一つの骨子である製造
法について述べる。Next, the manufacturing method, which is another gist of the present invention, will be described.
【0031】上記のような鋼成分であっても焼戻しによ
る析出強化を十分に発揮させ、高強度化、且つ高靭性化
させるには製造法が適切でなければならない。ここで鋼
片の加熱、圧延、冷却および焼戻し条件の限定理由につ
いて説明する。Even with the above-mentioned steel components, the manufacturing method must be appropriate in order to fully exhibit precipitation strengthening through tempering and to achieve high strength and toughness. Here, the reasons for limiting the conditions for heating, rolling, cooling and tempering the steel billet will be explained.
【0032】まず、上記成分組成の鋼片を1000〜1
250℃に加熱し、熱間圧延を行なう。この加熱は、加
熱オーステナイト粒の細粒化と未再結晶域圧延によって
導入された転位を安定化させる作用のあるMo,Cr等
の固溶化および焼戻し処理時の析出強化を利用するため
に鋼片の状態で存在するMo,Cr,V,Nb等の炭窒
化物を十分に固溶化させるためである。従って、100
0℃未満の低い温度では、Mo,Cr,V,Nb等の固
溶化作用が不十分となる。一方、1250℃を超える温
度ではMo,Cr,V,Nb等の炭窒化物は十分固溶す
るものの、加熱オーステナイト粒が粗大化し、その後の
オーステナイト粒が細粒化しにくく、靭性低下の原因と
もなる。[0032] First, a steel piece having the above-mentioned composition was heated to 1,000 to 1
It is heated to 250°C and hot rolled. This heating is performed to refine the heated austenite grains and utilize the solid solution of Mo, Cr, etc., which has the effect of stabilizing the dislocations introduced by rolling in the non-recrystallized region, and the precipitation strengthening during tempering. This is to sufficiently convert carbonitrides such as Mo, Cr, V, and Nb, which exist in this state, into a solid solution. Therefore, 100
At a low temperature below 0° C., the solid solution action of Mo, Cr, V, Nb, etc. becomes insufficient. On the other hand, at temperatures exceeding 1250°C, although carbonitrides such as Mo, Cr, V, and Nb are sufficiently dissolved, the heated austenite grains become coarse and the subsequent austenite grains are difficult to refine, resulting in a decrease in toughness. .
【0033】次に、このように加熱された鋼片を、熱間
圧延においてオーステナイトが再結晶する温度域で圧下
率20%以上60%以下、ついで、オーステナイトが再
結晶しない温度域で圧下率30%以上80%以下となる
ように圧延を行なう。これは再結晶域圧延によってオー
ステナイト粒を細粒化させ、ついで未再結晶域圧延によ
ってオーステナイト粒内に加工転位を十分に高める必要
からである。再結晶温度域の圧下率が20%未満では細
粒化が不十分であり、圧下率60%超では未再結晶温度
域の圧下率が不十分となり、転位密度の量が著しく減少
する。一方、未再結晶温度域の圧下率が30%未満では
転位密度の増加が不十分であり、圧下率80%超では再
結晶圧下率が不十分となり、粗大伸長オーステナイト粒
が形成され強度・靱性の異方性が増す。Next, the thus heated steel billet is hot rolled at a rolling reduction of 20% to 60% in a temperature range where austenite recrystallizes, and then at a rolling reduction of 30% in a temperature range where austenite does not recrystallize. % or more and 80% or less. This is because it is necessary to refine the austenite grains by rolling in the recrystallization zone, and then sufficiently increase work dislocations in the austenite grains by rolling in the non-recrystallization zone. If the reduction rate in the recrystallization temperature range is less than 20%, grain refinement will be insufficient, and if the reduction rate exceeds 60%, the reduction rate in the non-recrystallization temperature range will be insufficient, and the amount of dislocation density will decrease significantly. On the other hand, if the reduction rate in the non-recrystallization temperature range is less than 30%, the increase in dislocation density is insufficient, and if the reduction rate exceeds 80%, the recrystallization reduction rate becomes insufficient, and coarse elongated austenite grains are formed, resulting in poor strength and toughness. The anisotropy of increases.
【0034】次に、この圧延完了後Ar3 点以下の温
度から水冷を開始し、150℃以下の温度で停止する焼
入れ処理を行なう。これは、細粒化と加工を受けたオー
ステナイトを十分にマルテンサイトおよびベイナイト(
下部ベイナイトおよび上部ベイナイト)に変態させ、そ
れにより粒内のマルテンサイト組織およびベイナイト組
織のラスの微細化を図り、より靱性を向上させるためで
ある。従って、上部ベイナイト組織が生成されてもオー
ステナイト粒とラスの微細化により靱性が向上する。し
かし、Ar3 点未満の温度からの水冷、あるいは冷却
が空冷ではフェライトの生成および加工転位の消失が起
こり強度・靭性低下の原因となる。又、水冷停止温度が
150℃を超えると焼戻し処理における析出強化作用が
不十分となる。Next, after this rolling is completed, water cooling is started at a temperature below the Ar3 point, and a quenching process is performed in which the process is stopped at a temperature below 150°C. This means that the austenite that has undergone grain refining and processing is sufficiently martensite and bainite (
This is to improve toughness by transforming the steel into lower bainite and upper bainite, thereby refining the laths of the martensite structure and bainite structure within the grains. Therefore, even if an upper bainite structure is formed, the toughness is improved due to the refinement of austenite grains and laths. However, water cooling from a temperature below the Ar3 point or air cooling causes the formation of ferrite and the disappearance of working dislocations, causing a decrease in strength and toughness. Further, if the water cooling stop temperature exceeds 150°C, the precipitation strengthening effect in the tempering treatment will be insufficient.
【0035】熱間圧延後水冷された鋼は、その後500
℃以上Ac1 点以下の温度域まで1℃/sec以上2
0℃/sec以下の昇温速度で焼戻し処理を行なう。こ
の処理は本発明法にとって重要な工程である。すなわち
、未再結晶域圧延によって導入された転位を多く残存さ
せながら固溶金属(Mo,Cr,V,Nb等)を炭化物
として析出させ、析出強化を効果的に増大させるためで
ある。ここに、500℃未満の温度では固溶化されたM
o,Cr,V,Nb等が炭化物として十分に析出せず、
又、Ac1 点超では変態が開始するため転位の消滅が
著しく、強度低下の原因となる。焼戻し中の昇温速度を
1℃/sec以上20℃/sec以下としたのは、従来
の如く1℃/sec未満の昇温速度では固溶Mo,Cr
,V,Nb等が炭化物としての析出に先立って転位が消
失すると共に析出炭化物の粗大化が起こり強度・靭性が
低下するからである。。又、昇温速度が20℃/sec
超では析出量が不十分で強度が低下する。図1は表1、
2に示す鋼Eについて圧延後水冷までを本発明範囲の製
造条件で製造した鋼板の焼戻し処理の昇温速度を変化さ
せたときの強度および靭性の影響について調査したもの
である。本発明範囲内の昇温速度で加熱焼戻しした場合
は、高強度、高靭性が得られる。しかし、本発明範囲を
逸脱した昇温速度では、強度、靭性の低下することが分
かる。[0035] The steel that was water cooled after hot rolling was then heated to 500
1°C/sec or more 2 to a temperature range of ℃ or higher and Ac1 point or lower
The tempering treatment is performed at a temperature increase rate of 0° C./sec or less. This treatment is an important step for the method of the present invention. That is, this is to allow solid solution metals (Mo, Cr, V, Nb, etc.) to precipitate as carbides while allowing many dislocations introduced by the rolling in the non-recrystallized region to effectively increase precipitation strengthening. Here, at a temperature of less than 500°C, M becomes a solid solution.
o, Cr, V, Nb, etc. are not sufficiently precipitated as carbides,
In addition, above the Ac1 point, transformation begins and dislocations are significantly eliminated, causing a decrease in strength. The temperature increase rate during tempering was set to 1°C/sec or more and 20°C/sec or less because, as in the case of conventional heating rates of less than 1°C/sec, solid solution Mo, Cr
, V, Nb, etc., before they precipitate as carbides, dislocations disappear and the precipitated carbides become coarser, resulting in a decrease in strength and toughness. . Also, the temperature increase rate is 20℃/sec
If it exceeds the amount, the amount of precipitation will be insufficient and the strength will decrease. Figure 1 is Table 1,
This study investigated the effects on strength and toughness of steel E shown in No. 2, which were manufactured under the manufacturing conditions within the range of the present invention after rolling and through water cooling, when the temperature increase rate during tempering treatment was varied. When heating and tempering is performed at a temperature increase rate within the range of the present invention, high strength and high toughness can be obtained. However, it can be seen that the strength and toughness decrease at a temperature increase rate outside the range of the present invention.
【0036】このような製造工程で製造された鋼板は、
鋼組織のマルテンサイト組織およびベイナイト組織が微
細化され、優れた機械的性質、特に靭性を損なうことな
く高強度を保証することができる。[0036] The steel plate manufactured by such a manufacturing process is
The martensitic and bainite structures of the steel structure are refined and can ensure excellent mechanical properties, especially high strength without compromising toughness.
【0037】[0037]
【実施例】表1、2に示す組成を有する鋼を溶製して得
た鋼片から、表3、4に示す本発明法と比較法の各々の
製造条件に基づいて、板厚15〜50mmの鋼板を製造
した。これらの母材の機械的性質を表5、6に示す。[Example] Based on the manufacturing conditions of the present invention method and the comparative method shown in Tables 3 and 4, from a steel plate obtained by melting steel having the composition shown in Tables 1 and 2, a plate thickness of 15 to A 50 mm steel plate was manufactured. The mechanical properties of these base materials are shown in Tables 5 and 6.
【0038】[0038]
【表1】[Table 1]
【0039】[0039]
【表2】[Table 2]
【0040】[0040]
【表3】[Table 3]
【0041】[0041]
【表4】[Table 4]
【0042】[0042]
【表5】[Table 5]
【0043】[0043]
【表6】[Table 6]
【0044】表5、6に見られるように、本発明例(本
発明の鋼組成と本発明の製造条件とを組合わせた製造条
件1,3,5,8,10,13,16,18,20,2
2,24,26,28,30)の強度と靭性は、十分に
高い値である。As seen in Tables 5 and 6, examples of the present invention (manufacturing conditions 1, 3, 5, 8, 10, 13, 16, 18 combining the steel composition of the invention and the manufacturing conditions of the invention) ,20,2
2, 24, 26, 28, 30) have sufficiently high values of strength and toughness.
【0045】これに対し、製造条件は本発明の範囲内で
あるが鋼組成が本発明から逸脱している、比較例32,
33,34では強度および靭性が低い。On the other hand, Comparative Example 32, in which the manufacturing conditions were within the scope of the present invention, but the steel composition deviated from the present invention;
No. 33 and 34 have low strength and toughness.
【0046】更に、本発明の鋼組成であっても比較法の
製造条件の場合において、比較例2,19では加熱温度
が高くオーステナイト粒の細粒化が不十分となり、靭性
が低下している。比較例9では加熱温度が低いため析出
物の固溶化が不十分となり、強度,靭性が低下している
。比較例6,21では再結晶域圧下率が高く、未再結晶
域圧下率が低いため、加工転位の導入およびミクロ組織
の微細化が不十分となり、強度,靭性が低下している。
比較例7,23では再結晶域圧下率が低く未再結晶域圧
下率が高いため、粗大伸長オーステナイト粒が生成され
、強度,靭性の異方性が生じ、靭性の低下が認められる
。比較例14,25では圧延後の水冷開始温度がAr3
変態点を下回っているため焼入れ性が著しく低下し、
強度,靭性が低下している。比較例11,27では水冷
停止温度が高く、圧延により導入された転位が消失し、
強度の低下が大きい。比較例4,15では焼戻し時の昇
温速度が遅いため転位の消失が起こり、強度の低下が大
きい。比較例12,29では焼戻し時の昇温速度が著し
く速いために析出強化が小さく、強度が低下している。
比較例17,31では焼戻し温度がAc1 点以上に加
熱されたため転位の消滅および炭化物の粗大化が起こり
、強度,靭性が低下している。Furthermore, even with the steel composition of the present invention, under the manufacturing conditions of the comparative method, in Comparative Examples 2 and 19, the heating temperature was high and the austenite grains were not sufficiently refined, resulting in a decrease in toughness. . In Comparative Example 9, since the heating temperature was low, the solid solution of the precipitates was insufficient, resulting in a decrease in strength and toughness. In Comparative Examples 6 and 21, the reduction ratio in the recrystallized region is high and the reduction ratio in the non-recrystallized region is low, so that the introduction of working dislocations and the refinement of the microstructure are insufficient, resulting in a decrease in strength and toughness. In Comparative Examples 7 and 23, the reduction ratio in the recrystallization region is low and the reduction ratio in the non-recrystallization region is high, so coarse elongated austenite grains are generated, anisotropy in strength and toughness occurs, and a decrease in toughness is observed. In Comparative Examples 14 and 25, the water cooling start temperature after rolling was Ar3.
Because it is below the transformation point, hardenability is significantly reduced,
Strength and toughness are reduced. In Comparative Examples 11 and 27, the water cooling stop temperature was high, and dislocations introduced by rolling disappeared,
Significant decrease in strength. In Comparative Examples 4 and 15, the temperature increase rate during tempering was slow, so dislocations disappeared, resulting in a large decrease in strength. In Comparative Examples 12 and 29, the temperature increase rate during tempering was extremely fast, so precipitation strengthening was small and the strength was reduced. In Comparative Examples 17 and 31, the tempering temperature was heated to the Ac1 point or higher, which caused dislocations to disappear and carbides to coarsen, resulting in a decrease in strength and toughness.
【0047】[0047]
【発明の効果】本発明により、強度・靭性バランスの向
上した高張力鋼を経済的に製造できるようになる。[Effects of the Invention] According to the present invention, high tensile strength steel with an improved balance of strength and toughness can be manufactured economically.
【図1】鋼Eについて強度,靭性に及ぼす焼戻し時の昇
温速度の影響について示す図面である。FIG. 1 is a drawing showing the influence of the temperature increase rate during tempering on the strength and toughness of Steel E.
Claims (2)
片を1000〜1250℃に加熱した後、熱間圧延にお
いてオーステナイトが再結晶する温度域で圧下率20%
以上60%以下、ついでオーステナイトが再結晶しない
温度域で圧下率30%以上80%以下の圧延を行なった
後、Ar3 点以上の温度から水冷を開始し150℃以
下の温度で停止する焼入処理を行ない、続いて500℃
以上Ac1 点以下の温度域まで1℃/sec以上20
℃/sec以下の昇温速度で加熱し焼戻し処理すること
を特徴とする高強度高靭性鋼の製造方法。Claim 1: In weight %, C: 0.03-0.15%, Si: 0.05-0.50%, Mn: 0.3-2.0%, Mo: 0.10-2. 0%, Al: 0.01-0.10%, N: 0.0050% or less, with the balance consisting of Fe and unavoidable impurities. After heating the steel piece to 1000-1250°C, it is hot-rolled. Reduction rate is 20% in the temperature range where austenite recrystallizes.
60% or more, then rolling at a reduction rate of 30% or more and 80% or less in a temperature range where austenite does not recrystallize, and then a quenching process in which water cooling is started at a temperature of Ar3 or higher and stopped at a temperature of 150°C or lower. and then heated to 500℃
1°C/sec or more to a temperature range of Ac1 point or less 20
A method for producing high-strength, high-toughness steel, characterized by heating and tempering at a temperature increase rate of ℃/sec or less.
05 〜0.05%、 Ti:0.005 〜0.03%、 B :0.0005〜0.0020%からなる強度靭
性改善元素群、又は介在物形態制御作用のある Ca:0.0005〜0.005% の一種又は二種以上を含有し、残部がFeおよび不可避
的不純物からなる鋼片を1000〜1250℃に加熱し
た後、熱間圧延においてオーステナイトが再結晶する温
度域で圧下率20%以上60%以下、ついでオーステナ
イトが再結晶しない温度域で圧下率30%以上80%以
下の圧延を行なった後、Ar3 点以上の温度から水冷
を開始し150℃以下の温度で停止する焼入処理を行な
い、続いて500℃以上Ac1 点以下の温度域まで1
℃/sec以上20℃/sec以下の昇温速度で加熱し
焼戻し処理することを特徴とする高強度高靭性鋼の製造
方法。2. In weight percent, C: 0.03-0.15%, Si: 0.05-0.50%, Mn: 0.3-2.0%, Mo: 0.10-2. 0%, Al: 0.01 to 0.10%, N: 0.0050% or less, and further contains Ni: 0.3 to 5.0%, Cu: 0.1 to 1.5%, Cr: 0.1 to 1.5%, V: 0.01 to 0.10%, Nb: 0.0
A group of strength and toughness improving elements consisting of 0.05 to 0.05%, Ti: 0.005 to 0.03%, B: 0.0005 to 0.0020%, or Ca having an inclusion form control effect: 0.0005 to After heating a steel billet containing one or more of 0.005% and the remainder consisting of Fe and unavoidable impurities to 1000 to 1250°C, it is hot rolled at a rolling reduction rate of 20 in the temperature range where austenite recrystallizes. % or more and 60% or less, followed by rolling at a reduction rate of 30% or more and 80% or less in a temperature range where austenite does not recrystallize, followed by quenching in which water cooling is started at a temperature of Ar3 or higher and stopped at a temperature of 150°C or lower. treatment, followed by temperature range of 500℃ or higher and Ac1 point or lower.
A method for producing high-strength, high-toughness steel, characterized by heating and tempering at a temperature increase rate of ℃/sec or more and 20℃/sec or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3080492A JPH04293718A (en) | 1991-03-20 | 1991-03-20 | Production of steel having high strength and high toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3080492A JPH04293718A (en) | 1991-03-20 | 1991-03-20 | Production of steel having high strength and high toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04293718A true JPH04293718A (en) | 1992-10-19 |
Family
ID=13719798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3080492A Withdrawn JPH04293718A (en) | 1991-03-20 | 1991-03-20 | Production of steel having high strength and high toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04293718A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107099741A (en) * | 2017-07-10 | 2017-08-29 | 山东钢铁集团日照有限公司 | A kind of deep underwater sightseeing shipping steel and preparation method thereof |
CN107779744A (en) * | 2016-08-30 | 2018-03-09 | 宝山钢铁股份有限公司 | A kind of bainite type X100 levels seamless line pipe and its manufacture method |
-
1991
- 1991-03-20 JP JP3080492A patent/JPH04293718A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107779744A (en) * | 2016-08-30 | 2018-03-09 | 宝山钢铁股份有限公司 | A kind of bainite type X100 levels seamless line pipe and its manufacture method |
CN107779744B (en) * | 2016-08-30 | 2019-07-23 | 宝山钢铁股份有限公司 | A kind of bainite type X100 grades of seamless line pipes and its manufacturing method |
CN107099741A (en) * | 2017-07-10 | 2017-08-29 | 山东钢铁集团日照有限公司 | A kind of deep underwater sightseeing shipping steel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1075117C (en) | Ultra-high strength secondary hardening steels with excellent toughness and weldability and method thereof | |
EP3124640B1 (en) | Steel plate with yield strength at 890mpa level and low welding crack sensitivity and manufacturing method therefor | |
JP2010516895A5 (en) | ||
CN112011725A (en) | Steel plate with excellent low-temperature toughness and manufacturing method thereof | |
JP2913426B2 (en) | Manufacturing method of thick high strength steel sheet with excellent low temperature toughness | |
CN111492084A (en) | Low-temperature steel material having excellent toughness of welded part and method for producing same | |
JPH02254120A (en) | Production of high tension strength steel having excellent weldability and low temperature toughness | |
JP3879440B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
KR20010060760A (en) | structural steel having High strength and method for menufactreing it | |
KR20170074319A (en) | Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same | |
JP2537118B2 (en) | Method of manufacturing stress corrosion corrosion resistant ultra high strength steel | |
JPS6156235A (en) | Manufacture of high toughness nontemper steel | |
KR20160078675A (en) | Multiple heat treatment steel having excellent low temperature toughness for energyand manufacturing method thereof | |
CN112593155B (en) | Anti-seismic, fire-resistant and weather-resistant steel plate for high-strength building structure and preparation method thereof | |
JPH05222450A (en) | Production of high tensile steel plate | |
JP2002363685A (en) | Low yield ratio high strength cold rolled steel sheet | |
JPH11131177A (en) | Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production | |
JPH04293718A (en) | Production of steel having high strength and high toughness | |
KR20010060759A (en) | High strength steel having low yield ratio and method for manufacturing it | |
KR101899736B1 (en) | Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same | |
JPH07109520A (en) | Production of sour-resisting steel plate excellent in toughness at low temperature and co2 corrosion resistance | |
JP2532176B2 (en) | Method for producing high-strength steel with excellent weldability and brittle crack propagation arresting properties | |
JP3267653B2 (en) | Manufacturing method of high strength steel sheet | |
CN116855829B (en) | Low-carbon nano bainite steel and preparation method thereof | |
JPS6289815A (en) | Manufacture of high yield point steel for low temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |