JPH0429080A - Bistatic radar equipment - Google Patents

Bistatic radar equipment

Info

Publication number
JPH0429080A
JPH0429080A JP13643690A JP13643690A JPH0429080A JP H0429080 A JPH0429080 A JP H0429080A JP 13643690 A JP13643690 A JP 13643690A JP 13643690 A JP13643690 A JP 13643690A JP H0429080 A JPH0429080 A JP H0429080A
Authority
JP
Japan
Prior art keywords
bistatic
monostatic
target
wave
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13643690A
Other languages
Japanese (ja)
Inventor
Shoji Matsuda
庄司 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13643690A priority Critical patent/JPH0429080A/en
Publication of JPH0429080A publication Critical patent/JPH0429080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To perform position measurement with high accuracy by arranging a bistatic receiving station separately from a radar other than a monostatic radar station, measuring a time difference between a reception wave and a transmission wave, and performing correlative processing with a position measured result. CONSTITUTION:A reflected wave from a target 4 is received with a reception antenna 10 in the bistatic receiving station 30, and after reception processing for amplification, etc., is performed with a receiver 11, the detection of the target and the measurement of the arrival time of the reception wave are performed by a signal detector 12. Thence, an arrival time difference detector 13 detects a time difference between a monostatic reception wave and a bistatic reception wave, and the position measurement is performed by a bistatic data processor 15 based on the above detected information and angle information from the beam directing angle detector 14 of a bistatic reception part antenna. A correlative position measuring processor 16 performs precision measurement and tracing of a targeted position by performing the relative processing of bistatic position measuring information with position measuring information obtained at the monostatic radar station. A precision measurement result is dislpayed on a display part 9 together with a monostatic position measurement result.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、航空機、船舶、車両等の目標を探知し、測
位するバイスタティック・レーダー装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bistatic radar device for detecting and positioning targets such as aircraft, ships, and vehicles.

〔従来の技術〕[Conventional technology]

従来のレーダー装置は、送信機能と受信機能が同一箇所
にある、いわゆるモノスタティック・レーダ一方式が一
般的である。第5図はこの方式の基本構成を示す系統図
である。
Conventional radar devices are generally of the so-called monostatic radar type, in which the transmitting function and the receiving function are located in the same location. FIG. 5 is a system diagram showing the basic configuration of this system.

図において、1は送信機、2は送受切換器、3は送受信
アンテナ、4は目標、5は受信機、6は目標の検出およ
び測距を行う信号検出器、7はビーム指向角検出器、8
は目標の測位および追尾処理を行うデータ処理器、9は
表示器である。
In the figure, 1 is a transmitter, 2 is a transmitting/receiving switch, 3 is a transmitting/receiving antenna, 4 is a target, 5 is a receiver, 6 is a signal detector that detects the target and measures distance, 7 is a beam direction angle detector, 8
9 is a data processor that performs target positioning and tracking processing, and 9 is a display device.

次に動作について説明する。送信機1で発生された大電
力の′f!1m波は送受切換器2を経由して指同性を有
する送受信アンテナ3がら空間へ放射される。アンテナ
・ビーム内に目標4が存在すればこれからの反射波は再
び送受信アンテナ3で受信される。受信信号は送受切換
器2を介して、受信機5で増幅等の受信処理が行われた
後、信号検出器6で目標の検出を行うと同時に、送信−
受信間の時間差から目標までの距離情報の検出(いわゆ
る測距)が行われる。一方、目標の方向の検出(いわゆ
る測角)は、ビーム指向角を用いて行われる。即ち、例
えば機械的なビーム走査を行うアンテナでは、機械的な
角度検出器、また電子的なビーム走査を行うアンテナで
は、ビーム制御信号発生器という形で実現されるビーム
指向角検出器7において、得られるビーム指向角情報が
測角の基準となる。以上述べた測距および測角の情報は
、データ処理器8へ導かれ、目標位置が算出(いわゆる
測位)され、追尾処理等のデータ処理が行われた後、結
果が表示器9に表示される。
Next, the operation will be explained. 'f! of the large power generated by the transmitter 1! The 1 m wave is radiated into space via a transmitting/receiving switch 2 from a transmitting/receiving antenna 3 having finger synchronization. If there is a target 4 within the antenna beam, the reflected waves from it will be received by the transmitting/receiving antenna 3 again. The received signal passes through the transmitter/receiver switch 2, and after receiving processing such as amplification is performed at the receiver 5, the signal detector 6 detects the target and at the same time transmits the signal.
Distance information to the target is detected from the time difference between receptions (so-called ranging). On the other hand, detection of the direction of the target (so-called angle measurement) is performed using the beam directivity angle. That is, for example, in the beam directivity angle detector 7 realized in the form of a mechanical angle detector in an antenna that performs mechanical beam scanning, and a beam control signal generator in an antenna that performs electronic beam scanning, The obtained beam directivity angle information becomes the standard for angle measurement. The distance measurement and angle measurement information described above is led to the data processor 8, the target position is calculated (so-called positioning), and after data processing such as tracking processing is performed, the results are displayed on the display 9. Ru.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のレーダー装置は以上のように構成されており、送
受信アンテナ位置を原点とした測位および測角の情報か
ら測位を行っているので、測位精度としては送受信アン
テナから見て、接線方向の絶対精度が目標距離に比例し
て劣化するという欠点があった。これを第6図に示す動
作説明図を用いて説明する。
Conventional radar devices are configured as described above, and positioning is performed based on positioning and angle information using the transmitting and receiving antenna position as the origin, so the positioning accuracy is based on the absolute accuracy in the tangential direction when viewed from the transmitting and receiving antenna. The disadvantage was that the distance deteriorated in proportion to the target distance. This will be explained using the operational diagram shown in FIG.

同図において、送受信アンテナTX/RXから放射する
指向性の送受信ビームの中に目標Aがあるとする。この
とき目標Aのレーダーから見て視線方向の測距精度ΔR
は、 で表わせる。ここでCは光速、τは受信信号の到来時刻
の検出精度である。このτは送信波の周波数帯域幅に依
存する量(例えば無変調パルスの場合は、送信パルス幅
と等価)であり、比較的簡単に高精度が実現できる。
In the figure, it is assumed that a target A exists in a directional transmitting/receiving beam radiated from the transmitting/receiving antennas TX/RX. At this time, the ranging accuracy ΔR in the line-of-sight direction as seen from the radar of target A
can be expressed as . Here, C is the speed of light, and τ is the detection accuracy of the arrival time of the received signal. This τ is a quantity that depends on the frequency bandwidth of the transmitted wave (for example, in the case of a non-modulated pulse, it is equivalent to the transmitted pulse width), and high accuracy can be achieved relatively easily.

一方、測角精度は、モノパルス測角等の精度向上手段は
あるものの、基本的にはアンテナ・ビーム幅に依存する
。測角精度をΔθとすると、送受信アンテナから見て接
線方向の絶対精度ΔLは、目標までの距離Rに比例し、 ΔL=R・Δθ となる。なお同図では簡単なため、Δθはビーム幅と等
しいとして図示している。
On the other hand, angle measurement accuracy basically depends on the antenna beam width, although there are methods for improving accuracy such as monopulse angle measurement. When the angle measurement accuracy is Δθ, the absolute accuracy ΔL in the tangential direction as seen from the transmitting/receiving antenna is proportional to the distance R to the target, ΔL=R·Δθ. In addition, in the figure, for simplicity, Δθ is shown as being equal to the beam width.

一般にアンテナ・ビーム幅を狭くするのには限界がある
ので、遠距離の目標に対してはΔLが増加し、絶対的な
測位精度が劣化することになる。
Generally, there is a limit to how narrow the antenna beam width can be, so ΔL will increase for a distant target, and the absolute positioning accuracy will deteriorate.

換言すれば従来のレーダー装置は、高精度化のためには
極めて大口径の狭ビーム・アンテナが必要となり、装置
規模の増大が避けられないという問題があった。
In other words, conventional radar equipment requires a narrow beam antenna with an extremely large diameter in order to achieve high accuracy, which has the problem of an unavoidable increase in the scale of the equipment.

この発明は、上記のような問題点を解消するためになさ
れたもので、送受信ビームの尖鋭化を行うことなく、高
精度の測位を行うことのできるバイスタティック・レー
ダー装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain a bistatic radar device that can perform highly accurate positioning without sharpening the transmitting and receiving beams. do.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るバイスタティック・レーダー装置は、従
来と同様のモノスタティック・レーダー局の他に、モノ
スタティック・レーダー送信波の目標からの反射波を受
信するバイスタティック受信局を上記レーダーから離隔
して設置し、バイスタティック受信局での受信波と送信
波との時間差またはモノスタティック・レーダー局での
受信波との到来時間差から得られる目標の位置情報と、
上記モノスタティック・レーダーで得られる目標の位置
情報との相関処理により、高精度の測位が行えるように
したものである。
A bistatic radar device according to the present invention includes, in addition to a conventional monostatic radar station, a bistatic receiving station that receives reflected waves from a target of monostatic radar transmission waves, which is separated from the radar. target position information obtained from the time difference between the received wave and the transmitted wave at the bistatic receiving station or the arrival time difference between the received wave at the monostatic radar station,
Correlation processing with target position information obtained by the monostatic radar allows highly accurate positioning.

〔作用〕[Effect]

この発明におけるバイスタティック・レーダー装置は、
目標位置をバイスタティック測位による楕円または双曲
線上の軌跡とモノスタティック測位による円周上の軌道
の交点として捉え、高精度の測位を行うことができる。
The bistatic radar device in this invention is
Highly accurate positioning can be performed by capturing the target position as the intersection of an elliptical or hyperbolic trajectory based on bistatic positioning and a circumferential trajectory based on monostatic positioning.

〔実施例] 以下、この発明の第一の実施例を図を用いて説明する。〔Example] Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例によるバイスタティック・レ
ーダー装置の系統図を示し、この実施例はバイスタティ
ック測位として、ハイスタテイック受信局の受信波とモ
ノスタテイ・ンク・レーダー局の受信波の到来時間差を
用いた例である。
FIG. 1 shows a system diagram of a bistatic radar device according to an embodiment of the present invention. This embodiment performs bistatic positioning by combining the received waves of a high static receiving station and the received waves of a monostatic radar station. This is an example using arrival time difference.

この図において、1,2.3,4,5,6.7及び8は
モノスタティック・レーダー局20を構成し、1は送信
機、2は送受切換器、3は送受信アンテナ、5は受信機
、6は信号検出器、7はビーム指向角検出器、8はデー
タ処理器である。また4は目標を示す。
In this figure, 1, 2.3, 4, 5, 6.7 and 8 constitute a monostatic radar station 20, 1 is a transmitter, 2 is a transmitter/receiver switch, 3 is a transmitter/receiver antenna, and 5 is a receiver. , 6 is a signal detector, 7 is a beam direction angle detector, and 8 is a data processor. 4 also indicates a goal.

一方、10,11.12及び14はバイスタティック受
信局30を構成し、10は受信アンテナ、11は受信機
、12は信号検出器、14は受信ビームのビーム指向角
検出器である。また、13はモノスタティック受信波と
パイスタテイ・ンク受信波の到来時間差の検出器、15
はバイスタティック測位を行うバイスタティック・デー
タ処理器、16はモノスタティック測位情報とバイスタ
ティック測位情報の相関処理を行う相関測位処理器、9
は表示器である。
On the other hand, 10, 11, 12, and 14 constitute a bistatic receiving station 30, in which 10 is a receiving antenna, 11 is a receiver, 12 is a signal detector, and 14 is a beam orientation angle detector of the receiving beam. 13 is a detector for the arrival time difference between the monostatic received wave and the pistatic received wave; 15
9 is a bistatic data processor that performs bistatic positioning; 16 is a correlation positioning processor that performs correlation processing of monostatic positioning information and bistatic positioning information;
is an indicator.

次にこの実施例の動作について説明する。Next, the operation of this embodiment will be explained.

第1図の1. 2. 3. 4. 5. 6.7及び8
で構成されるモノスタティック・レーダー局20で、モ
ノスタティック測位情報が得られるまでの動作は、従来
技術の説明と同様ゆえ省略する。一方、バイスタティッ
ク受信局30では、目標4からの反射波は受信アンテナ
10で受信され、受信機11で増幅等の受信処理を行っ
た後、信号検出器12で目標の検出及び受信波の到来時
刻の計測を行う0次に到来時間差検出器13は、モノス
タティック受信波とバイスタティック受信波の到来時間
差を検出し、この情報とバイスタティック受信アンテナ
のビーム指向角検出器14からの角度情報とに基づき、
バイスタティック・データ処理器15で測位を行う。相
関測位処理器16は、このバイスタティック測位情報と
モノスタティック・レーダー局で得られた測位情報との
相関処理により、目標位置の精測および追尾を行う。こ
の精測測位結果は、モノスタティック測位結果とともに
、表示器9に表示される。
1 in Figure 1. 2. 3. 4. 5. 6.7 and 8
The operations until monostatic positioning information is obtained in the monostatic radar station 20 constituted by the following are the same as those described in the prior art and will therefore be omitted. On the other hand, in the bistatic receiving station 30, the reflected wave from the target 4 is received by the receiving antenna 10, and after receiving processing such as amplification is performed by the receiver 11, the signal detector 12 detects the target and the arrival of the received wave. The zero-order arrival time difference detector 13, which measures time, detects the arrival time difference between the monostatic reception wave and the bistatic reception wave, and combines this information with the angle information from the beam orientation angle detector 14 of the bistatic reception antenna. Based on
Bistatic data processor 15 performs positioning. The correlation positioning processor 16 performs precise measurement and tracking of the target position by correlating the bistatic positioning information with the positioning information obtained by the monostatic radar station. This precise positioning result is displayed on the display 9 together with the monostatic positioning result.

以上述べた測位方式で、精測が行われる原理を第2図を
用いて説明する。同図で、モノスタティック・レーダー
局の送受信アンテナTχ/RXから、目標Aを観測した
ときの測位精度は、従来技術の説明で述べたとおり、点
TX/RXを中心にした円環上で斜線を施した部分とな
る。
The principle of precise measurement using the positioning method described above will be explained using FIG. 2. In the same figure, the positioning accuracy when observing target A from the transmitting/receiving antenna Tχ/RX of the monostatic radar station is as described in the explanation of the prior art. This is the part that has been applied.

一方、ハイスタテイック受信局の受信アンテナRXとモ
ノスタティック・レーダー局の送受信アンテナTX/R
Xとの受信波到来時間差から目標を測位すると、目標の
軌跡はRXとTX/RXとを焦点とする双曲線となり、
測位精度はこの双曲線と受信ビームの交叉領域として図
で斜線を施した部分となる。
On the other hand, the receiving antenna RX of the high static receiving station and the transmitting/receiving antenna TX/R of the monostatic radar station
When the target is located based on the arrival time difference of received waves with X, the target trajectory becomes a hyperbola with RX and TX/RX as focal points
The positioning accuracy is determined by the hatched area in the figure, which is the intersection area between this hyperbola and the receiving beam.

なお、ここで双曲線の幅ΔSは、目標Aを基準としたT
X/RXの見込み角αを用いて、Cτ ΔS =        cosec  αで表わすこ
とができる。ΔSは目標までの距離に直接には依存しな
いので、受信波到来時刻の検出精度τを適当に選べば十
分率さい値にすることができる。
In addition, here, the width ΔS of the hyperbola is T based on the target A.
Using the viewing angle α of X/RX, it can be expressed as Cτ ΔS = cosec α. Since ΔS does not directly depend on the distance to the target, it can be made to a sufficiently small value by appropriately selecting the detection accuracy τ of the received wave arrival time.

次にモノスタティック測位結果とバイスタティック測位
結果の相関処理を行えば、目標の位置精度は、第2図の
2つの斜線領域の交叉領域(図では黒で塗りつぶした領
域)とすることができる。
Next, by performing correlation processing between the monostatic positioning results and the bistatic positioning results, the target position accuracy can be set to the intersection area of the two hatched areas in FIG. 2 (the area filled in black in the figure).

即ち絶対精度として、近似的に の精度を達成することができる。That is, as an absolute precision, approximately accuracy can be achieved.

次に本発明の第2の実施例について、図を用いて説明す
る。
Next, a second embodiment of the present invention will be described with reference to the drawings.

第3図はこの実施例の構成を示す系統図である。FIG. 3 is a system diagram showing the configuration of this embodiment.

同図の1〜16は第1図で示した第1の実施例と同様の
機能を示す、同図の17は送信波とペイスタティック受
信波の時間差の検出器、18はバイスタティック測位を
行う第2のバイスタティック・データ処理器、19は選
択器である。
1 to 16 in the same figure indicate the same functions as the first embodiment shown in FIG. 1, 17 in the same figure is a detector for detecting the time difference between the transmitted wave and the pay-static received wave, and 18 performs bistatic positioning. The second bistatic data processor, 19, is a selector.

この実施例の動作のうち、同図の1〜16に関する部分
は、第1の実施例と同様ゆえ説明を省略する。時間差検
出器17は送信波とバイスタティック受信波の時間差を
検出する。第2のハイスタティック・データ処理器18
は、この時間差とバイスタティック受信アンテナのビー
ム指向角検出器14からの角度情報に基づき、目標の測
位を行う0選択器19は目標の領域に応じて、第1と第
2のバイスタティック・データ処理器15と18の測位
結果のいずれか一方を選択して相関測位処理器16へ出
力する。この選択の意図するところは次のとおりである
Of the operations of this embodiment, the portions 1 to 16 in the same figure are the same as those of the first embodiment, and therefore their explanation will be omitted. The time difference detector 17 detects the time difference between the transmitted wave and the bistatic received wave. Second high static data processor 18
Based on this time difference and the angle information from the beam orientation angle detector 14 of the bistatic receiving antenna, the 0 selector 19 that performs target positioning selects the first and second bistatic data according to the target area. Either one of the positioning results from the processors 15 and 18 is selected and output to the correlation positioning processor 16. The purpose of this selection is as follows.

即ちバイスタティック受信局の近傍またはモノスタティ
ック・レーダー局の近傍では、モノスタティック測位に
よる円周上の目標軌跡と第1のバイスタティック測位に
よる双曲線上の目標軌跡の交叉角が小となるwI域があ
り、この領域では相関処理による精度向上効果が少なく
なる。
That is, in the vicinity of a bistatic receiving station or a monostatic radar station, there is a wI region where the intersection angle between the target trajectory on the circumference obtained by monostatic positioning and the target trajectory on the hyperbola obtained by the first bistatic positioning is small. In this region, the accuracy improvement effect of correlation processing is reduced.

一方、第2のバイスタティック測位での目標軌跡は、第
4図に示すように楕円となり、上記領域でのモノスタテ
ィック測位による円周上の目標軌跡との交叉角が大とな
るので、精度向上効果を大とすることができる。なお、
この場合の楕円の幅ΔS9は、目標からのTX/RXと
RXの見込み角αを用いて と表わすことができ、精度よく測位が行える。
On the other hand, the target trajectory in the second bistatic positioning becomes an ellipse as shown in Figure 4, and the intersection angle with the target trajectory on the circumference by monostatic positioning in the above area is large, improving accuracy. The effect can be increased. In addition,
In this case, the width ΔS9 of the ellipse can be expressed using the viewing angle α of TX/RX and RX from the target, and positioning can be performed with high accuracy.

なお、以上述べた2つの実施例では、目標軌跡として円
と双曲線の相関の例および円と楕円または双曲線のいず
れか一方の相関の例を示したが、円と楕円の相関や、円
と楕円と双曲線の3つの相関も同様の効果がある。
In addition, in the two embodiments described above, an example of a correlation between a circle and a hyperbola and an example of a correlation between a circle and an ellipse or a hyperbola were shown as the target trajectory. and the three hyperbolic correlations have a similar effect.

また、本発明の特徴は、受信波の到来時間差を利用する
ことにあり、偽像が問題とならない場合には、パイスタ
テイ・ツタ受信局のビーム指向角情報をしても、あるい
は無指向性アンテナ化を行っても同様の効果が得られる
A feature of the present invention is to utilize the arrival time difference of the received waves, and if false images are not a problem, the beam directivity angle information of the pistate/ivy receiving station or the omnidirectional antenna can be used. A similar effect can be obtained by converting the

〔発明の効果〕〔Effect of the invention〕

以上のよう、に、この発明に係るバイスタティック・レ
ーダー装置によれば、モノスタティック・レーダー局の
他に、モノスタティック・レーダー送信波の目標からの
反射波を受信するバイスタティック受信局を上記レーダ
ーから離隔して設置し、二の受信局の受信波と送信波と
の時間差、またはモノスタティック・レーダー局での受
信波との到来時間差から目標位置を測定し、これとモノ
スタティック・レーダー局の位置測定結果との相関処理
を行うようにしたので、高精度の測位を得られる効果が
ある。
As described above, according to the bistatic radar device according to the present invention, in addition to the monostatic radar station, the bistatic receiving station that receives the reflected wave from the target of the monostatic radar transmission wave is connected to the radar. The target position is measured from the time difference between the received wave and the transmitted wave at the second receiving station, or the arrival time difference between the received wave at the monostatic radar station, and Since correlation processing with the position measurement results is performed, highly accurate positioning can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例の構成を示す系統図、
第2図は第1の実施例の動作−説明図、第3図はこの発
明の第2の実施例の構成を示す系統図、第4図は第2の
実施例の動作説明図、第5図は従来のレーダー装置の構
成を示す系統図、第6図は従来のレーダー装置の動作説
明図である。 図において、1は送信機、2は送受切換器、3は送受信
アンテナ、4は目標ミ5は受信機、6は信号検出器、7
はビーム指向角検出器、8はデータ処理器、9は表示器
、10は受信アンテナ、llは受信機、12は信号検出
器、13は到来時間差検出器、14はビーム指向角検出
器、15はバイスタティック・データ処理器、16は相
関測位処理器、17は時間差検出器、・18は第2のバ
イスタティック・データ処理器、19は選択器、20は
モノスタティック・レーダー局、30はバイスタティッ
ク受信局である。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a system diagram showing the configuration of a first embodiment of the present invention;
FIG. 2 is an explanatory diagram of the operation of the first embodiment, FIG. 3 is a system diagram showing the configuration of the second embodiment of the present invention, FIG. 4 is an explanatory diagram of the operation of the second embodiment, and FIG. The figure is a system diagram showing the configuration of a conventional radar device, and FIG. 6 is an explanatory diagram of the operation of the conventional radar device. In the figure, 1 is a transmitter, 2 is a transmitter/receiver switch, 3 is a transmitter/receiver antenna, 4 is a target, 5 is a receiver, 6 is a signal detector, and 7
is a beam directivity angle detector, 8 is a data processor, 9 is a display, 10 is a receiving antenna, 11 is a receiver, 12 is a signal detector, 13 is a time difference of arrival detector, 14 is a beam directivity angle detector, 15 is a bistatic data processor, 16 is a correlation positioning processor, 17 is a time difference detector, 18 is a second bistatic data processor, 19 is a selector, 20 is a monostatic radar station, and 30 is a bistatic radar station. This is a static receiving station. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)バイスタティック・レーダー装置において、指向
性アンテナから電磁波の送受信を行い、送信波と受信波
の時間差およびアンテナ・ビーム指向角度から目標の測
距および測角を行うモノスタティック・レーダー局と、 このモノスタティック・レーダー局から離隔して設置さ
れ、モノスタティック・レーダー送信波の目標からの反
射波を受信するバイスタティック受信局と、 このバイスタティック受信波と送信波との時間差、また
はモノスタティック・レーダー局の受信波との到来時間
差から目標位置を測定する手段と、このバイスタティッ
ク位置測定結果と前記モノスタティック・レーダーの位
置測定結果の相関処理により、目標位置の測定を行う手
段とを備え、モノスタティック情報とバイスタティック
情報との相関処理を行うことにより、三角測量が可能で
あることを特徴とするバイスタティック・レーダー装置
(1) In a bistatic radar device, a monostatic radar station that transmits and receives electromagnetic waves from a directional antenna and measures the range and angle of a target based on the time difference between the transmitted and received waves and the antenna beam direction angle; A bistatic receiving station is installed at a distance from this monostatic radar station and receives the reflected wave of the monostatic radar transmitted wave from the target, and the time difference between the bistatic received wave and the transmitted wave, or the monostatic Means for measuring the target position from the arrival time difference with the received wave of the radar station, and means for measuring the target position by correlation processing of the bistatic position measurement result and the position measurement result of the monostatic radar, A bistatic radar device characterized in that triangulation is possible by performing correlation processing between monostatic information and bistatic information.
JP13643690A 1990-05-24 1990-05-24 Bistatic radar equipment Pending JPH0429080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13643690A JPH0429080A (en) 1990-05-24 1990-05-24 Bistatic radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13643690A JPH0429080A (en) 1990-05-24 1990-05-24 Bistatic radar equipment

Publications (1)

Publication Number Publication Date
JPH0429080A true JPH0429080A (en) 1992-01-31

Family

ID=15175088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13643690A Pending JPH0429080A (en) 1990-05-24 1990-05-24 Bistatic radar equipment

Country Status (1)

Country Link
JP (1) JPH0429080A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204190A (en) * 1990-11-30 1992-07-24 Nec Corp Radar
JP2002267745A (en) * 2001-03-06 2002-09-18 Nec Corp Method and device for synchroninized type tracking by sensor control
JP2006125947A (en) * 2004-10-27 2006-05-18 Tdk Corp Radar system
JP2006153585A (en) * 2004-11-26 2006-06-15 Mitsubishi Electric Corp Tracking system
JP2008298605A (en) * 2007-05-31 2008-12-11 Mitsubishi Electric Corp Apparatus and method for estimating track
JP2011510283A (en) * 2008-01-18 2011-03-31 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Multiple object localization using receiver networks
JP2011089886A (en) * 2009-10-22 2011-05-06 Mitsubishi Electric Corp Radar apparatus
JP2011526680A (en) * 2008-07-03 2011-10-13 アンテオープ Antenna-coded emission / reception method and apparatus including use in radar
RU2751999C1 (en) * 2020-08-24 2021-07-21 Акционерное общество "Научно-исследовательский институт современных телекоммуникационных технологий" Method for semiactive-passive bistatic determination of location of target
JPWO2022102231A1 (en) * 2020-11-10 2022-05-19

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064273A (en) * 1983-09-20 1985-04-12 Oki Electric Ind Co Ltd Target position detecting system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064273A (en) * 1983-09-20 1985-04-12 Oki Electric Ind Co Ltd Target position detecting system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04204190A (en) * 1990-11-30 1992-07-24 Nec Corp Radar
JP2002267745A (en) * 2001-03-06 2002-09-18 Nec Corp Method and device for synchroninized type tracking by sensor control
JP2006125947A (en) * 2004-10-27 2006-05-18 Tdk Corp Radar system
JP2006153585A (en) * 2004-11-26 2006-06-15 Mitsubishi Electric Corp Tracking system
JP2008298605A (en) * 2007-05-31 2008-12-11 Mitsubishi Electric Corp Apparatus and method for estimating track
JP2011510283A (en) * 2008-01-18 2011-03-31 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィ Multiple object localization using receiver networks
JP2011526680A (en) * 2008-07-03 2011-10-13 アンテオープ Antenna-coded emission / reception method and apparatus including use in radar
JP2011089886A (en) * 2009-10-22 2011-05-06 Mitsubishi Electric Corp Radar apparatus
RU2751999C1 (en) * 2020-08-24 2021-07-21 Акционерное общество "Научно-исследовательский институт современных телекоммуникационных технологий" Method for semiactive-passive bistatic determination of location of target
JPWO2022102231A1 (en) * 2020-11-10 2022-05-19
WO2022102231A1 (en) * 2020-11-10 2022-05-19 日立Astemo株式会社 Radar axis deviation correction system and radar axis deviation correction method

Similar Documents

Publication Publication Date Title
JP2651054B2 (en) Polystatic correlation radar
JP5682669B2 (en) Target detection apparatus and system
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
US20060114146A1 (en) Multi-targeting method and multi-targeting sensor device for locating short-range target objects in terms of distance and angle
JP2007225589A (en) Target detection apparatus and system
US5280294A (en) Passive monopulse ranging to a non-cooperative emitter and non-emitting object
US2687520A (en) Radar range measuring system
US3261014A (en) Combined radar and infrared display system
JPH0429080A (en) Bistatic radar equipment
US5239310A (en) Passive self-determined position fixing system
US2597895A (en) Remote location and identification system
Fabrizio Geolocation of HF skywave radar signals using multipath in an unknown ionosphere
JPH05142341A (en) Passive ssr device
RU95860U1 (en) RADAR MODULE
US6388603B1 (en) System and method for bistatically determining altitude and slant range to a selected target
JP2982751B2 (en) Position locating method and device
US2703880A (en) Radio object locating system
RU2762742C1 (en) Method for protecting a surveillance radar from passive interference created by clusters of reflectors, and a radar station for its implementation
JPH03282389A (en) Accurate measurement entry radar
JPH10206537A (en) Radar auxiliary device
JP2623969B2 (en) Radar equipment
RU2226701C2 (en) Method for determination of co-ordinates of objects and radar for its realization
JP3563575B2 (en) Tracking point identification processing device and tracking flying object
KR20040099852A (en) Method for detecting target in multi-function radar
JPH02275385A (en) Radar apparatus