JPH04289020A - Automatic setting device for gear grinding machine - Google Patents
Automatic setting device for gear grinding machineInfo
- Publication number
- JPH04289020A JPH04289020A JP647991A JP647991A JPH04289020A JP H04289020 A JPH04289020 A JP H04289020A JP 647991 A JP647991 A JP 647991A JP 647991 A JP647991 A JP 647991A JP H04289020 A JPH04289020 A JP H04289020A
- Authority
- JP
- Japan
- Prior art keywords
- gear
- grinding wheel
- motor
- torque
- control circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 claims description 20
- 230000010355 oscillation Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000010730 cutting oil Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F23/00—Accessories or equipment combined with or arranged in, or specially designed to form part of, gear-cutting machines
- B23F23/12—Other devices, e.g. tool holders; Checking devices for controlling workpieces in machines for manufacturing gear teeth
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gear Processing (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】 本発明は、歯車を製作する歯
車研削機において、研削用砥石車に対する被加工歯車の
研削加工初期の位置(角座標上の位置)と、砥石車が被
加工歯車の歯の谷に侵入する前進位置を自動的に設定す
る、歯車研削機の自動設定装置に関する。
【0002】
【従来の技術】 従来の研削加工の初期設定は、すべ
て熟練工の人手に頼っていた。また、本発明者は、研削
用砥石車の軸と被加工歯車の軸を歯車機構で係合させず
、両軸を個別のモータで駆動させ、両モータを電子制御
装置で制御する発明を先に提案している(未公開)。
【0003】
【発明が解決しようとする課題】 従来技術によれば
、研削用砥石車の軸と被加工歯車の軸が同期回転して研
削加工が行われる前の初期設定時に、熟練工による調整
作業を要するため工程の完全自動化が不可能であった。
また、歯切機や研削機は、切削油が飛散するため、プラ
スチック等のカバーで覆われており、そのカバーが飛散
した油で汚れているため、ビデオカメラ等を用いた光学
的認識手段による自動設定制御は不可能である。
【0004】本発明は、このような困難を克服して自動
設定作業を可能にすることを解決課題とする。
【0005】
【課題を解決するための手段】 本発明の歯車研削機
の自動設定装置は、被加工歯車の軸を両方向に駆動する
第1のモータと、その第1のモータの駆動トルクを所定
値以下に制御するトルク制御手段と、その第1のモータ
を所定範囲内で正逆両方向に交互に回転駆動する揺動回
転制御手段と、砥石車を固定保持する手段と、その砥石
車を上記被加工歯車に対して前後方向に変位させる第2
のモータと、上記砥石車の前後方向位置を検知する砥石
車前進位置検知手段と、上記被加工歯車の軸が揺動回転
中に上記トルク制御手段により被加工歯車の軸回転が停
止したことを検知する停止検知手段と、その軸回転が停
止したときの被加工歯車の回転位置情報を検知する停止
位置検知手段と、その停止位置検知手段の第1の検知情
報とその時の上記砥石車前進位置検知手段の第2の検知
情報から研削加工の初期の被加工歯車の位置と砥石車の
前進位置を求める演算手段を有することを特徴としてい
る。
【0006】
【作用】 被研削歯車の軸は第1のモータの出力軸に
通常は直結されている。砥石車の軸も別個のモータの出
力軸に通常は直結されている。第1のモータおよび別個
のモータはそれぞれ独立した回転速度制御回路により制
御されている。第1のモータはトルク制御手段により弱
小な回転トルクに制御され、かつ、揺動回転制御手段が
歯のひとつの谷の中心角の半分程度の所定範囲内で正逆
両方向に振動するように被加工歯車を交互回転させる。
砥石車は切削加工中はモータにより回転駆動されるが、
設定作業中は固定保持されて第2のモータにより前後方
向に変位する。この砥石車が、第3図に示すように被研
削用歯車へ浅く侵入して揺動回転中の歯車の歯面に接触
すると、第1のモータのトルクが弱小値に制御されてい
るから、揺動回転していた歯車はその揺動を停止する。
この停止は停止検知手段、例えばロータリエンコーダに
より検知され、停止位置検知手段がそのときの位置情報
を検知する。第1のモータの回転方向が逆転すると、砥
石車はやがて対向するもうーつの歯面に接触し、再び歯
車は揺動を停止し、そのときの位置情報が検知される。
この2回の停止位置情報から歯の谷の中心が演算される
が、さらに砥石車を前進させて揺動停止をくり返すこと
により歯の谷の中心の演算精度が向上する。そして最終
的に、砥石車の両面が歯面に当接する最も深く侵入した
状態で、本発明による自動設定操作は終了し、つづいて
研削作業がスタートする。
【0007】
【実施例】 図1に歯車研削機の外観図を示す。被研
削歯車1は第1のモータ2により直接駆動され、研削用
砥石車3は第3のモータ4により直接駆動される。また
、研削用砥石車3の保持台5は第2のモータ6と送りネ
ジにより被研削歯車1に対して前進、後退することがで
きる。第1のモータ2は時計方向、反時計方向の両方向
に駆動され、これにより被加工歯車を所定角度範囲で揺
動させることができる。第1および第2のモータ2,6
はいずれもインバータ交流電源により駆動されており、
インバータの変換周波数を制御することによりその回転
速度を高範囲にわたり連続的に変化させることができ、
しかも、回転磁界を静止させてモータ出力軸を大きなト
ルクで停止させる、いわゆるサーボロック状態に制御す
ることができる。最近実用化されたファクトリーオート
メーション用DDモータ(ダイレイト・ドライブモータ
)、殊に、回転フィード駆動を行う低速DDモータは、
低速回転制御が可能で脈動トルクが低く、高分解の位置
決め制御が可能なため、本発明の第1,第2のモータに
適しており、特に、脈動トルクを補償制御するために高
分解能(1秒以下)のエンコードが内蔵されたモータを
用いるときは、位置センサとしてのエンコードを付設す
る必要がない(日経メカニカル1990.11.26日
号、P.108〜P.114)。
【0008】図2に本発明の制御系実施例のブロック図
を示す。第1のモータの駆動制御回路部11は、揺動回
転の目標値となる例えば正弦波信号を発生する揺動信号
発生手段12、その揺動信号とロータリエンコーダ7の
フィードバック信号S1 から位置決め指令信号を出力
する位置決め制御回路13、位置決め指令信号を微分し
て速度信号を得るとともに目標値に対する位置のフィー
ドバック値の偏差が小さいときは速度を低速にする速度
制御回路14、トルク値設定手段17により設定された
弱小なトルク値TR に対し次段のパワーアンプ16か
らトルク値変換回路22を介してフィードバックされる
駆動トルクTM の偏差を検出して所定の弱小なトルク
に制御する電流制御回路15、上記各制御回路により指
令された回転方向、速度、トルク値で第1のモータを回
転駆動するパワーアンプ16により構成される。
【0009】砥石車保持台5を前後方向に変位駆動する
第2のモータ6の駆動制御回路部は、位置決め制御回路
18と速度制御回路19により制御され、そのフィード
バック信号S2 はロータリー・エンコーダ8により検
出され、このパルス信号の計算値が砥石車の前進位置信
号となる。砥石車3を回転させ、或いはサーボロックさ
せる第3のモータ4は位置決め制御回路20と速度制御
回路21により制御され、そのフィードバック信号S3
は位置決め制御回路20に入力されてサーボロック状
態を制御するとともに、前記した第1のモータの駆動制
御回路部11に入力されて、研削加工中における第1の
モータの回転速度を第2のモータの回転速度に対して所
定の比率1/Nに制御するために供される。これは本発
明の自動設定後に被加工歯車を研削加工するときに不可
欠である。この回転比率制御手段等は、中央数値制御装
置CNC23のソフトウエアにより実施することができ
、ほかの制御回路の機能もこのCNC23に兼務させる
ことができる。
【0010】この実施例における第1のエンコーダ7、
揺動範囲目標設定手段12、および位置決め制御回路1
3が本発明の揺動回転制御手段を構成しており、電流制
御回路15、パワーアンプ16、トルク値設定手段17
およびトルク値変換回路22が本発明のトルク制御手段
を構成している。また、第2のモータ6のエンコーダ8
、位置検知手段24が砥石車前進位置検知手段を構成し
、第1のモータ2のエンコーダ7、速度制御回路14が
被加工歯車の停止検知手段を構成し、エンコーダ7、位
置決め制御回路13が停止位置検知手段を構成している
。図3に従い本発明実施例の作用を説明する。被研削歯
車1は時計方向、反時計方向に揺動回転し、砥石車3は
被研削歯車1の間の中心線C上に砥石車の谷の中心が位
置するようにサーボロック状態で位置決め制御されなが
らその中心線C上に沿って前後方向に変位することがで
きる。
【0011】歯車1が反時計方向(正方向)に回転した
ときの停止位置検出信号をθCCW 、時計方向(負方
向)に回転したときの停止位置検出信号をθCWとすれ
ば、歯車1の歯の山の中心を上記中心線C上に設定する
ための位置決め指令信号θO は、
θ0 =(θCW−θCCW )/2
軸方向の間隙hを0に近づける向きに砥石車3を前進さ
せながら、この操作を数回くり返すと、θ0 ,θCW
,θCCW ともに実質的に0になって砥石車3と歯車
1が密着する状態になる。この状態のとき、本発明によ
る自動設定行程は終了する。
【0012】被加工歯車がはすば歯車の場合は、はすば
角αだけ被加工歯車の軸を傾斜させるだけで、本発明を
同様に適用することができる。なお、被加工歯車の取り
付け、取りはずし作業は、従来公知の技術をそのまま用
して容易に実施することができる。
【0013】
【発明の効果】 本発明によれば、従来至難とされて
いた、研削開始前の被研削歯車と砥石車との位置合せ作
業を自動化することができる。また、従来のように被研
削歯車の軸と砥石車の軸を係合させる歯車機構がなく、
両軸がそれぞれのモータにより直接駆動されるので、歯
車機構の遊びによる製作誤差がなく、極めて高精度の研
削加工を行うことができる。Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a gear grinding machine that manufactures gears. ), and relates to an automatic setting device for a gear grinding machine that automatically sets the forward position where the grinding wheel enters the tooth valley of the gear to be machined. [0002] Initial settings for conventional grinding processes have all relied on the hands of skilled workers. In addition, the present inventor has developed an invention in which the shaft of the grinding wheel and the shaft of the gear to be processed are not engaged by a gear mechanism, but both shafts are driven by separate motors, and both motors are controlled by an electronic control device. (unpublished). [0003]According to the prior art, the shaft of the grinding wheel and the shaft of the gear to be machined rotate synchronously to perform adjustment work by a skilled worker at the time of initial setting before the grinding process is performed. Full automation of the process was impossible because of the In addition, gear cutters and grinders are covered with covers such as plastic because the cutting oil is scattered, and since the covers are dirty with the scattered oil, optical recognition methods using video cameras etc. Automatic configuration control is not possible. An object of the present invention is to overcome these difficulties and enable automatic setting work. Means for Solving the Problems The automatic setting device for a gear grinding machine of the present invention includes a first motor that drives the shaft of a gear to be machined in both directions, and a drive torque of the first motor that is set at a predetermined value. a torque control means for controlling the torque to be equal to or less than the above-mentioned value; an oscillating rotation control means for driving the first motor to rotate alternately in both forward and reverse directions within a predetermined range; a means for fixedly holding the grinding wheel; The second gear is displaced in the front-rear direction with respect to the gear to be machined.
a motor, a grinding wheel forward position detection means for detecting the longitudinal position of the grinding wheel, and a torque control means that detects when the shaft of the to-be-processed gear has stopped rotating while the shaft of the to-be-processed gear is oscillatingly rotating. A stop detecting means for detecting, a stop position detecting means for detecting rotational position information of the gear to be machined when the shaft rotation is stopped, first detection information of the stop position detecting means and the forward position of the grinding wheel at that time. The present invention is characterized by having a calculation means for determining the position of the gear to be processed and the forward position of the grinding wheel at the initial stage of the grinding process from the second detection information of the detection means. [Operation] The shaft of the gear to be ground is usually directly connected to the output shaft of the first motor. The shaft of the grinding wheel is also usually directly connected to the output shaft of a separate motor. The first motor and the separate motors are each controlled by independent rotational speed control circuits. The first motor is controlled to a weak rotational torque by the torque control means, and the oscillating rotation control means is controlled so that it vibrates in both forward and reverse directions within a predetermined range of about half the center angle of one of the teeth. Rotate the machining gears alternately. The grinding wheel is rotated by a motor during cutting, but
During the setting work, it is held fixed and is displaced in the front-rear direction by the second motor. When this grinding wheel enters the gear to be ground shallowly and comes into contact with the tooth surface of the rotating gear as shown in Fig. 3, the torque of the first motor is controlled to a weak value. The gear that was oscillating and rotating stops its oscillation. This stop is detected by stop detection means, for example, a rotary encoder, and stop position detection means detects position information at that time. When the rotational direction of the first motor is reversed, the grinding wheel eventually comes into contact with the other opposing tooth surface, the gear stops rocking again, and position information at that time is detected. The center of the tooth valley is calculated from the information on the two stop positions, and the accuracy of calculating the center of the tooth valley is improved by further advancing the grinding wheel and repeating the swinging and stopping. Finally, when both surfaces of the grinding wheel are in contact with the tooth surfaces, and the grinding wheel penetrates the deepest, the automatic setting operation according to the present invention ends, and the grinding operation starts. [Example] FIG. 1 shows an external view of a gear grinding machine. The gear to be ground 1 is directly driven by a first motor 2 , and the grinding wheel 3 is directly driven by a third motor 4 . Further, the holding base 5 of the grinding wheel 3 can be moved forward and backward relative to the gear to be ground 1 by the second motor 6 and the feed screw. The first motor 2 is driven both clockwise and counterclockwise, thereby making it possible to swing the gear to be processed within a predetermined angular range. first and second motors 2, 6
Both are driven by an inverter AC power supply,
By controlling the conversion frequency of the inverter, its rotation speed can be varied continuously over a wide range.
In addition, it is possible to control the motor into a so-called servo lock state, in which the rotating magnetic field is stopped and the motor output shaft is stopped with a large torque. DD motors (dilate drive motors) for factory automation that have recently been put into practical use, especially low-speed DD motors that perform rotary feed drive,
Since low speed rotation control is possible, pulsating torque is low, and high resolution positioning control is possible, it is suitable for the first and second motors of the present invention. When using a motor with a built-in encoder (seconds or less), there is no need to add an encoder as a position sensor (Nikkei Mechanical November 26, 1990 issue, P. 108 to P. 114). FIG. 2 shows a block diagram of an embodiment of the control system of the present invention. The first motor drive control circuit section 11 generates a positioning command signal from a swing signal generating means 12 that generates, for example, a sine wave signal serving as a target value for the swing rotation, and the swing signal and a feedback signal S1 of the rotary encoder 7. A positioning control circuit 13 that outputs a positioning command signal, a speed control circuit 14 that obtains a speed signal by differentiating the positioning command signal and lowers the speed when the deviation of the position feedback value from the target value is small, and a torque value setting means 17. The current control circuit 15 detects the deviation of the driving torque TM fed back from the next-stage power amplifier 16 via the torque value conversion circuit 22 with respect to the weak torque value TR, and controls the torque to a predetermined weak torque. It is composed of a power amplifier 16 that rotationally drives the first motor in the rotational direction, speed, and torque value commanded by each control circuit. The drive control circuit section of the second motor 6 that drives the grinding wheel holder 5 in the longitudinal direction is controlled by a positioning control circuit 18 and a speed control circuit 19, and its feedback signal S2 is sent by a rotary encoder 8. The calculated value of this pulse signal becomes the forward position signal of the grinding wheel. The third motor 4 that rotates or servo-locks the grinding wheel 3 is controlled by a positioning control circuit 20 and a speed control circuit 21, and its feedback signal S3
is inputted to the positioning control circuit 20 to control the servo lock state, and is also inputted to the drive control circuit section 11 of the first motor described above to control the rotational speed of the first motor during the grinding process. This is used to control the rotational speed of the motor to a predetermined ratio of 1/N. This is essential when grinding the gear to be machined after automatic setting according to the invention. This rotation ratio control means and the like can be implemented by software of the central numerical controller CNC 23, and the CNC 23 can also serve as the functions of other control circuits. [0010] The first encoder 7 in this embodiment,
Oscillation range target setting means 12 and positioning control circuit 1
3 constitutes the swing rotation control means of the present invention, which includes a current control circuit 15, a power amplifier 16, and a torque value setting means 17.
and the torque value conversion circuit 22 constitute the torque control means of the present invention. Also, the encoder 8 of the second motor 6
, the position detection means 24 constitutes a grinding wheel forward position detection means, the encoder 7 of the first motor 2 and the speed control circuit 14 constitute stop detection means for the gear to be machined, and the encoder 7 and the positioning control circuit 13 constitute a stop detection means. It constitutes a position detection means. The operation of the embodiment of the present invention will be explained with reference to FIG. The gear to be ground 1 swings and rotates clockwise and counterclockwise, and the grinding wheel 3 is positioned in a servo-locked state so that the center of the valley of the grinding wheel is located on the center line C between the gears to be ground 1. It can be displaced in the front-back direction along the center line C while being moved. If the stop position detection signal when the gear 1 rotates counterclockwise (positive direction) is θCCW, and the stop position detection signal when the gear 1 rotates clockwise (negative direction) is θCW, then the teeth of the gear 1 The positioning command signal θO for setting the center of the mountain on the center line C is as follows: θ0 = (θCW-θCCW)/2 By repeating the operation several times, θ0, θCW
, θCCW become substantially 0, and the grinding wheel 3 and gear 1 come into close contact. In this state, the automatic setting process according to the present invention ends. When the gear to be machined is a helical gear, the present invention can be similarly applied by simply tilting the axis of the gear to be machined by the helical angle α. Note that the work of attaching and detaching the gear to be machined can be easily carried out using conventionally known techniques as they are. [0013]According to the present invention, it is possible to automate the positioning work of the gear to be ground and the grinding wheel before the start of grinding, which has been considered extremely difficult in the past. In addition, there is no gear mechanism that engages the shaft of the gear to be ground and the shaft of the grinding wheel as in the past.
Since both shafts are directly driven by their respective motors, there are no production errors due to play in the gear mechanism, and extremely high precision grinding can be performed.
【図1】 本発明実施例の機械的部分の正面図である
。FIG. 1 is a front view of a mechanical part of an embodiment of the present invention.
【図2】 本発明実施例の制御系のブロック図である
。FIG. 2 is a block diagram of a control system according to an embodiment of the present invention.
【図3】 本発明の作用説明図である。FIG. 3 is an explanatory diagram of the operation of the present invention.
1・・・・被研削歯車 2・・・・第1のモータ 3・・・・研削用砥石車 5・・・・砥石車の保持台 6・・・・第2のモータ 1...Gear to be ground 2...First motor 3. Grinding wheel 5. Grinding wheel holding stand 6...Second motor
Claims (1)
1のモータと、その第1のモータの駆動トルクを所定値
以下に制御するトルク制御手段と、その第1のモータを
所定範囲内で正逆両方向に交互に回転駆動する揺動回転
制御手段と、砥石車を固定保持する手段と、その砥石車
を上記被加工歯車に対して前後方向に変位させる第2の
モータと、上記砥石車の前後方向位置を検知する砥石車
前進位置検知手段と、上記被加工歯車の軸が揺動回転中
に上記トルク制御手段により被加工歯車の軸回転が停止
したことを検知する停止検知手段と、その軸回転が停止
したときの被加工歯車の回転位置情報を検知する停止位
置検知手段と、その停止位置検知手段の第1の検知情報
とその時の上記砥石車前進位置検知手段の第2の検知情
報から研削加工の初期の被加工歯車の位置と砥石車の前
進位置を求める演算手段を有する、歯車研削機の自動設
定装置。1. A first motor that drives the shaft of a gear to be machined in both directions; a torque control means that controls the driving torque of the first motor to a predetermined value or less; an oscillating rotation control means for rotating the grinding wheel alternately in both forward and reverse directions; a means for fixing and holding the grinding wheel; a second motor for displacing the grinding wheel in the front-rear direction with respect to the to-be-processed gear; a grinding wheel forward position detection means for detecting the longitudinal position of the wheel; and a stop detection means for detecting that the shaft rotation of the workpiece gear is stopped by the torque control means while the shaft of the workpiece gear is oscillatingly rotating. , a stop position detection means for detecting rotational position information of the gear to be machined when the rotation of the shaft is stopped, first detection information of the stop position detection means and second detection information of the grinding wheel forward position detection means at that time. An automatic setting device for a gear grinding machine, which has a calculation means for determining the initial position of the processed gear and the forward position of the grinding wheel from the detected information.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP647991A JPH04289020A (en) | 1991-01-23 | 1991-01-23 | Automatic setting device for gear grinding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP647991A JPH04289020A (en) | 1991-01-23 | 1991-01-23 | Automatic setting device for gear grinding machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04289020A true JPH04289020A (en) | 1992-10-14 |
Family
ID=11639613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP647991A Pending JPH04289020A (en) | 1991-01-23 | 1991-01-23 | Automatic setting device for gear grinding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04289020A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003251529A (en) * | 2002-02-27 | 2003-09-09 | Reishauer Ag | Compensation method for tooth trace correction and/or tooth trace deviation of gear |
JP2012148352A (en) * | 2011-01-17 | 2012-08-09 | Mitsubishi Heavy Ind Ltd | Phase adjustment device and method for gear grinding machine |
-
1991
- 1991-01-23 JP JP647991A patent/JPH04289020A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003251529A (en) * | 2002-02-27 | 2003-09-09 | Reishauer Ag | Compensation method for tooth trace correction and/or tooth trace deviation of gear |
JP4540937B2 (en) * | 2002-02-27 | 2010-09-08 | ライスハウアー アクチェンゲゼルシャフト | Gear tooth trace correction and / or correction of tooth trace deviation |
JP2012148352A (en) * | 2011-01-17 | 2012-08-09 | Mitsubishi Heavy Ind Ltd | Phase adjustment device and method for gear grinding machine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0550329A (en) | Controlling unit and method of machine tool | |
WO1988003451A1 (en) | Tapping controller | |
JPH01159126A (en) | Skiving machine | |
JPS6234489B2 (en) | ||
JP2700819B2 (en) | Tapping method | |
JPH0241814A (en) | Operation confirming device for rigid tap | |
JPH04289020A (en) | Automatic setting device for gear grinding machine | |
JPS5633264A (en) | Grinding device for curved surface | |
JPH02232141A (en) | Synchronous control device | |
JP2566543B2 (en) | C-axis drive mechanism | |
JPH0341281B2 (en) | ||
JPH048423A (en) | Tapping method | |
JPS6377638A (en) | Numerically controlled machine tool | |
JP2000317734A (en) | Backlash setting method for gear lapping machine | |
JPS60249525A (en) | Meshing apparatus for gear to be worked in gear working machine | |
JPH0637883Y2 (en) | CNC grinder equipped with position synchronization controller | |
JPS63278712A (en) | Gear machining device | |
JPH04193414A (en) | Finishing method for gear | |
JPH01205915A (en) | Nc skiver | |
JPH11156638A (en) | Numerical control device | |
JPH0223285B2 (en) | ||
JPH0641780Y2 (en) | Gear grinding machine | |
JP3149649B2 (en) | Tooth finishing machine | |
JPH0957624A (en) | Dressing method for honing of internal hard gear | |
JP3167315B2 (en) | Absolute position detector for NC machine |