JPH0428840A - Nickel-molybdenum series double boride cermet sintered body and its manufacture - Google Patents

Nickel-molybdenum series double boride cermet sintered body and its manufacture

Info

Publication number
JPH0428840A
JPH0428840A JP2132502A JP13250290A JPH0428840A JP H0428840 A JPH0428840 A JP H0428840A JP 2132502 A JP2132502 A JP 2132502A JP 13250290 A JP13250290 A JP 13250290A JP H0428840 A JPH0428840 A JP H0428840A
Authority
JP
Japan
Prior art keywords
sintered body
powder
weight
nickel
complex boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2132502A
Other languages
Japanese (ja)
Other versions
JP2534159B2 (en
Inventor
Yasuo Shinozaki
泰夫 篠崎
Noritoshi Horie
堀江 則俊
Kazuo Hamashima
和雄 浜島
Akio Nakano
昭夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2132502A priority Critical patent/JP2534159B2/en
Publication of JPH0428840A publication Critical patent/JPH0428840A/en
Application granted granted Critical
Publication of JP2534159B2 publication Critical patent/JP2534159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To eliminate pores remaining on the inside of a thick sintered body and to densify it by using the powder of Ta and Nb or their alloy powder as the raw material for Ta or Nb to enter into solid soln. in a hard phase and a bonding phase. CONSTITUTION:Ni-Mo double boride or Ni-Mo-W compound boride is used as a hard phase and an alloy essentially consisting of Ni and Mo or Ni, Mo and W is used as a bonding phase to manufacture a cermet sintered body. At this time, as the raw material for Ta and Nb as auxiliary components to be entered into solid soln. in the hard phase and bonding phase, one or more kinds of powder selected from Ta powder, Nb powder, Ta-B alloy powder, Nb-B alloy powder, Ta-Ni alloy powder and Nb-Ni alloy powder is used. In the bonding phase, the content of Ta is preferably regulated to about 1 to 25wt.% and the content of Nb to about 1 to 35wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアルミニウムの押出型やアルミニウムのダイカ
スト型などの用途に適するNi、 Mo系複硼化物焼結
体、さらに詳しくは強度、硬度および靭性に優れた緻密
なNi、 Mo系複硼化物サーメット焼結体に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a Ni- and Mo-based complex boride sintered body suitable for use in aluminum extrusion molds, aluminum die-casting molds, etc. This invention relates to a dense Ni, Mo-based complex boride cermet sintered body with excellent properties.

[技術の背景] 先に本発明者らは、強度、硬度、靭性ならびに耐熱衝撃
性に優れたNiのMOとWからなる複硼化物焼結体を特
開昭63−143236に開示し、さらに600℃〜1
00℃付近まで高温における強度向上に関して、複硼化
物の成分の一部を4a、 5a及び6a族の遷移金属窒
化物で置き換える事が特性を改善するのに有効であるこ
とを見出し、特開平1−131071 (以後、先行発
明という)として開示している。その後の研究の結果、
焼結体の肉厚が30mm程度より厚い場合、焼結体の内
部に気孔が残留する傾向を認め、その原因と改善対策を
検討し、複硼化物の一部を置換するために配合した窒化
物一部分が焼結中に分解する傾向があり、生成した窒素
ガスが気孔の残留の原因となっているものと考えた。
[Technical background] Previously, the present inventors disclosed a complex boride sintered body made of Ni MO and W that had excellent strength, hardness, toughness, and thermal shock resistance in JP-A-63-143236, and further disclosed 600℃~1
Regarding the improvement of strength at high temperatures up to around 00°C, we discovered that replacing a part of the complex boride components with transition metal nitrides of groups 4a, 5a and 6a is effective in improving the properties, and published JP-A-1 -131071 (hereinafter referred to as prior invention). As a result of subsequent research,
When the wall thickness of the sintered body is thicker than about 30 mm, it is recognized that pores tend to remain inside the sintered body, and the cause and improvement measures were investigated. It was thought that some parts of the material tended to decompose during sintering, and the nitrogen gas produced was the cause of the remaining pores.

本発明は上記先行発明による焼結体の優れた強度、硬度
、靭性ならびに耐熱衝撃性を損う事な(、厚肉の焼結体
の焼成不良、特には肉厚30mm以上を有する焼結体の
内部に残留する気孔を無くし、より緻密な焼結体を得よ
うとするものである。
The present invention is intended to prevent the excellent strength, hardness, toughness, and thermal shock resistance of the sintered body according to the prior invention described above from being impaired (in particular, sintered bodies with a wall thickness of 30 mm or more). The aim is to eliminate the pores remaining inside the sintered body and obtain a denser sintered body.

[発明の構成] 本発明のニッケルモリブデン系複硼化物サーメット焼結
体はNi、 Mo複硼化物またはNi、Mo、W複硼化
物を硬質相とし、結合相が主としてNi。
[Structure of the Invention] The nickel-molybdenum complex boride cermet sintered body of the present invention has a hard phase of Ni, Mo complex boride or Ni, Mo, W complex boride, and a binder phase mainly of Ni.

MoまたはNi、Mo、Wからなる合金であり、硬質相
□ および結合相中にTaおよび/またはNbを固溶してお
り、かつ緻密に焼結されていることを特徴とする。本発
明のニッケルモリブデン系複硼化物サーメット焼結体の
好ましい態様では、結合相中におけるTaの含有率が1
〜25重量%、Nbの含有率1〜35重量%であり、更
に好ましくはTaの含有率が5〜20重量%、Nbの含
有率が3〜10重量%である。−本発明のニッケルモリ
ブデン系複硼化物サーメット焼結体の他の好ましい態様
では、焼結体中の結合相が5〜70重量%である。本発
明のニッケルモリブデン系複硼化物サーメット焼結体の
他の好ましい態様では、焼結体の肉厚が30mm以上で
ある。
It is an alloy consisting of Mo or Ni, Mo, and W, and is characterized by having Ta and/or Nb dissolved in the hard phase and the binder phase, and being densely sintered. In a preferred embodiment of the nickel-molybdenum complex boride cermet sintered body of the present invention, the Ta content in the binder phase is 1
-25% by weight, Nb content is 1-35% by weight, and more preferably Ta content is 5-20% by weight and Nb content is 3-10% by weight. - In another preferred embodiment of the nickel-molybdenum complex boride cermet sintered body of the present invention, the binder phase in the sintered body is 5 to 70% by weight. In another preferred embodiment of the nickel-molybdenum complex boride cermet sintered body of the present invention, the wall thickness of the sintered body is 30 mm or more.

本発明のNi、Mo複硼化物またはNi、Mo、W複硼
化物を硬質相とし、結合相が主としてNi、Moまたは
Ni、Mo、Wからなる合金であるサーメットの焼結体
の製造方法は、硬質相および結合相中に固溶させるTa
および/またはNbの原料として、Ta粉、Nb粉、T
a−8合金粉、Nb−8合金粉、Ta−Ni合金粉およ
びNb−Ni合金粉から選ばれる一種以上の粉末を用い
ることを特徴とする。本発明のニッケルモリブデン系複
硼化物サーメット焼結体の製造方法の好ましい態様では
、結合相中におけるTaの含有率が1〜25重量%、N
bの含有率が1〜35重量%となるようにTaおよび/
またはNbの原料を配合する。
A method for producing a sintered cermet in which the hard phase is the Ni, Mo complex boride or the Ni, Mo, W complex boride of the present invention, and the binder phase is mainly Ni, Mo or an alloy consisting of Ni, Mo, and W. , Ta dissolved in the hard phase and the binder phase
And/or as a raw material for Nb, Ta powder, Nb powder, T
It is characterized by using one or more types of powder selected from a-8 alloy powder, Nb-8 alloy powder, Ta-Ni alloy powder, and Nb-Ni alloy powder. In a preferred embodiment of the method for producing a nickel-molybdenum-based complex boride cermet sintered body of the present invention, the content of Ta in the binder phase is 1 to 25% by weight, N
Ta and/or so that the content of b is 1 to 35% by weight.
Alternatively, a raw material for Nb is blended.

即ち本発明は、Ni、Mo複硼化物(MoJi B2)
またはNi、Mo、W複硼化物 ((MO+−Jx)J
iBz)を硬質相とし、結合相が主としてNi、Moあ
るいはNi、Mo、Wからなるサーメット焼結体におい
て、硬質相及び結合相中にTa、Nbの中から選ばれる
1種類以上の元素を固溶せしめることにより得られる高
強度、高硬度、高靭性で耐熱衝撃性にすぐれ、緻密かつ
焼結性の良好なサーメット焼結体を提供するものである
That is, the present invention provides Ni, Mo complex boride (MoJi B2)
or Ni, Mo, W complex boride ((MO+-Jx)J
iBz) as a hard phase and a binder phase mainly composed of Ni, Mo or Ni, Mo, and W, in which one or more elements selected from Ta and Nb are solidified in the hard phase and binder phase. The object of the present invention is to provide a cermet sintered body which is obtained by melting and has high strength, high hardness, high toughness, excellent thermal shock resistance, and is dense and has good sinterability.

本発明のサーメット焼結体を得るには、例えばMoB、
 WB、 Mo、 Niの各粉末及びTa粉、Nb粉、
l’a−8合金粉、Nb−8合金粉、Ta−Ni合金粉
、Nb−Ni合金粉の中から選ばれる1種類以上の粉末
を秤量し、回転ボールミルや振動ボールミル等を用いて
、エタノール等の有機溶媒中で混合粉砕し、乾燥後、金
型ブレスやラバープレス等を用いて加圧成形し、通常は
真空中等の減圧雰囲気中において、110(1℃〜15
00℃程度の温度で焼結する。用いる原料粉末は必ずし
も上記のMoB粉、WB粉、MO粉、Ni粉の形である
必要はなく、例えばN1−8合金粉とMO粉、W粉及び
Ni粉との組合せ、あるいは予めアトマイズ法やその他
の方法で合成したMO2NIB2粉末や (Mo+−J
x)JiBz粉末とNi粉末、Mo粉末等との組合せ、
更にはNiMo、 W等の単体の金属粉末とB粉末の組
合せ等でもよ(、これらの組合せの原料粉末にTa粉、
Nb粉、Ta−B粉、Nb−B粉、Ta−Ni粉、Nb
−Ni粉の中から選ばれる1種類以上の粉末を所定量配
合すればよい。−船釣にこれ等の原料粉末は出来る限り
純度が高く微細である方が優れた特性を有するサーメッ
ト焼結体を得る上で有利である事は言うまでもない。
In order to obtain the cermet sintered body of the present invention, for example, MoB,
WB, Mo, Ni powder, Ta powder, Nb powder,
One or more types of powder selected from l'a-8 alloy powder, Nb-8 alloy powder, Ta-Ni alloy powder, and Nb-Ni alloy powder are weighed, and ethanol is added using a rotary ball mill, vibrating ball mill, etc. After drying, the powder is mixed and pulverized in an organic solvent such as the
It is sintered at a temperature of about 00°C. The raw material powder used does not necessarily have to be in the form of the above-mentioned MoB powder, WB powder, MO powder, or Ni powder. MO2NIB2 powder synthesized by other methods and (Mo+-J
x) Combination of JiBz powder, Ni powder, Mo powder, etc.
Furthermore, it is also possible to use a combination of single metal powder such as NiMo, W, etc. and B powder (Ta powder, Ta powder,
Nb powder, Ta-B powder, Nb-B powder, Ta-Ni powder, Nb
- A predetermined amount of one or more types of powder selected from Ni powder may be blended. - It goes without saying that it is advantageous for these raw material powders for boat fishing to be as pure and fine as possible in order to obtain a cermet sintered body with excellent properties.

これ等原料を用いた成形体を焼結する際、昇温過程で成
形体中の各成分が反応してM3B2(Mは主としてMo
、NiあるいはMo、 W、 Niでありこれに固溶す
る副成分としてTaおよび/またはNbを含む)タイプ
の複硼化物を形成し、次にこの複硼化物とNi、Moあ
るいはNi、Mo、Wを主成分とし副成分とし、Taま
たは/およびNbを含有する残りの相が共晶反応を起し
液相を生ずる。成形体はこの液相焼結により相対密度が
ほぼ100%の緻密な焼結体となる。本発明によるサー
メット焼結体では、先行発明によるサーメット焼結体の
ように、窒化物を添加していないので、先行発明による
サーメット焼結体にみられた、窒化物の一部分が分解し
て発生する窒素ガスを原因とする気孔の形成もなく、緻
密で特性の優れたサーメット焼結体となり、特に焼結体
の肉厚が30mmを超えても、内部まで緻密な焼結体と
なる。
When sintering a molded body using these raw materials, each component in the molded body reacts during the temperature rising process, resulting in M3B2 (M is mainly Mo).
, Ni or Mo, W, Ni containing Ta and/or Nb as a solid solution subcomponent) type complex boride is formed, and then this complex boride and Ni, Mo or Ni, Mo, The remaining phase containing W as the main component and subcomponents and Ta and/or Nb undergoes a eutectic reaction to produce a liquid phase. Through this liquid phase sintering, the compact becomes a dense sintered body with a relative density of approximately 100%. In the cermet sintered body according to the present invention, unlike the cermet sintered body according to the prior invention, nitrides are not added. There is no formation of pores caused by nitrogen gas, resulting in a cermet sintered body that is dense and has excellent properties.In particular, even if the thickness of the sintered body exceeds 30 mm, the sintered body is dense to the inside.

本発明において、結合相及び硬質相中に固溶させる金属
元素としてTaおよび/またはNbを選ぶのは、Taや
Nbが結合相中に固溶するときの固溶強化能が大きく、
焼結体の強度向上に寄与する効果が大きいためである。
In the present invention, Ta and/or Nb are selected as the metal elements to be dissolved in the binder phase and the hard phase because they have a large solid solution strengthening ability when Ta and Nb are dissolved in the binder phase.
This is because it has a large effect of contributing to improving the strength of the sintered body.

次に固溶させるTaやNbの供給原料としてTa粉、N
b粉、Ta−B粉、Nb−B粉、Ta−Ni粉、Nb−
Ni粉の中から選ばれる1種類以上の粉末を選ぶ理由L
′i、これらの原料がMoB、 WB、 Ni、 Mo
等の他の原料粉末と比較的反応しやすく、結合相や硬質
相中に溶は込みやすいこと、および先行発明で用いられ
た窒化物と異なり焼結時に気孔の原因となるようなガス
の放出が少ないことなどが挙げられる。
Next, Ta powder and Nb are used as raw materials for solid solution of Ta and Nb.
b powder, Ta-B powder, Nb-B powder, Ta-Ni powder, Nb-
Reasons for choosing one or more types of Ni powder
'i, these raw materials are MoB, WB, Ni, Mo
It is relatively easy to react with other raw material powders such as, and easily penetrates into the binder phase and hard phase, and unlike the nitride used in the prior invention, it releases gas that causes pores during sintering. For example, there are few

結合相中でのTaおよび/またはNbの含有量を各々1
〜25重量%、1〜35重量%とするのは、これらの量
より含有量が少ないと強度向上効果が充分得られず、ま
たこれらの量より含有量が多いと逆に強度の低下が認め
られるためである。
The content of Ta and/or Nb in the bonded phase is 1
~25% by weight and 1 to 35% by weight because if the content is less than these amounts, the strength improvement effect will not be obtained sufficiently, and if the content is more than these amounts, a decrease in strength will be observed. This is so that you can be saved.

得られる焼結体の物性から見て、結合相中でのTaおよ
び/またはNbの含有率は各々5〜20重量%、3〜1
0重量%とするのがより好ましい。
In view of the physical properties of the obtained sintered body, the content of Ta and/or Nb in the binder phase is 5 to 20% by weight and 3 to 1% by weight, respectively.
More preferably, it is 0% by weight.

更に好ましくは、TaやNbと同時に結合相中に含有さ
れるMoあるいはMOとWの合計量を10〜35重量%
とすると、Taおよび/またはNbによる固溶強化の効
果がより高まり、強度や靭性が更に向上する。
More preferably, the total amount of Mo or MO and W contained in the binder phase at the same time as Ta and Nb is 10 to 35% by weight.
In this case, the effect of solid solution strengthening by Ta and/or Nb is further enhanced, and the strength and toughness are further improved.

原料中に配合されたMoとWは、本発明の複硼化物サー
メット焼結体では、先ず優先的に複硼化物の生成に利用
され、余剰のMOとWが結合相中に固溶するという傾向
を有している。結合相中にMoとWが10〜35重量%
固溶されている場合、MoとWの好ましい固溶割合はM
oが70〜95重量%、Wが5〜30重量%である。複
硼化物サーメット焼結体中のWの含有量を余りに増すこ
とは、焼結体の比重を大きくすることになり、この点か
らはWの含有量は余り多くないほうが良い。
In the complex boride cermet sintered body of the present invention, Mo and W blended in the raw materials are first used preferentially for the production of complex boride, and excess MO and W are solid-solved in the binder phase. It has a tendency. 10-35% by weight of Mo and W in the binder phase
In the case of solid solution, the preferable solid solution ratio of Mo and W is M
O is 70 to 95% by weight, and W is 5 to 30% by weight. Excessively increasing the W content in the complex boride cermet sintered body increases the specific gravity of the sintered body, and from this point of view, it is better that the W content is not too large.

焼結体中に占める結合相の割合を5〜70重量%とする
のは、結合相の量が5重量%より少ないと強度や靭性、
特に靭性の低下が著しくなるためであり、また結合相の
割合が70重量%を越えると硬度の低下が大きくなるた
めである。
The reason why the proportion of the binder phase in the sintered body is set to 5 to 70% by weight is that if the amount of the binder phase is less than 5% by weight, the strength and toughness will deteriorate.
This is because the decrease in toughness becomes particularly significant, and when the proportion of the binder phase exceeds 70% by weight, the decrease in hardness becomes large.

本発明による複硼化物ザーメットの焼成は、好ましくは
10−”torr以下の真空中で行う。このことは焼結
の初期において粉末に吸着されてぃるガス成分等の放出
に都合が良(、緻密な焼結体で得易い他、アルゴンなど
のガスを消費しない点でも好ましいためである。
The sintering of the complex boride cermet according to the present invention is preferably carried out in a vacuum of 10-'' torr or less. This is because it is easy to obtain a dense sintered body and is also preferable because it does not consume gas such as argon.

[実施例] 以下、実施例により本発明を更に詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例I MoB粉末(B含有量1O13%、平均粒径4.5μm
)47重量%、WB粉末(B含有量5.5%、平均粒径
3.5μm)8重量%、MO粉末(純度99.9%、平
均粒径0.8μrrl)7重量%、Ni粉末(純度99
.6%、平均粒径2.8μm)33重量%、Ta粉末(
純度99.7%、平均粒径15μm)5重量%を秤量し
て合わせ、振動ミルを用いてエタノール媒体中で24時
間混合粉砕した。スラリーを取り出して減圧下で乾燥後
2 ton/cm2の圧力で静水圧プレス成形を行い、
これを約10−”torrの真空中に於いて1275℃
の温度で1時間焼成し50mmX50mmX 50no
nの立方体形状の焼結体を得た。得られた焼結体の相対
密度は99.9%であった。この焼結体の中央部から3
 mmX 3 mmX 30mmの曲げ試験片を切出し
、室温における3点曲げ強度を測定したところ195k
g/mm”であった。また、焼結体の中央部から切り出
した3 X 3 X 30mmの試験片でシェブロンノ
ツチ法により破壊靭性値を測定したところ、18MN/
m””であり、ビッカース硬さは1000kg/mm”
であった。
Example I MoB powder (B content 1O13%, average particle size 4.5 μm
) 47% by weight, WB powder (B content 5.5%, average particle size 3.5μm) 8% by weight, MO powder (purity 99.9%, average particle size 0.8μrrl) 7% by weight, Ni powder ( Purity 99
.. 6%, average particle size 2.8 μm) 33% by weight, Ta powder (
5% by weight (purity 99.7%, average particle size 15 μm) were weighed and combined, and mixed and ground for 24 hours in an ethanol medium using a vibration mill. The slurry was taken out, dried under reduced pressure, and then subjected to isostatic press molding at a pressure of 2 ton/cm2.
This was heated to 1275°C in a vacuum of about 10-”torr.
Bake for 1 hour at a temperature of 50 mm x 50 mm x 50 no.
A cubic-shaped sintered body of n was obtained. The relative density of the obtained sintered body was 99.9%. 3 from the center of this sintered body
A bending test piece measuring 3 mm x 3 mm x 30 mm was cut out and its 3-point bending strength at room temperature was measured to be 195k.
When the fracture toughness value was measured using the chevron notch method using a 3 x 3 x 30 mm test piece cut out from the center of the sintered body, it was found to be 18 MN/mm.
m"" and Vickers hardness is 1000 kg/mm"
Met.

実施例2〜16、比較例1〜5 TaやNbの供給原料の種類及び配合量を変え、焼結体
の寸法以外の処方については実施例1と同様の条件で焼
結体を作製して特性を調べたところ、第2表に示す結果
を得た。また、用いた原料粉末の組成と平均粒径を第1
表にまとめて示した。
Examples 2 to 16, Comparative Examples 1 to 5 Sintered bodies were produced under the same conditions as Example 1, except for the dimensions of the sintered body, with the types and blending amounts of Ta and Nb feedstocks changed. When the properties were investigated, the results shown in Table 2 were obtained. In addition, the composition and average particle size of the raw material powder used were
They are summarized in the table.

実施例1〜16はTaやNbの供給原料としてTaやN
bの窒化物を使用していないことにより、50mmX 
50mmX 50mmの厚肉ブロックを焼結しても内部
に気孔が残留せず、相対密度はいずれの焼結体も99.
9%以上となり、これら焼結体の中央部から切り出した
試験片について強度、硬度および靭性を測定した所いず
れも高い値が得られた。
In Examples 1 to 16, Ta and Nb were used as feed materials for Ta and Nb.
By not using nitride of b, 50mmX
Even when a thick block of 50 mm x 50 mm is sintered, no pores remain inside, and the relative density of each sintered body is 99.
The strength, hardness, and toughness of test pieces cut out from the center of these sintered bodies were measured and high values were obtained.

比較例1はTaやNbを結合相中に含有しない試料であ
る。この場合の相対密度は999%以上であり、中央部
まで緻密に焼結されているが、強度、硬度、靭性の測定
値はいずれも低い値を示した。
Comparative Example 1 is a sample that does not contain Ta or Nb in the binder phase. In this case, the relative density was 999% or more, and the material was densely sintered to the center, but the measured values of strength, hardness, and toughness all showed low values.

比較例2及び3はTaNの形でTaを添加した試料の薄
肉品と厚肉品の特性を示しているが、比較例2の薄肉品
の場合と比べると比較例3の厚肉品の強度、硬度、靭性
の差が著しいことがわかる。比較例4はNbN0形でN
bを添加した試料であるが、相対密度が低(十分な強度
、硬度、靭性が得られていない。
Comparative Examples 2 and 3 show the characteristics of thin-walled products and thick-walled products of samples with Ta added in the form of TaN, but the strength of the thick-walled product of Comparative Example 3 is lower than that of the thin-walled product of Comparative Example 2. It can be seen that there are significant differences in hardness and toughness. Comparative example 4 is NbN0 type
Although this is a sample to which b is added, the relative density is low (sufficient strength, hardness, and toughness are not obtained).

比較例5は、結合層中のNbの重量%を多(した場合で
あるが曲げ強度と靭性が相対的に小さくなっている。
In Comparative Example 5, although the weight percentage of Nb in the bonding layer was increased, the bending strength and toughness were relatively low.

以上の様に本発明のニッケルモリブデン系複硼化物サー
メット焼結体では、肉厚が30mm以上ある焼結体の場
合にも、窒化物の形でTaやNbを添加した焼結体(先
行発明による焼結体)と比較して焼結体中央部での気孔
の残留がなく均質であり、高い強度と硬度及び靭性を保
有している。したがってアルミニウムの押出し成形用ダ
イスやアルミニウムのダイカスト成形用金型等の金型類
など、大型で厚肉の素材を必要としさらに高強度、高硬
度、高靭性が要求される用途に於いて優れた性能と耐久
性のある材料を提供するものであり、その産業上の利用
効果は多大である。
As described above, in the nickel-molybdenum complex boride cermet sintered body of the present invention, even in the case of a sintered body with a wall thickness of 30 mm or more, a sintered body to which Ta or Nb is added in the form of nitride (prior invention The sintered body is homogeneous with no residual pores in the center, and has high strength, hardness, and toughness. Therefore, it is excellent in applications that require large, thick-walled materials and require high strength, hardness, and toughness, such as aluminum extrusion molding dies and aluminum die-casting molds. It provides a material with high performance and durability, and its industrial application effects are significant.

Claims (7)

【特許請求の範囲】[Claims] (1)Ni、Mo複硼化物またはNi、Mo、W複硼化
物を硬質相とし、結合相が主としてNi、MoまたはN
i、Mo、Wからなる合金であり、硬質相および結合相
中にTaおよび/またはNbを固溶しており、かつ緻密
に焼結されていることを特徴とするニッケルモリブデン
系複硼化物サー メット焼結体。
(1) The hard phase is Ni, Mo complex boride or Ni, Mo, W complex boride, and the binder phase is mainly Ni, Mo or N.
A nickel-molybdenum complex boride cermet, which is an alloy consisting of i, Mo, and W, has Ta and/or Nb dissolved in the hard phase and binder phase, and is densely sintered. Sintered body.
(2)請求項1において、結合相中におけるTaの含有
率が1〜25重量%、Nbの含有率が1〜35重量%で
あるニッケルモリブデン系複硼化物サーメット焼結体。
(2) The nickel-molybdenum complex boride cermet sintered body according to claim 1, wherein the content of Ta in the binder phase is 1 to 25% by weight and the content of Nb is 1 to 35% by weight.
(3)請求項2において、結合相中におけるTaの含有
率が5〜20重量%、Nbの含有率が3〜10重量%で
あるニッケルモリブデン系複硼化物サーメット焼結体。
(3) The nickel-molybdenum complex boride cermet sintered body according to claim 2, wherein the content of Ta in the binder phase is 5 to 20% by weight and the content of Nb is 3 to 10% by weight.
(4)請求項1〜3のいずれか1つにおいて、焼結体中
の結合相が5〜70重量%であるニッケルモリブデン系
複硼化物サーメット焼結 体。
(4) The nickel-molybdenum complex boride cermet sintered body according to any one of claims 1 to 3, wherein the binder phase in the sintered body is 5 to 70% by weight.
(5)請求項1〜4のいずれか1つにおいて、焼結体の
肉厚が30mm以上であるニッケルモリブデン系複硼化
物サーメット焼結体。
(5) The nickel-molybdenum complex boride cermet sintered body according to any one of claims 1 to 4, wherein the sintered body has a wall thickness of 30 mm or more.
(6)Ni、Mo複硼化物またはNi、Mo、W複硼化
物を硬質相とし、結合相が主としてNi、MoまたはN
i、Mo、Wからなる合金であるサーメットの焼結体を
製造するに際し、硬質相および結合相中に固溶させるT
aおよび/またはNbの原料として、Ta粉、Nb粉、
Ta−B合金粉、Nb−B合金粉、Ta−Ni合金粉お
よびNb−Ni合金粉から選ばれる一種以上の粉末を用
いることを特徴とするニッケルモリブデン系複硼化物サ
ーメット焼結体の製造方法。
(6) Ni, Mo complex boride or Ni, Mo, W complex boride is used as a hard phase, and the binder phase is mainly Ni, Mo or N.
When producing a sintered body of cermet, which is an alloy consisting of i, Mo, and W, T is dissolved in the hard phase and the binder phase.
As raw materials for a and/or Nb, Ta powder, Nb powder,
A method for producing a nickel-molybdenum complex boride cermet sintered body, characterized by using one or more powders selected from Ta-B alloy powder, Nb-B alloy powder, Ta-Ni alloy powder, and Nb-Ni alloy powder. .
(7)請求項6において、結合相中におけるTaの含有
率が1〜25重量%、Nbの含有率が1〜35重量%と
なるようにTaおよび/またはNbの原料を配合するニ
ッケルモリブデン系複硼化物サーメット焼結体の製造方
法。
(7) In claim 6, a nickel-molybdenum system in which Ta and/or Nb raw materials are blended so that the Ta content in the binder phase is 1 to 25% by weight and the Nb content is 1 to 35% by weight. A method for manufacturing a complex boride cermet sintered body.
JP2132502A 1990-05-24 1990-05-24 Ni-Mo-W system double boride cermet sintered body and method for producing the same Expired - Fee Related JP2534159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132502A JP2534159B2 (en) 1990-05-24 1990-05-24 Ni-Mo-W system double boride cermet sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132502A JP2534159B2 (en) 1990-05-24 1990-05-24 Ni-Mo-W system double boride cermet sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0428840A true JPH0428840A (en) 1992-01-31
JP2534159B2 JP2534159B2 (en) 1996-09-11

Family

ID=15082866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132502A Expired - Fee Related JP2534159B2 (en) 1990-05-24 1990-05-24 Ni-Mo-W system double boride cermet sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2534159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406825A (en) * 1993-04-28 1995-04-18 Asahi Glass Company Ltd. Forging die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406825A (en) * 1993-04-28 1995-04-18 Asahi Glass Company Ltd. Forging die

Also Published As

Publication number Publication date
JP2534159B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JP5302965B2 (en) Hard powder, method for producing hard powder, and sintered hard alloy
JP2668955B2 (en) Double boride-based sintered body and method for producing the same
WO1997003031A1 (en) Aluminum nitride sinter and process for the production thereof
JPH055152A (en) Hard heat resisting sintered alloy
US4933308A (en) High strength high toughness TiB2 ceramics
JP4149623B2 (en) Double boride hard sintered alloy and screw for resin processing machine using the alloy
JPH0428840A (en) Nickel-molybdenum series double boride cermet sintered body and its manufacture
JPH07502072A (en) Boron carbide-copper cermet and its manufacturing method
US4704372A (en) High-strength molybdenum silicide-based ceramic material and process for producing the same
KR20040091627A (en) Stabilized grain size refractory metal powder metallurgy mill products
CN115927932B (en) High-strength die-casting aluminum alloy and preparation method thereof
JP2967789B2 (en) High corrosion and wear resistant boride-based tungsten-based sintered alloy and method for producing the same
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP2000288714A (en) Production of metal-ceramics composite material
JPH0768600B2 (en) Compound boride sintered body
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JP3662628B2 (en) Silicon nitride-based sintered body and method for producing the same
JPH02258948A (en) Ceramic grain reinforced titanium composite material
JPS61270265A (en) High strength high tougness tib2 base composite sintered body
RU2040509C1 (en) Method of manufacture of product from ceramic composite material
JPS6389464A (en) Antishock tool and manufacture
JPH04263038A (en) Sintered hard alloy
JPS59207874A (en) Silicon nitride hollow body and manufacture
JPS61246334A (en) Manufacture of titanium nitride base sintered dense material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees