JPH0428865A - Production of refractory metal silicide target - Google Patents

Production of refractory metal silicide target

Info

Publication number
JPH0428865A
JPH0428865A JP13461690A JP13461690A JPH0428865A JP H0428865 A JPH0428865 A JP H0428865A JP 13461690 A JP13461690 A JP 13461690A JP 13461690 A JP13461690 A JP 13461690A JP H0428865 A JPH0428865 A JP H0428865A
Authority
JP
Japan
Prior art keywords
pressure
silicon
reaction
powder
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13461690A
Other languages
Japanese (ja)
Inventor
Shozo Nagano
長野 昌三
Yasuhisa Hishitani
菱谷 泰久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP13461690A priority Critical patent/JPH0428865A/en
Publication of JPH0428865A publication Critical patent/JPH0428865A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To produce the target having superior uniformity and high density by keeping a specific pressure until silicide reaction is finished, and raising this pressure up to the desired pressure after the reaction is finished at the time of subjecting a powder mixture of refractory metal and silicon to hot pressing treatment. CONSTITUTION:A high purity graphite mold is filled with a powder in which refractory metal (W, Mo, etc. <= about 50mu grain size) and silicon (<= about 150mu grain size, <= about 5ppm ferrous impurities, <= about 1000ppm oxygen) are mixed in the prescribed molar ratio. Subsequently, hot pressing treatment is performed in vacuum atmosphere (about 1X10<-3>-1X10<-5>Torr) at about 900-1300 deg.C under a pressure of <= about 50kg/cm<2> until silicide reaction is finished. When silicide reaction is finished, the pressure is raised up to the desired pressure at 1-20kg/cm<2>/min pressure rise rate and hot pressing treatment is carried out at about 1300-1250 deg.C. By this method, the refractory metal silicide target useful for forming a gate electrode film for MOS-LSI can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高融点金属シリサイドターゲットの製造方法
に関するものであり、詳しくは、MO8LSIのゲート
電極膜をスパッタリングにより形成する際に用いられる
高融点金属シリサイドターゲットの製造方法に関するも
のである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a high melting point metal silicide target. The present invention relates to a method for manufacturing a metal silicide target.

〔従来の技術〕[Conventional technology]

従来より、半導体素子の電極あるいは配線、特に、MO
3−LSIのゲート電極には、ポリシリコン(p−8i
)が広く用いられてきた。
Conventionally, electrodes or wiring of semiconductor devices, especially MO
The gate electrode of the 3-LSI is made of polysilicon (p-8i
) have been widely used.

しかしながら、LSIが高集積化されるに従って電気信
号の伝達遅延が問題となり、低電気抵抗の電極材料が求
められるようになり、現在では、高集積率のLSIには
、ポリシリコンに代わり、低電気抵抗の高融点金属シリ
サイドが広く利用されている。
However, as LSIs become more highly integrated, electrical signal transmission delays become a problem, and electrode materials with low electrical resistance are required. Refractory metal silicides are widely used.

このような高融点金属シリサイドのゲート電極膜は、殆
どスパッタリングにより形成されるが、その膜の性質は
ターゲツト材の特性に太き(影響され、特に、ターゲツ
ト材の均一性は、膜組成および膜厚の均一性に関係する
ため非常に重要な因子である。
Such gate electrode films of high melting point metal silicide are mostly formed by sputtering, but the properties of the film are heavily influenced by the characteristics of the target material, and in particular, the uniformity of the target material is influenced by the film composition and film composition. This is a very important factor as it relates to the uniformity of thickness.

そして、斯かる高融点金属シリサイドからなるターゲツ
ト材は、タングステン(W)、モリブデン(MO)、タ
ンタル(Ta)、チタン(Ti)等の高融点金属とケイ
素との混合粉末をホットプレス処理する方法により得ら
れる。
The target material made of such a high melting point metal silicide is obtained by hot pressing a mixed powder of silicon and a high melting point metal such as tungsten (W), molybdenum (MO), tantalum (Ta), or titanium (Ti). It is obtained by

上記の方法は高融点金属とケイ素との混合粉末を焼成し
てシリサイド化し、それを粉砕して得た粉末をホットプ
レス処理する方法よりも製造工程が簡易であり、工程か
らの不純物の混入が少ないため、高純度品を経済的に有
利に製造できる。
The above method has a simpler manufacturing process than a method in which a mixed powder of a high melting point metal and silicon is fired to form a silicide, and the powder obtained by pulverization is hot-pressed, and there is no possibility of contamination with impurities from the process. Since the amount is small, high-purity products can be manufactured economically.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の方法は、シリサイド化反応による
発熱のために、融点の低いケイ素が瞬間的に溶融し、そ
の溶融ケイ素がホットプレスの圧力により焼結体内部に
存在する欠陥部や低密度部に移動し、その結果、繊維状
の綱板を生じたり、圧力分布に沿って低密度部にSiの
多い組織(組織ムラ)を部分的に形成したりして均一性
に問題があった。
However, in the above method, silicon with a low melting point melts instantaneously due to the heat generated by the silicidation reaction, and the molten silicon is applied to defects and low density areas inside the sintered body due to the pressure of the hot press. As a result, there were problems with uniformity, such as formation of fibrous platelets and partial formation of a Si-rich structure (texture unevenness) in low-density areas along the pressure distribution.

例えば、タングステンシリサイドターゲットの場合、通
常、MO8−LSIのゲート電極の成膜用タングステン
シリサイドターゲットの組成は、Si/W=2゜2〜3
.2のモル比のものが多(用いられており、化学量論的
なWSi2の組成よりもケイ素が過剰に含まれている。
For example, in the case of a tungsten silicide target, the composition of the tungsten silicide target for forming the gate electrode of MO8-LSI is usually Si/W=2°2-3.
.. The molar ratio of WSi2 is often used, and silicon is contained in excess of the stoichiometric composition of WSi2.

そして、タングステン粉末とケイ素粉末を混合してホッ
トプレス処理する場合、その処理温度は、WSi2とS
iの共晶温度よりもやや低い1370〜1400℃の温
度が用いられる。このような温度でホットプレス処理す
る場合、その昇温途中でタングステン粉末とケイ素粉末
が反応し、大きな発熱を伴いなからWSi2の金属間化
合物(シリサイド)が形成される。
When tungsten powder and silicon powder are mixed and subjected to hot press treatment, the treatment temperature is
A temperature of 1370 to 1400°C, which is slightly lower than the eutectic temperature of i, is used. When hot-pressing at such a temperature, the tungsten powder and the silicon powder react during the heating process, and an intermetallic compound (silicide) of WSi2 is formed without generating a large amount of heat.

このシリサイド化の反応が起こる温度は、通常、100
0〜12006Cであるが、主に、タングステン粉末と
ケイ素粉末の表面酸化皮膜に影響され、酸素含有量の少
ない(表面酸化皮膜が薄い)ものほど反応温度が低い傾
向にある。反応で形成されるWSi2の融点は2165
°Cであるのに対し、ケイ素の融点は1410℃と低い
ため、焼結体の温度は、反応熱により瞬間的にケイ素の
融点を越える。その結果、反応によってWSi2を形成
した残りの溶融状態にあるケイ素は、ホットプレスの圧
力により焼結体の欠陥部や低密度部に押し出され、繊維
状の綱板や組織ムラを生ずる。このような綱板等は、過
剰ケイ素量が多いほど、また、反応温度が高いほど発生
し易い傾向にある。また、反応が急激であるほど瞬間的
な温度上昇が大きくなるため、同様の傾向がみられる。
The temperature at which this silicidation reaction occurs is usually 100
0 to 12006C, but it is mainly influenced by the surface oxide film of the tungsten powder and silicon powder, and the reaction temperature tends to be lower as the oxygen content is lower (the surface oxide film is thinner). The melting point of WSi2 formed in the reaction is 2165
°C, whereas the melting point of silicon is as low as 1410 °C, the temperature of the sintered body instantaneously exceeds the melting point of silicon due to the heat of reaction. As a result, the remaining molten silicon that has formed WSi2 through the reaction is pushed out into defective areas and low-density areas of the sintered body by the pressure of the hot press, resulting in fibrous platelets and uneven structure. Such steel plates and the like tend to occur more easily as the amount of excess silicon increases and as the reaction temperature increases. A similar trend is also observed, as the more rapid the reaction, the greater the instantaneous temperature rise.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、斯かる問題点を解決すべく鋭意
検討した結果、高融点金属とケイ素との混合粉末をホッ
トプレス処理するに際し、シリサイド化の反応が終了す
るまでは無加圧ないし非常に小さい圧力で加圧し、反応
後に目的の圧力まで昇圧しホットプレス処理をするなら
ば、シリサイド化は既に終了しているため、加圧時に溶
融ケイ素の生成もなく、また、移動もないため、問題の
綱板等が生じないことを見い出し本発明に到達した。
Therefore, the inventors of the present invention have conducted intensive studies to solve these problems, and have found that when hot-pressing a mixed powder of high-melting point metal and silicon, no pressure is applied until the silicidation reaction is completed. If the pressure is applied at a very low pressure and then the pressure is increased to the target pressure after the reaction and hot press treatment is performed, silicidation has already been completed, so there is no generation or movement of molten silicon during pressurization. The inventors have discovered that the problematic rope plates, etc. do not occur, and have arrived at the present invention.

すなわち、本発明の目的は、ケイ素の繊維状綱板や組織
ムラの問題を解決し、均一性が良好で高密度の高融点金
属シリサイドターゲットの製造方法を提供することにあ
る。
That is, an object of the present invention is to provide a method for manufacturing a high-melting point metal silicide target with good uniformity and high density by solving the problem of silicon fibrous steel plates and uneven structure.

そして、斯かる目的は、高融点金属とケイ素との混合粉
末をホットプレス処理することにより、高融点金属シリ
サイドターゲットを製造するに当り、シワサイド化か終
了するまでは約50kg/cIII′以下の圧力でホッ
トプレス処理を行い、当該反応の終了後は目的の圧力ま
で昇圧してホットプレス処理を行うことを特徴とする高
融点金属シリサイドターゲットの製造方法により容易に
達成される。
The purpose is to hot press a mixed powder of a high melting point metal and silicon to produce a high melting point metal silicide target, and the pressure is about 50 kg/cIII' or less until the wrinkle cidation is completed. This can be easily achieved by a method for producing a high-melting point metal silicide target, which is characterized in that hot press treatment is carried out at a temperature of 100 mL, and after the completion of the reaction, the pressure is increased to a target pressure and hot press treatment is carried out.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明において高融点金属としては、ケイ素の融点以上
の融点を有し、ケイ素と発熱反応を行いシリサイド化す
るような高融点金属が用いられる。
In the present invention, a high melting point metal is used which has a melting point higher than the melting point of silicon and which undergoes an exothermic reaction with silicon to form a silicide.

具体的には、タングステン(W)、モリブデン(Mo)
、タンタル(Ta)、チタン(Ti)等の高融点金属が
挙げられ、特に、タングステン(W)又はモリブデン(
MO)を用いるのが好ましい。
Specifically, tungsten (W), molybdenum (Mo)
, tantalum (Ta), titanium (Ti), and other high-melting point metals, especially tungsten (W) or molybdenum (
MO) is preferably used.

一方、ケイ素としては、特に、限定されるものではない
が、酸素含有量の少ない高純度のものが好ましい。
On the other hand, silicon is not particularly limited, but high purity silicon with low oxygen content is preferred.

上記の各成分は、いずれも粉末状態で使用されるが、通
常、高融点金属の場合は、粒径50μm以下、好ましく
20μm以下のものを使用するのがよく、ケイ素の場合
は、粒径150μm以下、好ましくは1〜55μmの範
囲のものを使用するのがよい。
Each of the above components is used in powder form, but in the case of high melting point metals, it is usually best to use particles with a particle size of 50 μm or less, preferably 20 μm or less, and in the case of silicon, particles with a particle size of 150 μm or less are used. Hereinafter, it is preferable to use a material having a diameter of 1 to 55 μm.

ケイ素粉末として市販の高純度品を用し)る場合には、
しばしば、粉砕時に容器および治具より混入した鉄系の
不純物および表面酸化による酸素をそれぞれ数100〜
数11000pp程度含んでし)るため、分級機を用い
て酸素の多0微粉を除去し、更に、酸洗浄により鉄系の
不純物と表面酸化皮膜を除去する必要がある。鉄系の不
純物は10ppm以下、酸素は11000pp以下、好
ましくは鉄系の不純物は5 ppm以下、酸素は600
 ppm以下とするのがよい。
When using commercially available high-purity silicon powder,
Often, iron-based impurities mixed in from containers and jigs during grinding and oxygen due to surface oxidation are removed by several hundreds of particles each.
Since it contains about 11,000 ppm), it is necessary to remove the oxygen-rich fine particles using a classifier and to remove iron-based impurities and surface oxide film by acid cleaning. Iron-based impurities are 10 ppm or less, oxygen is 11,000 ppm or less, preferably iron-based impurities are 5 ppm or less, and oxygen is 600 ppm or less.
It is preferable to keep it below ppm.

また、高融点金属も同様に酸素の少ない高純度のものが
よく、例えば、市販の4N品以上のものを用いるのがよ
い。
Similarly, the high melting point metal should preferably be of high purity and contain little oxygen; for example, it is preferable to use a commercially available 4N or higher metal.

本発明においては、先ず、上記のような高融点金属粉末
とケイ素粉末とを目的のモル比で秤量配合し、ボールミ
ル等で乾式混合する。
In the present invention, first, the above-mentioned high melting point metal powder and silicon powder are weighed and blended in a desired molar ratio, and then dry mixed using a ball mill or the like.

ケイ素粉末の配合は、ルツボ中で開放して焼成する場合
に比べ、ホットプレス処理ではモールド中に充填されて
いるため、蒸発による減少は少な(、従って、通常、配
合モル比の補正は必要ないが、配合モル比の0〜1%増
しとするのがよい。
Compared to firing the silicon powder in the open in a crucible, the silicon powder is filled in the mold in hot press processing, so there is less loss due to evaporation (therefore, correction of the blended molar ratio is usually not necessary). However, it is preferable to increase the blending molar ratio by 0 to 1%.

混合方法は、容器およびボール等からの汚染を防ぐため
、ナイロンライニングを施したものか、または、使用す
る高融点金属と同じ金属、そのシリサイドの共材もしく
はモリブデン材からなるものを用いるのがよい。混合時
の雰囲気は、窒素あるいはアルゴン等の不活性気体雰囲
気または真空雰囲気とするのがよく、いずれの場合も、
水分による汚染を防止する必要がある。
To prevent contamination from containers, balls, etc., it is best to use a mixing method that is lined with nylon, or one that is made of the same metal as the high-melting point metal used, its silicide, or molybdenum material. . The atmosphere during mixing is preferably an inert gas atmosphere such as nitrogen or argon, or a vacuum atmosphere; in either case,
It is necessary to prevent contamination by moisture.

本発明においては、上記のようにして得られた混合粉末
を高純度黒鉛モールドに充填し、ホットプレス処理して
ターゲツト材を製造する。そして、シリサイド化反応の
前後でその圧力を制御しながら行う。
In the present invention, the mixed powder obtained as described above is filled into a high-purity graphite mold and hot-pressed to produce a target material. The pressure is controlled before and after the silicidation reaction.

ホットプレス処理の雰囲気は、窒素あるいはアルゴン等
の不活性気体雰囲気、好ましくは、不純物を蒸発除去す
るために、真空雰囲気とするのかよい。真空度は高い方
が好ましいか、通常、1×10 ’−’ 〜I X I
 0−5torrであればよい。
The atmosphere for the hot press treatment may be an inert gas atmosphere such as nitrogen or argon, preferably a vacuum atmosphere in order to evaporate and remove impurities. The degree of vacuum is preferably higher, usually 1 x 10 '-' ~ I
It is sufficient if it is 0-5 torr.

ホットプレス処理の圧力は、シリサイド化反応が終了す
るまでは約50kg/cnf以下、好ましくは20kg
/cTl以下の圧力とし、当該反応が終了後は目的の圧
力に昇圧して焼結する。
The pressure of the hot press treatment is approximately 50 kg/cnf or less, preferably 20 kg until the silicidation reaction is completed.
/cTl or less, and after the reaction is completed, the pressure is increased to the desired pressure for sintering.

シリサイド化反応が終了するまでの加圧方法は、特に制
限はなく、例えば、最初から前記の圧力を加圧しておく
か、−旦100〜200kg/cゴ程度の圧力を短時間
加圧し、直ちに接圧して前記圧力に変えるなどの方法を
採用し得る。いずれの場合も、充填した混合粉末の上面
が平坦になるようにすることが望ましい。シリサイド化
反応の終了前の圧力が上記範囲を超えて高すぎる場合は
、シリサイド化反応時に溶融ケイ素が移動して偏析し、
本発明の所期の目的を達成し得ない。
There are no particular restrictions on the method of pressurizing until the silicidation reaction is completed; for example, the above pressure is applied from the beginning, or the pressure is applied for a short period of time to about 100 to 200 kg/cm, and then immediately A method such as applying contact pressure to change the pressure to the above-mentioned pressure may be adopted. In either case, it is desirable that the top surface of the filled mixed powder be flat. If the pressure before the end of the silicidation reaction is too high beyond the above range, molten silicon will move and segregate during the silicidation reaction.
The intended purpose of the present invention cannot be achieved.

一方、シリサイド化反応終了後の圧力は、高圧であれば
特に制約はなく、高い方が高密度化に有利である。実際
は、モールド材料の強度によって決定され、黒鉛モール
ドを使用する場合は、通常、15 C1−350kg/
cri、好ましくは200〜350 kg / crl
の範囲とされる。
On the other hand, the pressure after the silicidation reaction is not particularly limited as long as it is a high pressure, and a higher pressure is advantageous for higher density. In practice, it is determined by the strength of the molding material, and when using graphite molds, it is usually 15 C1-350kg/
cri, preferably 200-350 kg/crl
The range of

シリサイド化反応終了後の昇圧は、反応熱によって上昇
した温度が黒鉛モールドに吸熱され、ケイ素の融点以下
まで下かり、溶融ケイ素がなくなった時期に行われる。
The pressure increase after the completion of the silicidation reaction is carried out at a time when the temperature increased by the reaction heat is absorbed by the graphite mold, and the temperature drops below the melting point of silicon, and when there is no more molten silicon.

シリサイド化の反応は速いか、炉温か高いため放熱には
時間を要し、通常、昇圧は、反応後、3〜60分、好ま
しくは15〜60分保持後に開始するのがよい。そして
、余りに昇圧の時期が遅れると焼結が進み過ぎ、高密度
化に不利である。
The silicidation reaction is fast, or the furnace temperature is high, so it takes time to dissipate the heat, and it is usually advisable to start increasing the pressure after the reaction is maintained for 3 to 60 minutes, preferably 15 to 60 minutes. If the timing of pressure increase is delayed too much, sintering will proceed too much, which is disadvantageous to high density.

なお、昇圧の速度は、1〜20 kg/ crl / 
min 。
In addition, the rate of pressure increase is 1 to 20 kg/crl/
min.

好ましくは5〜15 kg/car/ minとするの
がよい。
Preferably it is 5 to 15 kg/car/min.

シリサイド化反応の温度は、高融点金属の種類、高融点
金属粉末とケイ素粉末の粒度分布、表面酸化皮膜等によ
って変化するが、通常、900〜1300℃の範囲にあ
る。
The temperature of the silicidation reaction varies depending on the type of high melting point metal, the particle size distribution of the high melting point metal powder and silicon powder, the surface oxide film, etc., but is usually in the range of 900 to 1300°C.

そして、シリサイド化反応が起こるとその反応熱によっ
て温度が瞬間的に上昇し、金属蒸気、酸化物蒸気および
脱ガスが発生し、また、僅かでも加圧していると近位に
収縮が観察される。従って、シリサイド化反応の進捗状
況は、蒸気および脱ガスによる真空度の変化ないし収縮
変位の変化から判断できる。
When the silicidation reaction occurs, the temperature rises instantaneously due to the heat of the reaction, and metal vapor, oxide vapor, and degassing are generated. Also, if even a small amount of pressure is applied, contraction is observed in the vicinity. . Therefore, the progress of the silicidation reaction can be judged from changes in the degree of vacuum or changes in shrinkage displacement due to steam and degassing.

シリサイド化反応終了後のホットプレス処理の温度とし
ては、MS i x (M=W、 Mo、 T i。
The temperature of the hot press treatment after the completion of the silicidation reaction is MS i x (M=W, Mo, Ti.

Taなど)とSiの共晶温度よりやや低い温度が採用さ
れ、通常は1300〜1450℃とされる。
A temperature slightly lower than the eutectic temperature of Si (such as Ta) and Si is used, and is usually 1300 to 1450°C.

そして、タングステンシリサイドの場合は、1370〜
1400℃、モリブデンシリサイドの場合は、1380
〜1410℃とするのがよい。
In the case of tungsten silicide, 1370~
1400℃, 1380 for molybdenum silicide
It is preferable to set the temperature to 1410°C.

昇温は、通常1〜20°C/minの速度で行われるが
、シリサイド化の反応が起こる900〜1300℃の温
度範囲では徐々に昇温するのが好ましく、具体的には、
5°C/min以下の昇温速度とするのがよい。
The temperature is generally raised at a rate of 1 to 20°C/min, but it is preferable to gradually raise the temperature in the temperature range of 900 to 1300°C where the silicidation reaction occurs. Specifically,
It is preferable to set the temperature increase rate to 5°C/min or less.

ホットプレス処理の時間は、焼結体全体が均熱化される
時間で十分であり、焼結体の大きさにもよるが、通常0
.5〜3時間の範囲とされる。
The hot press treatment time is sufficient to soak the entire sintered body, and although it depends on the size of the sintered body, it is usually 0.
.. It is said to be in the range of 5 to 3 hours.

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳細に説明するが、本
発明は、その要旨を超えない限り以下の実施例に限定さ
れるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 原料として次のものを使用した。Example 1 The following materials were used as raw materials.

(a)Si粉末 市販の高純度Si粉末(−300メツシユ)を空気分級
機で処理し、酸素の多い微粉末および焼結性の悪い粗粉
末を除去し、更に、純化して得た高純度Si粉末(酸素
量220ppm)を使用した。
(a) Si powder Commercially available high-purity Si powder (-300 mesh) is treated with an air classifier to remove oxygen-rich fine powder and coarse powder with poor sinterability, and further purified to obtain high purity. Si powder (oxygen content 220 ppm) was used.

Si粉末の純化は、先ず、60℃の6N−HC1水溶液
で、次いで、0.5N−HF水溶液で処理して粉砕時に
汚染したFe系の不純物および酸化物を溶解除去し、更
に、純水で繰り返し洗浄を行い、最後に、80℃で真空
乾燥する方法で行・つた。
The Si powder was purified by first treating it with a 6N-HC1 aqueous solution at 60°C, then with a 0.5N-HF aqueous solution to dissolve and remove Fe-based impurities and oxides contaminated during pulverization, and then with pure water. It was washed repeatedly and finally dried under vacuum at 80°C.

(b)W粉末 市販の5N高純度W粉末(平均粒径4μm、酸素量34
0ppm)を使用した。
(b) W powder Commercially available 5N high purity W powder (average particle size 4 μm, oxygen content 34
0 ppm) was used.

上記の各原料を使用し、Ar雰囲気のボールミル中、W
:5i=1:2.7の割合で4時間乾式混合して10.
4 kgの混合粉末を得た。
Using each of the above raw materials, W
:5i=1:2.7 ratio for 4 hours and 10.
4 kg of mixed powder was obtained.

なお、ミル用ボールは、ナイロンライニングの鉄球を用
いた。
Note that a nylon-lined iron ball was used as the mill ball.

上記の混合粉末を大型ホットプレス炉の内径280φの
高純度黒鉛モールドに充填し、真空雰囲気中でホットプ
レス処理を行った。
The above mixed powder was filled into a high purity graphite mold with an inner diameter of 280φ in a large hot press furnace, and hot press treatment was performed in a vacuum atmosphere.

処理圧力は、1250℃まで16kg/cJとし、12
50°Cで1時間保持後、200kg/crlに昇圧し
た。シリサイド化反応は、1250℃に達して7分後に
生じた。この反応温度は通常よりも高いが、これは測温
している雰囲気温度と黒鉛モールド内の焼結体の温度差
によるものである。
The processing pressure was 16 kg/cJ up to 1250°C.
After holding at 50°C for 1 hour, the pressure was increased to 200 kg/crl. The silicidation reaction occurred 7 minutes after reaching 1250°C. This reaction temperature is higher than usual, but this is due to the difference between the ambient temperature being measured and the temperature of the sintered body in the graphite mold.

昇圧は、13 kg/cnf/minの速度で行った。The pressure was increased at a rate of 13 kg/cnf/min.

また、昇温速度は、300℃まで5°C/min 、 
300〜125’0℃/minの範囲では10°C/m
in。
In addition, the temperature increase rate is 5°C/min up to 300°C,
10°C/m in the range of 300~125'0°C/min
in.

1250〜1395℃範囲では5°C/minとした。In the range of 1250 to 1395°C, the rate was 5°C/min.

最終保持温度および時間は、1395°C,3時間とし
た。
The final holding temperature and time were 1395°C for 3 hours.

なお、シリサイド化反応の前に焼結体全体の均熱化を計
るため1050°Cで1時間保持した。
In addition, before the silicidation reaction, the sintered body was held at 1050°C for 1 hour in order to uniformly heat the entire sintered body.

上記のようにして得られたホットプレス処理品の密度は
7.89 g /crlであった。
The density of the hot-pressed product obtained as described above was 7.89 g/crl.

ホットプレス品の上下面を0.5〜1mm研削し、日立
建機(株)製の超音波探査映像装置にてSi編綱板の欠
陥検査を行った。その結果、本発明のホットプレス処理
品は、従来の処理品に比較し、欠陥率が減少し、均一性
が向上したものであることが認められた。
The upper and lower surfaces of the hot-pressed product were ground by 0.5 to 1 mm, and the Si braided steel plate was inspected for defects using an ultrasonic inspection and imaging device manufactured by Hitachi Construction Machinery Co., Ltd. As a result, it was found that the hot press-treated product of the present invention had a reduced defect rate and improved uniformity compared to conventionally processed products.

また、金属顕微鏡による観察でも組織は均一良好であっ
た。
The structure was also found to be uniform and good when observed using a metallurgical microscope.

更に、ホットプレス処理品から75φX6tの円板を切
り出し、裏面に銅のバッキングプレートをボンディング
してターゲットを作製した。これを島津製作所製のスパ
ッタリング装置にてスパッターし、その二ローション表
面からSi編綱板様の有無を観察した。その結果、本発
明のホットプレス処理品には、そのような模様は見られ
ず均一であった。
Furthermore, a disk of 75φ×6t was cut out from the hot-pressed product, and a copper backing plate was bonded to the back surface to prepare a target. This was sputtered using a sputtering device manufactured by Shimadzu Corporation, and the presence or absence of a Si braided rope plate-like surface was observed from the surface of the two lotions. As a result, no such pattern was observed in the hot-pressed product of the present invention, and the product was uniform.

本発明品と従来品との比較結果を表−1に示す。Table 1 shows the comparison results between the product of the present invention and the conventional product.

表 ■ 〔効 果〕 本発明によれば、高融点金属とケイ素との混合粉末をホ
ットプレス処理するに際して、シリサイド化の反応前後
で圧力を制御するという簡易な方法により、従来の問題
点であるケイ素の綱板、組織ムラ等を解決し、均一性が
良好な高融点金属シリサイドターゲットを得ることがで
きる。
Table ■ [Effects] According to the present invention, when hot-pressing a mixed powder of high-melting point metal and silicon, the conventional problems can be solved by a simple method of controlling the pressure before and after the silicidation reaction. A high melting point metal silicide target with good uniformity can be obtained by solving problems such as silicon wire plates and structure unevenness.

Claims (1)

【特許請求の範囲】[Claims] (1)高融点金属とケイ素の混合粉末をホットプレス処
理することにより、高融点金属シリサイドターゲットを
製造するに当り、シリサイド化の反応が終了するまでは
約50kg/cm^2以下の圧力でホットプレス処理を
行い、当該反応の終了後は目的の圧力まで昇圧してホッ
トプレス処理を行うことを特徴とする高融点金属シリサ
イドターゲットの製造方法。
(1) When producing a high melting point metal silicide target by hot pressing a mixed powder of high melting point metal and silicon, the hot press is applied at a pressure of about 50 kg/cm^2 or less until the silicidation reaction is completed. A method for producing a high melting point metal silicide target, which comprises performing a press treatment, and after the completion of the reaction, increasing the pressure to a target pressure and performing a hot press treatment.
JP13461690A 1990-05-24 1990-05-24 Production of refractory metal silicide target Pending JPH0428865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13461690A JPH0428865A (en) 1990-05-24 1990-05-24 Production of refractory metal silicide target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13461690A JPH0428865A (en) 1990-05-24 1990-05-24 Production of refractory metal silicide target

Publications (1)

Publication Number Publication Date
JPH0428865A true JPH0428865A (en) 1992-01-31

Family

ID=15132558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13461690A Pending JPH0428865A (en) 1990-05-24 1990-05-24 Production of refractory metal silicide target

Country Status (1)

Country Link
JP (1) JPH0428865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633513A (en) * 1992-07-17 1994-02-08 Penta Ocean Constr Co Ltd Joining method for column and beam
EP0812930A1 (en) * 1996-06-13 1997-12-17 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Ceramic evaporation material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633513A (en) * 1992-07-17 1994-02-08 Penta Ocean Constr Co Ltd Joining method for column and beam
EP0812930A1 (en) * 1996-06-13 1997-12-17 Deutsche Forschungsanstalt für Luft- und Raumfahrt e.V. Ceramic evaporation material

Similar Documents

Publication Publication Date Title
US5618397A (en) Silicide targets for sputtering
JP4388263B2 (en) Iron silicide sputtering target and manufacturing method thereof
JP5562928B2 (en) Tungsten sputtering target and manufacturing method thereof
JP6768575B2 (en) Tungsten silicide target and its manufacturing method
JP2024087083A (en) Tungsten Sputtering Target
JP4634567B2 (en) Method for manufacturing tungsten sputtering target
JP2001295035A (en) Sputtering target and its manufacturing method
JPH0428865A (en) Production of refractory metal silicide target
JPH0549730B2 (en)
JPH01156449A (en) Molybdenum sintered compact and its production
JPH05222525A (en) Production of tungsten target for semiconductor
JP3625928B2 (en) Method for producing Ta / Si based sintered alloy
JP2896233B2 (en) Refractory metal silicide target, manufacturing method thereof, refractory metal silicide thin film, and semiconductor device
JP2011084754A (en) Method for manufacturing sputtering target
JPH0428864A (en) Production of refractory metal silicide target
JPH0849068A (en) Tungsten silicide target material and its production
CN111836914A (en) Sputtering target and method for producing sputtering target
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH01131073A (en) Target made of high-melting metal silicide and production thereof
KR20160123134A (en) Preparation method of tungsten sputtering target and the thngsten sputtering target prepared thereby
JPH0313192B2 (en)
JPH0551732A (en) Target for sputtering and production thereof
JPH02247379A (en) Production of silicide target
JP3009281B2 (en) Method for producing titanium-based powder