JPH11156638A - Numerical control device - Google Patents

Numerical control device

Info

Publication number
JPH11156638A
JPH11156638A JP32135397A JP32135397A JPH11156638A JP H11156638 A JPH11156638 A JP H11156638A JP 32135397 A JP32135397 A JP 32135397A JP 32135397 A JP32135397 A JP 32135397A JP H11156638 A JPH11156638 A JP H11156638A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
time constant
control device
numerical control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32135397A
Other languages
Japanese (ja)
Inventor
Kobo Moroi
弘法 諸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP32135397A priority Critical patent/JPH11156638A/en
Publication of JPH11156638A publication Critical patent/JPH11156638A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a numerical control device which can machine a bottom of a hole according to required accuracy of a tapping machining. SOLUTION: A numerical control device performs tapping machining while synchronously controlling a main shaft position and a feeding shaft position, through synchronizing rotational command of a main shaft 9 and a moving command of a feeding shaft 15. Such a device has followings: a time constant determination circuit 4 which determines acceleration/deceleration time constant according to a screw pitch and peripheral speed of a tap specified by an input device 1, acceleration/deceleration control circuits 5, 11 which perform acceleration and deceleration controls of the main shaft 9 and the feeding shaft 15 based on the determined acceleration/deceleration time constant, error counters 6, 12 to which output pulses of the acceleration/deceleration control circuits 5, 11 are supplied, and an error detecting area setting means 17 which optionally sets an error detecting area upon receiving command from the input device 1, and supplies the set area to the error counters 6, 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、マシニングセン
ター等の工作機械において、主軸位置と送り軸位置とを
同期制御してタッピング加工を行う様になっている数値
制御装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a numerical control device for performing tapping processing by synchronously controlling a spindle position and a feed shaft position in a machine tool such as a machining center.

【0002】[0002]

【従来の技術】従来の数値制御装置は、例えば特開平7
−112322号公報に開示のように、送り軸の移動の
パルス分配終了後にサーボの遅れによるたまりパルス許
容値(エラーディテクトオン)が固定となっており、可
変設定できなかった。
2. Description of the Related Art A conventional numerical controller is disclosed in, for example,
As disclosed in JP-A-112322, after the pulse distribution of the movement of the feed axis is completed, the accumulated pulse allowable value (error detect on) due to the delay of the servo is fixed and cannot be variably set.

【0003】[0003]

【発明が解決しょうとする課題】上記のごとく、従来の
数値制御装置では、タップ加工のための切り込み穴底加
工では、サーボの遅れによるたまりパルス許容値が固定
であり、タップ加工の種類に関わらず穴底は一定の精度
で加工され、例えば、低い精度のタップ加工であって
も、一定の高い精度での穴底加工が行われており、かな
りの加工時間を要していた。そこでこの発明は、タップ
加工の要求精度に応じた穴底加工ができる数値制御装置
を提供することを目的とする。
As described above, in the conventional numerical control device, in the machining of the cut hole for tapping, the allowable value of the accumulated pulse due to the delay of the servo is fixed, regardless of the type of tapping. The bottom of the hole is machined with a certain degree of accuracy. For example, even in the case of tapping with a low accuracy, the hole bottom is machined with a certain degree of high accuracy, and a considerable amount of machining time is required. Therefore, an object of the present invention is to provide a numerical control device capable of performing a hole bottom processing according to a required accuracy of tapping.

【0004】[0004]

【課題を解決するための手段】この発明に係わる数値制
御装置は、主軸の回転指令および送り軸の移動指令を同
期させることで主軸位置と送り軸位置の同期制御を行い
タッピング加工を行う数値制御装置において、パルス分
配終了後のサーボの遅れによるエラーディテクトの領域
を任意に設定する手段を備えたものである。また、この
発明に係わる数値制御装置は、主軸の回転指令および送
り軸の移動指令を同期させることで主軸位置と送り軸位
置の同期制御を行いタッピング加工を行う数値制御装置
において、入力装置で指定されたタップのネジピッチ及
び周速に応じて加減速時定数を決定する時定数決定回路
と、前記決定された加減速時定数に基づいて前記主軸と
前記送り軸の加減速制御を行う加減速制御回路と、前記
加減速制御回路の出力パルスが供給されるエラーカウン
タと、前記入力装置からの指定でエラーディテクト領域
を任意に設定しその設定領域を前記エラーカウンタに供
給するエラーディテクト領域設定手段とを具備したもの
である。この発明によれば、入力装置から入力できるエ
ラーディテクト領域設定手段が数値制御装置に設けられ
る。その結果、主軸の回転指令及び送り軸の移動指令が
パルス分配された後に、エラーカウンタのサーボの遅れ
によるたまりパルスがエラーデイテクト領域設定手段で
設定した許容値になったことを確認することで、タップ
穴底での加工精度を設定された精度で加工する。即ち、
ネジの種類等に応じて、穴底の加工精度を入力装置から
任意に設定できるようになる。
A numerical controller according to the present invention performs a tapping process by synchronizing a main shaft position and a feed shaft position by synchronizing a main shaft rotation command and a feed shaft movement command. The apparatus is provided with means for arbitrarily setting an error detection area due to a servo delay after the end of pulse distribution. Further, the numerical control device according to the present invention is a numerical control device that performs a tapping process by performing a synchronous control of a spindle position and a feed shaft position by synchronizing a rotation command of a spindle and a movement command of a feed shaft. Time constant determining circuit for determining an acceleration / deceleration time constant according to the selected screw pitch and peripheral speed of the tap, and acceleration / deceleration control for performing acceleration / deceleration control of the main shaft and the feed shaft based on the determined acceleration / deceleration time constant. A circuit, an error counter to which an output pulse of the acceleration / deceleration control circuit is supplied, and an error detection area setting means for arbitrarily setting an error detection area by designation from the input device and supplying the set area to the error counter. It is provided with. According to the present invention, the error detection area setting means that can be input from the input device is provided in the numerical controller. As a result, after the spindle rotation command and the feed axis movement command are pulse-distributed, it is possible to confirm that the accumulated pulse due to the delay of the servo of the error counter has reached the allowable value set by the error detection area setting means. , The machining accuracy at the bottom of the tap hole is machined with the set accuracy. That is,
The processing accuracy of the hole bottom can be arbitrarily set from the input device according to the type of the screw or the like.

【0005】[0005]

【発明の実施の形態】以下、この発明の実施の形態を図
面を参照して説明する。図1はこの発明による数値制御
装置の要部のブロック図である。入力装置1からデータ
入力すると、演算器2は、入力されたデータに基づき加
工プログラム上の記述に従って決まる指令値を出力す
る。この場合の指令値は、タップのネジピッチpと、周
速Fが出力される。この出力pとFを入力したパルス分
配回路3は、主軸9の回転を行うための分配パルスPs
を主軸用加減速制御回路に出力すると共に、送り軸15
の移動を制御する分配パルスPzを送り軸用加減速制御
回路11に出力する。時定数決定回路4は、ネジピッチ
pに対応するピッチ依存定数のデータテーブルとしての
ピッチ依存定数テーブルを記憶する等して備えており、
演算器2から入力したネジピッチ指令値pに応じて加減
速時定数Tを主軸用加減速制御回路5と送り軸用加減速
制御回路11とに出力する。主軸用加減速制御回路5
は、分配パルスPs及び加減速時定数Tに基づいて主軸
モータ8即ち主軸9を加減速制御する。主軸用加減速制
御回路5からの出力パルスQsは、主軸用エラーカウン
タ6に送られ、このエラーカウンタ6をカウントアップ
する。主軸9と同期回転するパルスジェネレータ10よ
り得られる帰還パルスRsは、先の主軸用エラーカウン
タ6をカウントダウンする。従って、主軸用エラーカウ
ンタ6の内部には、出力パルスQsと帰還パルスRsと
の差分があり、この値をアナログ変換して主軸ドライブ
回路7に与えて、この主軸ドライブ回路は、主軸モータ
8を運転する。送り軸用加減速制御回路11は、分配パ
ルスPzと加減速時定数Tとを入力して出力パルスQz
を送り軸用エラーカウンタ12に出力して、送り軸用エ
ラーカウンタ12をカウントアップする。一方、送り軸
15と同期回転するパルスジェネレータ16の出力する
帰還パルスRzは、送り軸用エラーカウンタ12をカウ
ントダウンする。送り軸用エラーカウンタ12は、出力
パルスQzと帰還パルスRzの差をアナログ変換して送
り軸ドライブ回路13に与える。すると、送り軸ドライ
ブ回路13は、送り軸モータ14を駆動させて、送り軸
15を運転する。この様な数値制御装置において、この
発明によれば、入力装置1と時定数決定回路4とからデ
ータ入力し、主軸用エラーカウンタ6と送り軸用エラー
カウンタ12とに出力するエラーディテクト領域設定テ
ーブル17を設けている。この様に構成することによ
り、入力装置1からネジピッチ情報を入力すると、演算
器2の出力を入力したパルス分配回路3は、主軸用加減
速制御回路5と送り軸用加減速制御回路11とに分配パ
ルスPsとPzとを出力して主軸9と送り軸15とを加
工プログラム通りに駆動して加工運転をする。一方、入
力装置1は、ネジピッチ情報を入力すると、そのネジに
適当な穴底加工精度に比例する情報を自動的に出力して
エラーディテクト領域設定テーブル17に与える。する
と、エラーディテクト領域設定テーブル17は、主軸用
エラーカウンタ6と送り軸用エラーカウンタ12に設定
領域値を出力する。各エラーカウンタ6、12では、サ
ーボの遅れパルス許容値がエラーディテクト領域になっ
たことを確認すると、穴底の要求加工精度を満たしたも
のと判断して加工を終了する。尚、入力装置1にネジピ
ッチ情報を入力すると自動的に加工精度情報を出力する
方式の代わりに、ネジピッチ情報と、加工精度情報の双
方をに入力する方式としても良い。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a main part of a numerical control device according to the present invention. When data is input from the input device 1, the arithmetic unit 2 outputs a command value determined according to the description on the machining program based on the input data. As the command value in this case, the screw pitch p of the tap and the peripheral speed F are output. The pulse distribution circuit 3 to which the outputs p and F are input provides a distribution pulse Ps for rotating the main shaft 9.
Is output to the main shaft acceleration / deceleration control circuit, and the feed shaft 15
Is output to the feed axis acceleration / deceleration control circuit 11 for controlling the movement of the axis. The time constant determination circuit 4 includes a pitch dependent constant table as a data table of a pitch dependent constant corresponding to the screw pitch p, and is provided with the like.
The acceleration / deceleration time constant T is output to the main shaft acceleration / deceleration control circuit 5 and the feed axis acceleration / deceleration control circuit 11 according to the screw pitch command value p input from the arithmetic unit 2. Spindle acceleration / deceleration control circuit 5
Controls the acceleration / deceleration of the spindle motor 8, that is, the spindle 9, based on the distribution pulse Ps and the acceleration / deceleration time constant T. The output pulse Qs from the main shaft acceleration / deceleration control circuit 5 is sent to the main shaft error counter 6, and the error counter 6 is counted up. The feedback pulse Rs obtained from the pulse generator 10 rotating in synchronization with the main shaft 9 counts down the main shaft error counter 6. Therefore, there is a difference between the output pulse Qs and the feedback pulse Rs inside the spindle error counter 6, and this value is converted into an analog signal and given to the spindle drive circuit 7. drive. The feed axis acceleration / deceleration control circuit 11 receives the distribution pulse Pz and the acceleration / deceleration time constant T and outputs an output pulse Qz
Is output to the feed axis error counter 12, and the feed axis error counter 12 is counted up. On the other hand, the feedback pulse Rz output from the pulse generator 16 that rotates synchronously with the feed shaft 15 counts down the feed shaft error counter 12. The feed axis error counter 12 converts the difference between the output pulse Qz and the feedback pulse Rz into an analog signal and provides the analog signal to the feed axis drive circuit 13. Then, the feed shaft drive circuit 13 drives the feed shaft motor 14 to drive the feed shaft 15. According to the present invention, in such a numerical control device, an error detection area setting table for inputting data from the input device 1 and the time constant determining circuit 4 and outputting the data to the spindle error counter 6 and the feed axis error counter 12 is provided. 17 are provided. With this configuration, when the screw pitch information is input from the input device 1, the pulse distribution circuit 3, which receives the output of the arithmetic unit 2, sends the pulse acceleration / deceleration control circuit 5 for the main shaft and the acceleration / deceleration control circuit 11 for the feed shaft to the input. The distribution pulses Ps and Pz are output, and the spindle 9 and the feed shaft 15 are driven according to the machining program to perform the machining operation. On the other hand, when inputting the screw pitch information, the input device 1 automatically outputs information proportional to the hole bottom machining precision appropriate for the screw and gives the information to the error detection area setting table 17. Then, the error detection area setting table 17 outputs the set area value to the spindle error counter 6 and the feed axis error counter 12. When each of the error counters 6 and 12 confirms that the delay pulse allowable value of the servo is in the error detection area, it determines that the required processing accuracy of the hole bottom is satisfied, and ends the processing. Instead of automatically outputting the processing accuracy information when the screw pitch information is input to the input device 1, a method may be used in which both the screw pitch information and the processing accuracy information are input.

【0006】[0006]

【発明の効果】以上説明した発明によれば、入力装置に
より領域を設定できるエラーディテクト領域設定手段を
設け、その出力を主軸用と、送り軸用のエラーカウンタ
に入力させることにより、加工プログラム上で、ネジの
種類等に応じてネジ穴底の加工精度を設定することがで
きる。その結果、精度を要求されないネジの加工の場合
は、穴底の精度も要求されないので、エラーディテクト
領域設定値を大きく設定すると、低い精度で加工するこ
とになり、加工時間も短縮される為、タッピング加工サ
イクルの時間短縮が図れ、生産能率の向上が得られる。
According to the invention described above, the error detection area setting means for setting the area by the input device is provided, and its output is input to the error counters for the main spindle and the feed axis, so that the processing program Thus, the processing accuracy of the screw hole bottom can be set according to the type of screw and the like. As a result, in the case of screw processing that does not require accuracy, the accuracy of the hole bottom is not required, so if the error detection area setting value is set to a large value, processing will be performed with low accuracy, and the processing time will be shortened, The time of the tapping processing cycle can be reduced, and the production efficiency can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による数値制御装置の基本的構成を示
すブロック図である。
FIG. 1 is a block diagram showing a basic configuration of a numerical control device according to the present invention.

【符号の説明】[Explanation of symbols]

1 入力装置 2 演算器 3 パルス分配回路 4 時定数決定回路 5 主軸用加減速制御回路 6 主軸用エラーカウンタ 7 主軸ドライブ回路 8 主軸モータ 9 主軸 10 主軸用パルスジェネレータ 11 送り軸用加減速制御回路 12 送り軸用エラーカウンタ 13 送り軸ドライブ回路 14 送り軸モータ 15 送り軸 16 送り軸用パルスジェネレータ 17 エラーディテクト領域設定テーブル Reference Signs List 1 input device 2 arithmetic unit 3 pulse distribution circuit 4 time constant determination circuit 5 spindle acceleration / deceleration control circuit 6 spindle error counter 7 spindle drive circuit 8 spindle motor 9 spindle 10 spindle pulse generator 11 feed axis acceleration / deceleration control circuit 12 Error counter for feed axis 13 Feed axis drive circuit 14 Feed axis motor 15 Feed axis 16 Pulse generator for feed axis 17 Error detection area setting table

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 主軸の回転指令および送り軸の移動指令
を同期させることで主軸位置と送り軸位置の同期制御を
行いタッピング加工を行う数値制御装置において、 パルス分配終了後のサーボの遅れによるエラーディテク
トの領域を任意に設定する手段を備える数値制御装置。
An error caused by a servo delay after completion of pulse distribution in a numerical control device that performs a tapping process by synchronizing a main shaft position and a feed shaft position by synchronizing a main shaft rotation command and a feed shaft movement command. A numerical control device comprising means for arbitrarily setting a detection area.
【請求項2】 主軸の回転指令および送り軸の移動指令
を同期させることで主軸位置と送り軸位置の同期制御を
行いタッピング加工を行う数値制御装置において、 入力装置で指定されたタップのネジピッチ及び周速に応
じて加減速時定数を決定する時定数決定回路と、 前記決定された加減速時定数に基づいて前記主軸と前記
送り軸の加減速制御を行う加減速制御回路と、 前記加減速制御回路の出力パルスが供給されるエラーカ
ウンタと、 前記入力装置からの指定でエラーディテクト領域を任意
に設定しその設定領域を前記エラーカウンタに供給する
エラーディテクト領域設定手段とを具備したことを特徴
とする数値制御装置。
2. A numerical control device for performing a tapping process by synchronizing a spindle position and a feed shaft position by synchronizing a spindle rotation command and a feed shaft movement command. A time constant determining circuit that determines an acceleration / deceleration time constant according to a peripheral speed; an acceleration / deceleration control circuit that performs acceleration / deceleration control of the main shaft and the feed shaft based on the determined acceleration / deceleration time constant; An error counter to which an output pulse of the control circuit is supplied, and an error detection area setting means for arbitrarily setting an error detection area by designation from the input device and supplying the set area to the error counter. Numerical control device.
JP32135397A 1997-11-21 1997-11-21 Numerical control device Pending JPH11156638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32135397A JPH11156638A (en) 1997-11-21 1997-11-21 Numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32135397A JPH11156638A (en) 1997-11-21 1997-11-21 Numerical control device

Publications (1)

Publication Number Publication Date
JPH11156638A true JPH11156638A (en) 1999-06-15

Family

ID=18131641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32135397A Pending JPH11156638A (en) 1997-11-21 1997-11-21 Numerical control device

Country Status (1)

Country Link
JP (1) JPH11156638A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034526A1 (en) * 2000-10-24 2002-05-02 Videojet Technologies Inc. A droplet generator for a continuous stream ink jet print head
JP5240412B1 (en) * 2012-02-08 2013-07-17 三菱電機株式会社 Numerical controller
CN103728923A (en) * 2013-12-24 2014-04-16 嘉兴学院 High-efficiency high-stability flexible acceleration and deceleration control method for numerical control system
US9513619B2 (en) 2012-06-05 2016-12-06 Mitsubishi Electric Corporation Numerical control device which performs tapping operation by using a main spindle and a feed shaft

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034526A1 (en) * 2000-10-24 2002-05-02 Videojet Technologies Inc. A droplet generator for a continuous stream ink jet print head
US6883899B2 (en) 2000-10-24 2005-04-26 Videojet Technologies, Inc. Droplet generator for a continuous stream ink jet print head
JP5240412B1 (en) * 2012-02-08 2013-07-17 三菱電機株式会社 Numerical controller
WO2013118169A1 (en) * 2012-02-08 2013-08-15 三菱電機株式会社 Numerical control device
CN103348295A (en) * 2012-02-08 2013-10-09 三菱电机株式会社 Numerical control device
US9122265B2 (en) 2012-02-08 2015-09-01 Mitsubishi Electric Corporation Numerical control device for drilling and tapping with two synchronized spindles
US9513619B2 (en) 2012-06-05 2016-12-06 Mitsubishi Electric Corporation Numerical control device which performs tapping operation by using a main spindle and a feed shaft
CN103728923A (en) * 2013-12-24 2014-04-16 嘉兴学院 High-efficiency high-stability flexible acceleration and deceleration control method for numerical control system

Similar Documents

Publication Publication Date Title
JP2661422B2 (en) Processing device and processing method
KR920007639B1 (en) Position control system
JPS5968003A (en) Emergency machine origin resetting device of numerically controlled machine tool
US4992712A (en) Control device for industrial machine
EP0394459B1 (en) Device for confirming the tap operation in the rigid tapping
KR100548874B1 (en) Numerical control unit having function for detecting the nicked edge of tool
JPH11156638A (en) Numerical control device
JP3670227B2 (en) Machine tool and control method thereof
EP0360242A2 (en) Numerical control device
JPH07271422A (en) Apparatus and method for electronic control for individual drive part of working and treatment machine
KR20010082624A (en) Machine tool and method for controlling the same
JPH0751992A (en) Drilling work method
JP2712881B2 (en) Numerical control unit
JPH02237743A (en) Main spindle control system of numerical controller
EP0360190B1 (en) Control device for industrial machine
JPH03178721A (en) Synchronous tapping device of numerically controlled machine tool
JPH0885044A (en) Working load monitoring system
JP3136851B2 (en) Screw processing equipment
JPH07112322A (en) Tapping machining control device
JPH0661673B2 (en) Positioning command device for machine tools
KR850000311B1 (en) Spindle orientation control apparatus
JPH10161748A (en) Motor positioning controller
CN112241148A (en) Control device and control system for machine tool
JPS62188623A (en) Thread-cutting device
JP2002172542A (en) Multiple spindle synchronization control system and multiple spindle synchronization control method