JPH04290739A - Laminated plate and manufacture thereof - Google Patents

Laminated plate and manufacture thereof

Info

Publication number
JPH04290739A
JPH04290739A JP5526191A JP5526191A JPH04290739A JP H04290739 A JPH04290739 A JP H04290739A JP 5526191 A JP5526191 A JP 5526191A JP 5526191 A JP5526191 A JP 5526191A JP H04290739 A JPH04290739 A JP H04290739A
Authority
JP
Japan
Prior art keywords
glass fiber
nonwoven fabric
fiber nonwoven
resin
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5526191A
Other languages
Japanese (ja)
Inventor
Masaru Ogata
緒方 優
Mitsutoshi Kamata
満利 鎌田
Kenichi Kariya
刈屋 憲一
Yukihiro Yamashita
幸宏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP5526191A priority Critical patent/JPH04290739A/en
Publication of JPH04290739A publication Critical patent/JPH04290739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To reduce warpage or a dimensional dimension in a laminated plate formed by infiltrating a thermosetting resin in a base material partially or entirely composed of a glass fiber nonwoven fabric and molding the impregnated one. CONSTITUTION:About 90wt.% or more of aluminum hydroxide containing a small amount of ethyl cellulose and an epoxy resin is held to a glass fiber nonwoven fabric to be used. This glass fiber nonwoven fabric is impregnated with a thermosetting resin with high glass transition temp. (Tg) (composition consisting of a bisphenol type epoxy resin, a novolac type epoxy resin and a novolac type phenol resin, Tg of cured matter is 152 deg.C) to be molded under heating and pressure. When the aforementioned glass fiber nonwoven fabric is used as a core layer and a glass fiber nonwoven fabric is laminated to the surface of the core layer to form a laminated plate, warpage or a dimensional change is still more reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、プリント配線板等の絶
縁基板として適した積層板およびその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminate suitable as an insulating substrate such as a printed wiring board and a method for manufacturing the same.

【0002】0002

【従来の技術】ガラス繊維不織布を基材とする積層板は
、この基材にエポキシ樹脂などを含浸して、積層成形し
て得られ、打ち抜き加工性がよく、電気絶縁用途に使用
されている。従来用いられているガラス繊維不織布は、
ガラス短繊維を水中に分散させ抄紙機で抄造する湿式法
で製造されたものが殆どである。ガラス繊維自体では、
互いに絡み合う性質がなく熱融着させるのも困難である
ため、バインダを用いて繊維同士を結着している。 バインダとしては、アクリル酸樹脂、酢酸ビニル樹脂、
エポキシ樹脂などが用いられ、これらバインダを、抄造
したガラス繊維不織布にスプレーする。また、ガラス繊
維不織布に含浸させる熱硬化性樹脂としては、ガラス転
移温度(Tg)が80〜130℃のものが使用されてい
る。
[Prior Art] Laminated boards based on glass fiber nonwoven fabric are obtained by impregnating this base material with epoxy resin, etc., and laminating and molding them.They have good punching workability and are used for electrical insulation purposes. . The conventionally used glass fiber nonwoven fabric is
Most of them are manufactured by a wet method in which short glass fibers are dispersed in water and then made using a paper machine. The glass fiber itself
Since fibers do not have the property of intertwining with each other and it is difficult to heat-seal them, a binder is used to bind the fibers together. As a binder, acrylic acid resin, vinyl acetate resin,
An epoxy resin or the like is used, and these binders are sprayed onto the glass fiber nonwoven fabric made from paper. Further, as the thermosetting resin to be impregnated into the glass fiber nonwoven fabric, one having a glass transition temperature (Tg) of 80 to 130°C is used.

【0003】0003

【発明が解決しようとする課題】ガラス繊維不織布は、
空隙が多く密度のバラツキも大きいので、これに樹脂を
含浸した場合、空隙部が樹脂リッチとなり、樹脂リッチ
となる部分も、前記密度のバラツキに起因して不均一に
分布する。積層板は、加熱処理を受けると樹脂が収縮し
、一方、基材は、その収縮を抑制する働きをする。しか
し、ガラス繊維不織布基材は、加熱処理によりバインダ
樹脂が軟化し強度が低下してしまうので、樹脂の収縮を
十分に抑制できず、しかも、樹脂リッチとなる部分が不
均一に分布しているので、熱収縮の程度も場所によって
異なり、積層板のそりや寸法変化が大きくなる。本発明
が解決しようとするは、使用する基材の一部ないし全部
がガラス繊維不織布である積層板において、そりや寸法
変化小さくすることである。
[Problem to be solved by the invention] Glass fiber nonwoven fabric is
Since there are many voids and variations in density are large, when this is impregnated with resin, the voids become rich in resin, and the resin-rich portions are also distributed non-uniformly due to the variation in density. When the laminate is subjected to heat treatment, the resin shrinks, and the base material functions to suppress the shrinkage. However, with glass fiber nonwoven fabric base materials, heat treatment softens the binder resin and reduces the strength, so resin shrinkage cannot be sufficiently suppressed, and moreover, resin-rich areas are unevenly distributed. Therefore, the degree of thermal shrinkage varies depending on the location, resulting in large warpage and dimensional changes in the laminate. The object of the present invention is to reduce warpage and dimensional changes in a laminate in which part or all of the base material is made of glass fiber nonwoven fabric.

【0004】0004

【課題を解決するための手段】本発明に係る積層板は、
ガラス繊維不織布を基材とし、これに熱硬化性樹脂を含
浸して重ね加熱加圧成形したものにおいて、ガラス繊維
不織布がアルキルセルロースを含む無機充填材をガラス
繊維不織布に保持させてその量を50重量%以上とした
ものであり、硬化した樹脂のガラス転移温度(Tg)が
、150℃以上であることを特徴とする。積層板の基材
の層構成は、前記のガラス繊維不織布を芯層とし、表面
層に通常用いられているガラス繊維織布を配置するもの
であってもよい。
[Means for Solving the Problems] The laminate according to the present invention includes:
A glass fiber nonwoven fabric is used as a base material, which is impregnated with a thermosetting resin and then layered and heated and pressure molded. % by weight or more, and the cured resin has a glass transition temperature (Tg) of 150° C. or more. The layer structure of the base material of the laminate may be such that the above-mentioned glass fiber nonwoven fabric is used as a core layer and a commonly used glass fiber woven fabric is arranged as a surface layer.

【0005】また、前記の積層板の製造方法、特に、無
機充填材をガラス繊維不織布に保持させる方法は、次の
方法がよい。まず、アルキルセルロースとエポキシ樹脂
を有機溶媒に溶解して無機充填材を分散させた液を用意
する。この分散液にガラス繊維不織布を浸漬し乾燥する
方法である。
[0005] Furthermore, the method for manufacturing the above-mentioned laminate, particularly the method for retaining the inorganic filler in the glass fiber nonwoven fabric, is preferably the following method. First, a liquid is prepared in which alkyl cellulose and epoxy resin are dissolved in an organic solvent and an inorganic filler is dispersed therein. This is a method in which a glass fiber nonwoven fabric is immersed in this dispersion and then dried.

【0006】[0006]

【作用】本発明に使用しているガラス繊維不織布は、無
機充填材を多量に保持させていることにより、従来のガ
ラス繊維不織布にみられた空隙が少なくなり、密度が均
一になる。アルキルセルロースは、セルロースの水酸基
(−OH)を、アルキル基(−CnH2n+1)に置換
したもので、その被膜形成能力により、ガラス繊維不織
布に保持させた無機充填材が脱落するのを防止する作用
をもっている。また、耐湿性に優れ熱時の軟化温度も高
いので(エチルセルロースは150〜160℃)、高温
においても無機充填材をガラス繊維不織布に確実に保持
させ、熱間強度を高めることができる。従って、上記ガ
ラス繊維不織布を基材とした積層板は、ガラス繊維不織
布の空隙が無機充填材で埋められており、ガラス繊維不
織布の熱間強度も大きいことから、加熱処理による樹脂
の収縮を抑えることができ、そりや寸法変化が抑制され
る。さらに、Tg150℃以上の樹脂を使用しているこ
とにより、積層板の熱間強度の保持率が高くなり、Tg
温度前後の熱処理を積層板に施しても、変形や歪みが少
なくなる。これらの相乗効果により、積層板の反り、寸
法変化の抑制が極めて顕著になるのである。ガラス繊維
不織布に保持させる無機充填材は、その量が少ないと積
層板のそりや寸法変化を抑えることができない。
[Operation] The glass fiber nonwoven fabric used in the present invention retains a large amount of inorganic filler, thereby reducing the voids found in conventional glass fiber nonwoven fabrics and making the density uniform. Alkylcellulose is a cellulose in which the hydroxyl group (-OH) is replaced with an alkyl group (-CnH2n+1), and its film-forming ability prevents the inorganic filler held in the glass fiber nonwoven fabric from falling off. There is. Furthermore, since it has excellent moisture resistance and a high softening temperature when heated (150 to 160° C. for ethyl cellulose), the inorganic filler can be reliably retained in the glass fiber nonwoven fabric even at high temperatures, and hot strength can be increased. Therefore, in the laminate using the glass fiber nonwoven fabric as a base material, the voids in the glass fiber nonwoven fabric are filled with an inorganic filler, and the hot strength of the glass fiber nonwoven fabric is high, so the shrinkage of the resin due to heat treatment is suppressed. This reduces warping and dimensional changes. Furthermore, by using a resin with a Tg of 150°C or higher, the hot strength retention rate of the laminate is increased, and the Tg
Even if the laminate is subjected to heat treatment before and after the temperature, deformation and distortion will be reduced. Due to these synergistic effects, warpage and dimensional changes in the laminate are significantly suppressed. If the amount of inorganic filler retained in the glass fiber nonwoven fabric is small, warping and dimensional changes of the laminate cannot be suppressed.

【0007】上記のように、本発明に係る積層板は、ガ
ラス繊維不織布自体に多量の無機充填材を脱落すること
なく保持させたものである。無機充填材を多量に含む積
層板とするときには、このように基材には多量の無機充
填材を保持させず、基材に含浸させる樹脂ワニス中に無
機充填材を配合しておいたり、基材と樹脂ワニスの両方
に無機充填材を入れておいて、見かけ上本発明に係る積
層板と同量の無機充填材を含む積層板とすることもでき
る。
As described above, the laminate according to the present invention has a large amount of inorganic filler retained in the glass fiber nonwoven fabric itself without falling off. When making a laminate containing a large amount of inorganic filler, it is preferable to mix the inorganic filler into the resin varnish that is impregnated into the base material, or to mix the inorganic filler into the resin varnish that is impregnated into the base material. It is also possible to add an inorganic filler to both the material and the resin varnish, so that the laminate appears to contain the same amount of inorganic filler as the laminate according to the present invention.

【0008】しかし、樹脂ワニス中に無機充填材を配合
してガラス繊維不織布基材に含浸しても、その空隙には
樹脂が選択的に埋まり、空隙が無機充填材で埋まること
はない。無機充填材は基材の表面近くに偏在することに
なるので、積層板のそりや寸法変化を抑える効果は小さ
い。また、後者のように、ガラス繊維不織布基材に十分
な量の無機充填材を保持させておかず、樹脂ワニス中に
配合した無機充填材で補う場合も同様である。
However, even if an inorganic filler is blended into a resin varnish and impregnated into a glass fiber nonwoven fabric base material, the resin selectively fills the voids, and the voids are not filled with the inorganic filler. Since the inorganic filler is unevenly distributed near the surface of the base material, the effect of suppressing warpage and dimensional changes of the laminate is small. Furthermore, as in the latter case, the same applies when a sufficient amount of inorganic filler is not retained in the glass fiber nonwoven fabric base material and the inorganic filler is supplemented with an inorganic filler blended into the resin varnish.

【0009】[0009]

【実施例】ガラス繊維不織布に無機充填材を保持させる
には、次のような方法を用いるとよい。アルキルセルロ
ースとエポキシ樹脂を有機溶媒に溶解し、これに無機充
填材を分散させる。この分散液にガラス繊維不織布を浸
漬し、乾燥する方法である。アルキルセルロースは、分
散液の中で無機充填材の沈降を防止する作用ももってい
る。アルキルセルロースは、無機充填材の重量に対して
、0.5〜2%程度の量で用いるとき、積層板のそりの
抑制、寸法安定性とも良好な結果が得られる。エポキシ
樹脂は、必ずしも必要ではないが、無機充填材の重量に
対して、15%以下の量で使用すれば、ガラス繊維不織
布に保持させた無機充填材の脱落が一層少なくなり、取
扱いが容易となる。
[Example] The following method may be used to retain an inorganic filler in a glass fiber nonwoven fabric. The alkyl cellulose and epoxy resin are dissolved in an organic solvent, and the inorganic filler is dispersed therein. This is a method in which a glass fiber nonwoven fabric is immersed in this dispersion and then dried. Alkyl cellulose also has the effect of preventing sedimentation of the inorganic filler in the dispersion. When alkyl cellulose is used in an amount of about 0.5 to 2% based on the weight of the inorganic filler, good results can be obtained in suppressing warpage and dimensional stability of the laminate. Although the epoxy resin is not necessarily required, if it is used in an amount of 15% or less based on the weight of the inorganic filler, the inorganic filler retained in the glass fiber nonwoven fabric will be less likely to fall off, making it easier to handle. Become.

【0010】ガラス繊維不織布に保持させる無機充填材
の量は、多いほどよいが、92〜93重量%を越えると
、保持させるための作業性が極端に悪くなり、これ以上
の量では実質上保持させることができなくなる。使用す
る無機充填材は、水酸化アルミニウム、タルク、酸化マ
グネシウム、二酸化ケイ素等である。
The larger the amount of inorganic filler retained in the glass fiber nonwoven fabric, the better; however, if it exceeds 92 to 93% by weight, the workability for retaining it becomes extremely poor, and if the amount exceeds this, it will not be retained substantially. I will not be able to do it. Inorganic fillers used include aluminum hydroxide, talc, magnesium oxide, silicon dioxide, and the like.

【0011】実施例1 ガラス繊維不織布(坪量:53g/m2,バインダ:エ
ポキシ樹脂,付着量10〜11重量%)を、表1に示す
配合(重量部)の分散液1に浸漬し乾燥して、水酸化ア
ルミニウムの保持量を50重量%とした。さらに、表2
に示す配合(重量部)のワニス1を含浸乾燥してプリプ
レグ(水酸化アルミニウムを除いた樹脂含有量92重量
%)とし、これを所定枚数重ね、両表面には銅箔を載置
して、温度160℃、圧力100Kg/cm2の条件で
60分間加熱加圧成形して、1.6mm厚さの銅張り積
層板とした。尚、表2において、硬化樹脂のTgは、樹
脂配合物だけを160℃−6時間で硬化後、そのTgを
TMA法で測定したものである。
Example 1 A glass fiber nonwoven fabric (basis weight: 53 g/m2, binder: epoxy resin, adhesion amount 10-11% by weight) was immersed in Dispersion 1 having the formulation (parts by weight) shown in Table 1 and dried. The amount of aluminum hydroxide retained was set at 50% by weight. Furthermore, Table 2
A prepreg (resin content excluding aluminum hydroxide of 92% by weight) is obtained by impregnating and drying varnish 1 with the formulation (parts by weight) shown in (parts by weight), and a predetermined number of sheets are stacked, copper foil is placed on both surfaces, The product was heated and pressed for 60 minutes at a temperature of 160° C. and a pressure of 100 kg/cm 2 to obtain a copper-clad laminate with a thickness of 1.6 mm. In Table 2, the Tg of the cured resin is measured by the TMA method after curing only the resin compound at 160° C. for 6 hours.

【0012】0012

【表1】[Table 1]

【0013】[0013]

【表2】[Table 2]

【0014】実施例2 表1に示す分散液1を使用し、ガラス不織布への水酸化
アルミニウムの保持量を75重量%とした以外は、実施
例1と同様にして1.6mm厚さの銅張り積層板とした
Example 2 A copper plate having a thickness of 1.6 mm was prepared in the same manner as in Example 1, except that dispersion 1 shown in Table 1 was used and the amount of aluminum hydroxide retained on the glass nonwoven fabric was 75% by weight. It was made into a stretched laminate.

【0015】実施例3 表1に示す分散液1を使用し、ガラス不織布への水酸化
アルミニウムの保持量を91重量%とした以外は、実施
例1と同様にして1.6mm厚さの銅張り積層板とした
Example 3 A copper plate having a thickness of 1.6 mm was prepared in the same manner as in Example 1, except that dispersion 1 shown in Table 1 was used and the amount of aluminum hydroxide retained on the glass nonwoven fabric was 91% by weight. It was made into a stretched laminate.

【0016】実施例4 表1に示す分散液2を使用し、ガラス不織布への水酸化
アルミニウムの保持量を90重量%とした以外は、実施
例1と同様にして1.6mm厚さの銅張り積層板とした
Example 4 A 1.6 mm thick copper plate was prepared in the same manner as in Example 1, except that dispersion 2 shown in Table 1 was used and the amount of aluminum hydroxide retained on the glass nonwoven fabric was 90% by weight. It was made into a stretched laminate.

【0017】実施例5 表1に示す分散液3を使用し、ガラス不織布への水酸化
アルミニウムの保持量を75重量%とした以外は、実施
例1と同様にして1.6mm厚さの銅張り積層板とした
Example 5 A copper plate having a thickness of 1.6 mm was prepared in the same manner as in Example 1, except that dispersion 3 shown in Table 1 was used and the amount of aluminum hydroxide retained on the glass nonwoven fabric was 75% by weight. It was made into a stretched laminate.

【0018】実施例6 表1に示す分散液3を使用し、ガラス不織布への水酸化
アルミニウムの保持量を90重量%とした以外は、実施
例1と同様にして1.6mm厚さの銅張り積層板とした
Example 6 A copper plate having a thickness of 1.6 mm was prepared in the same manner as in Example 1, except that dispersion 3 shown in Table 1 was used and the amount of aluminum hydroxide retained on the glass nonwoven fabric was 90% by weight. It was made into a stretched laminate.

【0019】実施例7 実施例2で使用したプリプレグを所定枚数重ねて芯層に
し、両表面層にはビスフェノール型エポキシ樹脂を含浸
乾燥して得たガラス繊維織布プリプレグを1枚使用し、
さらに銅箔を重ねて、以下実施例1と同様にして1.6
mm厚さの銅張り積層板とした。
Example 7 A predetermined number of prepregs used in Example 2 were stacked to form a core layer, and one glass fiber woven prepreg obtained by impregnating and drying a bisphenol type epoxy resin was used for both surface layers.
Further, overlap the copper foil and proceed as in Example 1 to obtain 1.6
It was made into a copper-clad laminate with a thickness of mm.

【0020】実施例8 実施例3で使用したプリプレグを所定枚数重ねて芯層に
し、以下実施例7と同様にして1.6mm厚さの銅張り
積層板とした。
Example 8 A predetermined number of prepregs used in Example 3 were stacked to form a core layer, and the same procedure as in Example 7 was carried out to prepare a copper-clad laminate having a thickness of 1.6 mm.

【0021】比較例1 表1に示す分散液2を使用し、ガラス不織布への水酸化
アルミニウムの保持量を45重量%とした以外は、実施
例1と同様にして1.6mm厚さの銅張り積層板とした
Comparative Example 1 A copper plate having a thickness of 1.6 mm was prepared in the same manner as in Example 1, except that dispersion 2 shown in Table 1 was used and the amount of aluminum hydroxide retained on the glass nonwoven fabric was 45% by weight. It was made into a stretched laminate.

【0022】比較例2 表1に示す分散液1を使用してガラス不織布への水酸化
アルミニウムの保持量を90重量%とし、表2に示すワ
ニス2を使用した以外は、実施例1と同様にして1.6
mm厚さの銅張り積層板とした。
Comparative Example 2 Same as Example 1 except that dispersion 1 shown in Table 1 was used to hold aluminum hydroxide in the glass nonwoven fabric at 90% by weight, and varnish 2 shown in Table 2 was used. to 1.6
It was made into a copper-clad laminate with a thickness of mm.

【0023】比較例3 比較例2で使用したプリプレグを所定枚数重ねて芯層に
し、以下実施例7と同様にして1.6mm厚さの銅張り
積層板とした。
Comparative Example 3 A predetermined number of prepregs used in Comparative Example 2 were stacked to form a core layer, and the same procedure as in Example 7 was carried out to prepare a copper-clad laminate having a thickness of 1.6 mm.

【0024】従来例1 実施例1で使用したガラス繊維不織布に、表3に示す配
合(重量部)のワニス3を含浸乾燥してプリプレグ(水
酸化アルミニウムを除いた樹脂含有量92重量%)とし
、以下、実施例1と同様にして1.6mm厚さの銅張り
積層板とした。
Conventional Example 1 The glass fiber nonwoven fabric used in Example 1 was impregnated with varnish 3 having the composition (parts by weight) shown in Table 3 and dried to form a prepreg (resin content 92% by weight excluding aluminum hydroxide). Hereinafter, in the same manner as in Example 1, a copper-clad laminate having a thickness of 1.6 mm was prepared.

【0025】[0025]

【表3】[Table 3]

【0026】上記実施例、比較例、従来例の各積層板の
特性を表4、表5に示す。
Tables 4 and 5 show the characteristics of the laminates of the above examples, comparative examples, and conventional examples.

【0027】[0027]

【表4】[Table 4]

【0028】[0028]

【表5】[Table 5]

【0029】表4および表5における寸法変化率および
そりの測定は、次の通りとした。寸法変化:E−0.5
/150加熱処理前後の変化率を測定。そり:200×
200mmの試験片の銅箔をエッチングにより全面除去
し、E−0.5/150加熱処理後に定盤上に載置し、
四隅の浮き上がり量の最大値を測定。
The dimensional change rate and warpage in Tables 4 and 5 were measured as follows. Dimensional change: E-0.5
/150 Measure the rate of change before and after heat treatment. Sled: 200×
The entire copper foil of a 200 mm test piece was removed by etching, and after E-0.5/150 heat treatment, it was placed on a surface plate.
Measure the maximum amount of lift at the four corners.

【0030】また、実施例4で使用した水酸化アルミニ
ウム保持ガラス繊維不織布に、Tgの異なる樹脂を含浸
乾燥してプリプレグを得、これら各プリプレグを重ねて
加熱加圧成形した積層板のそりを図1に示す。これから
、樹脂のTgを150℃以上とすることにより、そりが
著しく小さくなることが分かる。
In addition, prepregs were obtained by impregnating and drying the aluminum hydroxide-retaining glass fiber nonwoven fabric used in Example 4 with resins of different Tg, and the warping of a laminate made by stacking these prepregs and molding them under heat and pressure is shown in the figure. Shown in 1. From this, it can be seen that by setting the Tg of the resin to 150° C. or higher, the warpage becomes significantly smaller.

【0031】[0031]

【発明の効果】表4および表5、ならびに図1から明か
なように、アルキルセルロースを含み無機充填材を多量
に保持させたガラス繊維不織布を基材とし、これにTg
が150℃以上の熱硬化性樹脂を含浸して成形した積層
板は、ガラス繊維不織布の空隙が無機充填材で埋められ
ていることにより樹脂リッチとならないので加熱処理を
したときの樹脂の収縮が小さい。しかも、基材の熱間強
度が大きいことならびに高Tg樹脂を使用することによ
る積層板の熱間強度の保持率が高くなり、そりや寸法変
化の小さい積層板とすることができる。また、ガラス繊
維不織布を芯層とし、表面層としてガラス繊維織布を組
合せた積層板は、積層板のそり、寸法変化を一層小さく
できる。
Effects of the Invention As is clear from Tables 4 and 5 and FIG.
A laminate made by impregnating thermosetting resin with a temperature of 150°C or higher does not become resin-rich because the voids in the glass fiber nonwoven fabric are filled with an inorganic filler, so the resin shrinks when heat treated. small. Moreover, the high hot strength of the base material and the use of a high Tg resin increase the hot strength retention rate of the laminate, making it possible to produce a laminate with little warpage or dimensional change. Furthermore, a laminate in which a glass fiber nonwoven fabric is used as a core layer and a glass fiber woven fabric is used as a surface layer can further reduce warpage and dimensional changes of the laminate.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】熱硬化性樹脂のTgと積層板のそりの関係を示
す曲線図である。
FIG. 1 is a curve diagram showing the relationship between Tg of a thermosetting resin and warpage of a laminate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱硬化性樹脂を含浸したガラス繊維不織布
を重ねて加熱加圧成形した積層板において、ガラス繊維
不織布が、アルキルセルロースを含む無機充填材をガラ
ス繊維不織布に保持させてその量を50重量%以上とし
たものであり、硬化した樹脂のガラス転移温度(Tg)
が、150℃以上であることを特徴とする積層板。
Claim 1: A laminate in which glass fiber nonwoven fabrics impregnated with a thermosetting resin are laminated and molded under heat and pressure. 50% by weight or more, and the glass transition temperature (Tg) of the cured resin
is 150°C or higher.
【請求項2】熱硬化性樹脂を含浸したガラス繊維不織布
の層を芯層にし、熱硬化性樹脂を含浸したガラス繊維織
布の層を表面層にして加熱加圧成形した積層板において
、ガラス繊維不織布が、アルキルセルロースを含む無機
充填材をガラス繊維不織布に保持させてその量を50重
量%以上としたものであり、硬化した樹脂のガラス転移
温度(Tg)が、150℃以上であることを特徴とする
積層板。
[Claim 2] A laminate formed by heating and pressure forming a layer of glass fiber non-woven fabric impregnated with a thermosetting resin as a core layer and a layer of glass fiber woven fabric impregnated with a thermosetting resin as a surface layer. The fibrous nonwoven fabric is one in which an inorganic filler containing alkyl cellulose is held in a glass fiber nonwoven fabric in an amount of 50% by weight or more, and the glass transition temperature (Tg) of the cured resin is 150°C or more. A laminate board featuring:
【請求項3】アルキルセルロースとエポキシ樹脂を有機
溶媒に溶解して無機充填材を分散させた液を用意し、こ
の分散液にガラス繊維不織布を浸漬し乾燥して、ガラス
繊維不織布に保持させた無機充填材の含有量を50重量
%以上とし、このガラス不織布に、硬化した樹脂のガラ
ス転移温度(Tg)が150℃以上である熱硬化性樹脂
を含浸して得たプリプレグを全部ないし一部として積層
成形することを特徴とする積層板の製造法。
Claim 3: A liquid in which an alkyl cellulose and an epoxy resin are dissolved in an organic solvent and an inorganic filler is dispersed therein is prepared, and a glass fiber nonwoven fabric is immersed in this dispersion and dried to be retained in the glass fiber nonwoven fabric. The content of the inorganic filler is 50% by weight or more, and all or part of the prepreg obtained by impregnating this glass nonwoven fabric with a thermosetting resin whose cured resin has a glass transition temperature (Tg) of 150 ° C. or higher. A method for manufacturing a laminate, characterized by lamination molding.
JP5526191A 1991-03-20 1991-03-20 Laminated plate and manufacture thereof Pending JPH04290739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5526191A JPH04290739A (en) 1991-03-20 1991-03-20 Laminated plate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5526191A JPH04290739A (en) 1991-03-20 1991-03-20 Laminated plate and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04290739A true JPH04290739A (en) 1992-10-15

Family

ID=12993656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5526191A Pending JPH04290739A (en) 1991-03-20 1991-03-20 Laminated plate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04290739A (en)

Similar Documents

Publication Publication Date Title
JPH04290739A (en) Laminated plate and manufacture thereof
JPS6221626B2 (en)
JPH02133440A (en) Production of electrical laminate
JPH04153229A (en) Nonwoven glass fiber fabric, preparation thereof, and laminate thereof
JPS6072931A (en) Production of paper-base phenolic resin laminate
JPS5942628B2 (en) Manufacturing method for copper clad laminates
JPH0356583B2 (en)
JPS5921774B2 (en) Manufacturing method of cyanate resin laminate
JPS5941262A (en) Manufacture of laminated board
JPH02133439A (en) Production of electrical laminate
JPS6330538A (en) Production of laminated sheet
JPS5939546A (en) Copper lined laminated board
JPS63211400A (en) Paper base material for laminated board
JPS61209234A (en) Epoxy resin laminate
JPS6040252A (en) Manufacture of laminated board
JPS61118463A (en) Epoxy resin varnish for production of laminated board
JPH0771839B2 (en) Laminated board manufacturing method
JPH0455364B2 (en)
JPH06336528A (en) Single-copper-clad laminate for printed circuit
JPH07100360B2 (en) Copper clad laminate
JPS59149095A (en) Method of producing multilayer board
JPH01118538A (en) Preparation of epoxy resin laminate
JPS60190347A (en) Laminated board for electricity
JPH03139897A (en) Manufacture of laminate sheet for printed circuit
JPH0381140A (en) Manufacture of laminated sheet for printed circuit