JPH04263038A - Sintered hard alloy - Google Patents

Sintered hard alloy

Info

Publication number
JPH04263038A
JPH04263038A JP9163790A JP9163790A JPH04263038A JP H04263038 A JPH04263038 A JP H04263038A JP 9163790 A JP9163790 A JP 9163790A JP 9163790 A JP9163790 A JP 9163790A JP H04263038 A JPH04263038 A JP H04263038A
Authority
JP
Japan
Prior art keywords
solid solution
type solid
tic
weight
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9163790A
Other languages
Japanese (ja)
Other versions
JPH0696751B2 (en
Inventor
Yusuke Iyori
裕介 井寄
Nobuhiko Shima
順彦 島
Norio Bakuhashi
紀雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2091637A priority Critical patent/JPH0696751B2/en
Publication of JPH04263038A publication Critical patent/JPH04263038A/en
Publication of JPH0696751B2 publication Critical patent/JPH0696751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a WC-base sintered hard alloy excellent in impact toughness, thermal toughness, and wear resistance by specifying the composition consisting of WC, B1 type solid solution, and iron group metal and also specifying the composition of the above B1 type solid solution. CONSTITUTION:The WC-base sintered hard alloy can be obtained by providing a composition which consists of, by weight, 98-70% of WC and B1 type solid solution (where the weight ratio of WC to B1 type solid solution is regulated to 97/3 to 70/30), and 2-30% of iron group metal composed essentially of Co. In the above alloy, the above B1 type solid solution is constituted of WC, TiC, and a third hard material M (where M consists of one or more kinds among HfC, ZrC and VC, and HfN, ZrN or Vn is substituted for 5-30% of the above). At this time, the weight proportion of WC-TiC-M is regulated so that it is within the region enclosed with lines connecting four points in figure, that is, A (63.8WC-34.4TiC-1.8M), B (38.8WC-58.1TiC-3.1M), C (21.1WC-31.5TiC-47.4M), and D (42.6WC-23.0TiC-34.4M).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、WCおよびB1型固溶体を主体として、残部
Co等のFe属金属から構成される超硬合金に関するも
のであり、特に、その耐摩耗性および衝撃靭性の改善に
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a cemented carbide mainly composed of WC and B1 type solid solution, with the remainder being Fe metal such as Co. It relates to improving wear resistance and impact toughness.

〔従来技術〕[Prior art]

WCとB1型固溶体(但し、WCとB1型固溶体は、重
量比でWC/B1型固溶体=97/3〜70/30の範
囲)98〜70重量%と、Coを主体とするFe族金属
2〜30重量%とからなる超硬合金は、良く知られてい
るように、耐熱性・耐摩耗性・耐酸化性等に富むため、
鋼、鋳鋼、ステンレス鋼、高マンガン鋼、タグタイル鋳
鋼等の切削工具用に広く用いられている。
WC and B1 type solid solution (however, the weight ratio of WC and B1 type solid solution is in the range of WC/B1 type solid solution = 97/3 to 70/30) 98 to 70% by weight, and Fe group metal 2 mainly composed of Co. As is well known, cemented carbide consisting of ~30% by weight is rich in heat resistance, wear resistance, oxidation resistance, etc.
Widely used for cutting tools such as steel, cast steel, stainless steel, high manganese steel, tag tile cast steel, etc.

従来、この種の超硬合金の硬質相におけるB1型固溶体
は、 ■出発原料として、TiCおよびTaCを使用し、焼結
過程中でWCの一部と固溶させて形成する。
Conventionally, the B1 type solid solution in the hard phase of this type of cemented carbide is formed by: (1) using TiC and TaC as starting materials and dissolving them with a portion of WC during the sintering process;

■出発原料として、D.Cと呼ばれるWCとTiCの固
溶体およびTaCを使用し、焼結過程中にこれらを固溶
させる。
■As a starting material, D. A solid solution of WC and TiC called C and TaC are used, and these are dissolved in solid solution during the sintering process.

■出発原料として、WC−TiC−TaC三元固溶炭化
物を用いる、等の方法が知られている。
(2) A method is known in which a ternary solid solution carbide of WC-TiC-TaC is used as a starting material.

尚、上記D.Cまたは三元固溶炭化物としては、通常、
その中に含まれるWCとTiCが重量比でWC/TiC
=70/30〜97/3のものが用いられる。これはT
iCの耐酸化性、耐摩耗性の特長と、TaCの高温での
強靭性の双方の性質をバランスよく加味させるためであ
る。
In addition, the above D. As C or ternary solid solution carbide, usually,
The weight ratio of WC and TiC contained in it is WC/TiC.
=70/30 to 97/3 is used. This is T
This is to provide a good balance between iC's oxidation resistance and abrasion resistance and TaC's high-temperature toughness.

WCは状態図上必然的にTiC−TaCからなる固溶炭
化物に吸収され、3元固溶炭化物となる。
According to the phase diagram, WC is inevitably absorbed into a solid solution carbide consisting of TiC-TaC, and becomes a ternary solid solution carbide.

また、TaCは非常に高価であるために、その一部をN
bCで置換することも提案されているが、従来知られて
いるNbC置換量は、高々30重量%までであり、それ
以上置換した場合には、合金の諸性質が低下するとされ
ている。
In addition, since TaC is very expensive, some of it is
Substitution with bC has also been proposed, but the conventionally known amount of NbC substitution is at most 30% by weight, and it is believed that if more than that is substituted, various properties of the alloy will deteriorate.

上述したように、従来は硬質相におけるB1型固溶体と
して、WC−TiC−TaC固溶体が主として用いられ
てきたが、最近B1型固溶体としてHfC、VC、ある
いはZrCなどの優れた性質を利用しようとの試みもな
されている。しかしながら、これらの炭化物を実際に超
硬合金に多量に含有させ、実用に供している例はあまり
見当らない。その理由は必ずしも明かでないが、これら
の炭化物を多量に含有するほど機械的靭性あるいは熱的
靭性が劣化することが主な原因と考えられる。すなわち
、元来、B1型固溶体とFe族金属とのぬれ性はWCと
Fe族金属との濡れ性ほど良好ではない。しかるに、B
1型固溶体中に更にHf、Zr、またはVの炭化物や窒
化物を含有させた場合には、より一層ぬれ性が劣化し靭
性をおとすことが経験上知られており、このことが実用
合金として多量に含有できない原因とおもわれる。
As mentioned above, WC-TiC-TaC solid solution has traditionally been mainly used as the B1 type solid solution in the hard phase, but recently there has been an attempt to utilize the excellent properties of HfC, VC, or ZrC as the B1 type solid solution. Attempts have also been made. However, there are not many examples in which a cemented carbide is actually used in a practical manner by incorporating a large amount of these carbides. The reason for this is not necessarily clear, but it is thought that the main reason is that the larger the content of these carbides, the more the mechanical toughness or thermal toughness deteriorates. That is, originally, the wettability between the B1 type solid solution and the Fe group metal is not as good as the wettability between WC and the Fe group metal. However, B
It is known from experience that when carbides or nitrides of Hf, Zr, or V are further contained in the type 1 solid solution, the wettability is further deteriorated and the toughness is reduced. This is thought to be the reason why it cannot be contained in large amounts.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記欠点すなわちB1型固溶体とFe族金属
のぬれ性を改良し、衝撃靭性、熱的靭性、および耐摩耗
性を改善した新規な超硬合金を提供することを目的とす
る。
It is an object of the present invention to provide a new cemented carbide having improved impact toughness, thermal toughness, and wear resistance by improving the above-mentioned drawbacks, that is, the wettability of B1 type solid solution and Fe group metal.

上記目的を達成するために、本発明は、重量%で、WC
およびB1型固溶体を合計で98〜70重量%(但し、
WCとB1型固溶体の含有量は、重量比で、WC/B1
型固溶体の重量比は、97/3〜70/30の範囲内)
と、Coを主体とする2〜30重量%のFe族金属とか
ら構成されるWC基超硬合金において、上記B1型固溶
体が、WCおよびTiCならび第3の硬質物質(但し、
該第3の硬質物質MはHfC、ZrC、またはVCのう
ちの1種または2種以上からなり、その5〜30重量%
がHfN、ZrN、またはVNで置換されたもの)Mか
ら構成され、かつWC−TiC−Mの重量比率を表す第
1図における点A(63.8WC−34.4TiC−1
.8M)、点B(38.8WC−58、1TiC−3.
1M)、点C(21.1WC−31.5TiC−47.
4M)、点D(42.6WC−23.0TiC−34.
4M)の4点を結ぶ線で囲まれた領域内の固溶体である
ことを特徴とするものである。
In order to achieve the above object, the present invention provides that, in weight %, WC
and B1 type solid solution in a total of 98 to 70% by weight (however,
The content of WC and B1 type solid solution is WC/B1 in weight ratio.
The weight ratio of the mold solid solution is within the range of 97/3 to 70/30)
and 2 to 30% by weight of Fe group metal mainly composed of Co, in which the B1 type solid solution contains WC and TiC as well as a third hard substance (however,
The third hard material M is composed of one or more of HfC, ZrC, or VC, and contains 5 to 30% by weight of the third hard material M.
is substituted with HfN, ZrN, or VN), and represents the weight ratio of WC-TiC-M.
.. 8M), point B (38.8WC-58, 1TiC-3.
1M), point C (21.1WC-31.5TiC-47.
4M), point D (42.6WC-23.0TiC-34.
4M) is characterized by being a solid solution within the area surrounded by the line connecting the four points.

本発明の特長は、特に出発原料としてのB1型固溶体に
おけるWCとTiCの重量比を調整することによって、
B1型固溶体のぬれ性を改善したことにある。すなわち
、本発明者等は硬質相におけるB1型固溶体を構成する
成分について、その原料粉末の組成と諸物性との関係、
および原料粉末組成と焼結体の組織の相関等に関して詳
細な検討を加えたところ、次のような驚くべき事実を見
出した。■原料粉末として、D.Cと他の硬質物質を用
いて焼結過程中で固溶させB1型固溶体を構成するより
も、あらかじめ所定成分組成のB1型固溶体を作成し、
これを出発原料として用いる方が、得られる焼結体の硬
さが高く耐摩耗性に優れている。この場合靭性は同等で
ある。■B1型固溶体出発原料中のWCとTiCの含有
比によって靭性は大きく変化し、靭性を最も向上させる
最適範囲が存在する。
The feature of the present invention is that by adjusting the weight ratio of WC and TiC in the B1 type solid solution as a starting material,
The reason is that the wettability of the B1 type solid solution has been improved. That is, the present inventors investigated the relationship between the composition of the raw material powder and various physical properties regarding the components constituting the B1 type solid solution in the hard phase;
After conducting a detailed study on the relationship between the raw material powder composition and the structure of the sintered body, we discovered the following surprising facts. ■As a raw material powder, D. Rather than forming a B1 type solid solution using C and other hard substances during the sintering process, a B1 type solid solution with a predetermined component composition is created in advance,
When this is used as a starting material, the resulting sintered body has higher hardness and excellent wear resistance. In this case the toughness is equivalent. (2) Toughness varies greatly depending on the content ratio of WC and TiC in the B1 type solid solution starting material, and there is an optimum range that improves toughness the most.

上記■の理由については詳細不明であるが、おそらくD
.Cを用いた場合、焼結過程中で他の硬質物質がD.C
に固溶して粒成長が生ずることに一因があるものと思わ
れる。
The details of the reason for ■ above are unknown, but it is probably D.
.. When D.C is used, other hard materials are mixed with D.D. during the sintering process. C
This is thought to be due to the fact that grain growth occurs due to solid solution.

上記■の理由については第2図を用いて満足のいく説明
が出来る。すなわち、通常の超硬合金の焼結温度範囲は
1350℃〜1500℃であるが、この範囲での相境界
は、良く知られているように、WC/TiC=70/3
0の線上と考えて良い。
The reason for the above (2) can be satisfactorily explained using FIG. That is, the sintering temperature range of normal cemented carbide is 1350°C to 1500°C, and as is well known, the phase boundary in this range is WC/TiC=70/3.
You can think of it as being on the 0 line.

そして、B1型固溶体出発原料のWC/TiCの比がこ
の相境界とずれている場合、例えば、第2図上のa点や
c点の組成である場合、焼結過程でa点からb点へ、あ
るいはc点からb点へとB1型固溶体の組成が変化する
ような駆動力(driving force)が働く。
If the WC/TiC ratio of the B1-type solid solution starting material deviates from this phase boundary, for example, if the composition is at point a or c in Fig. A driving force acts such that the composition of the B1 solid solution changes from point c to point b.

しかしながら注目すべきことは、B1型固溶体中でのW
の拡散速度は1350℃〜1500℃において非常に遅
く、このためB1型固溶体が有芯構造となる点である。
However, what is noteworthy is that W in the B1 solid solution
The diffusion rate is very slow at 1350°C to 1500°C, which is why the B1 type solid solution has a cored structure.

すなわち、a点の組成を有するB1型固溶体を出発原料
として用いた場合には、焼結過程でWCを放出してWC
 poor側に移行するため、内部に比べて表層部はW
Cがpoorになる。一方、c点の組成から成るB1型
固溶体を出発原料として用いた場合には、焼結過程に周
辺にあるWC原料粉末粒子との相境界からB1型固溶体
原料粒子中にWCを取り込んでWC rich側に移行
するため、内部に比べて表層前がWC richな固溶
体が形成される。第3図はこのようにして形成される有
芯構造を模式的に示したものである。
That is, when a B1 type solid solution having a composition at point a is used as a starting material, WC is released during the sintering process and the WC
Because it moves to the poor side, the surface layer is W compared to the inside.
C becomes poor. On the other hand, when a B1 type solid solution having a composition at point c is used as a starting material, WC is incorporated into the B1 type solid solution raw material particles from the phase boundary with the surrounding WC raw material powder particles during the sintering process, and the WC rich WC-rich solid solution is formed in front of the surface layer compared to the inside. FIG. 3 schematically shows the cored structure formed in this manner.

相境界よりWCがpoorなB1型固溶体を出発原料と
して用いた場合は、表層部におけるWCが非常に高濃度
と成るためFe族金属との濡れ性は著しく改善される。
When a B1 type solid solution in which WC is poorer than the phase boundary is used as a starting material, the wettability with Fe group metals is significantly improved because the WC in the surface layer becomes very concentrated.

本発明の最も特長とする点は、まさにこの点にある。す
なわち、本発明は、B1型固溶体の表面にWCを析出さ
せることによって、非常に焼結性は悪るいが工具材料と
しては優れた性質を有するZrC、VC、HfC等の炭
化物、あるいはZrN、VN、HfN等の窒化物をB1
型固溶体成分として超硬合金に多量に含有させることを
可能ならしめたものである。
This is the most distinctive feature of the present invention. That is, the present invention precipitates WC on the surface of the B1 type solid solution to produce carbides such as ZrC, VC, and HfC, which have very poor sinterability but excellent properties as tool materials, or ZrN and VN. , B1 nitride such as HfN
This allows it to be contained in a large amount in the cemented carbide as a mold solid solution component.

本発明において、好ましい効果を得るためには、WCと
TiCの含有量に留意することが望ましく、重量比で、
65/35≧WC/TiC≧40/60の範囲とするの
が良い。また、更に良い性質を得るためには60/40
≧WC/TiC≧50/50の範囲とすることが望まし
い。WC/TiC>65/35ではB1型固溶体の表面
にあまりWCが析出せず靭性が改善されず、一方、WC
/TiC<40/60では、WC析出層の厚みがありす
ぎてB1型固溶体の性質が失われるので望ましくないた
めである。
In the present invention, in order to obtain preferable effects, it is desirable to pay attention to the content of WC and TiC, and the content of WC and TiC is preferably
It is preferable that the range is 65/35≧WC/TiC≧40/60. Also, to get even better properties, 60/40
It is desirable that the range be ≧WC/TiC≧50/50. When WC/TiC>65/35, not much WC precipitates on the surface of the B1 type solid solution and the toughness is not improved;
/TiC<40/60 is undesirable because the WC precipitated layer becomes too thick and the B1 type solid solution properties are lost.

また、本発明において、第3の硬質物質Mとして、Zr
C、HfC、VCを選んだ理由は、これらの炭化物はT
iCおよびWCとの固溶体を形成した場合、耐フランク
摩耗性、および耐クレーター摩耗性が著しく向上するた
めである。ZrN、HfN、VN等についても同様の理
由による。特に窒化物の場合には、焼結性が炭化物より
もちらに悪いため、本発明によってはじめて多量に含有
することが可能となったものである。
Further, in the present invention, as the third hard material M, Zr
The reason for choosing C, HfC, and VC is that these carbides are T
This is because when a solid solution is formed with iC and WC, flank wear resistance and crater wear resistance are significantly improved. The same reason applies to ZrN, HfN, VN, etc. Particularly in the case of nitrides, their sinterability is much worse than that of carbides, so the present invention has made it possible for the first time to contain them in large amounts.

また、TiCに対する第3の硬質物質Mの重量比を95
/5≦TiC/第3の硬質物質M≦40/60とした理
由は、第3の硬質物質Mの含有量が95/5未満と少な
い場合には当該第3の硬質物質含有による良い性質が引
き出せないためであり、一方、40/60を超えて含有
させた場合には、Fe族金属とのぬれ性が悪くなるため
である。
Further, the weight ratio of the third hard substance M to TiC is 95
The reason for setting /5≦TiC/third hard substance M≦40/60 is that when the content of the third hard substance M is as small as less than 95/5, the good properties due to the third hard substance contained are This is because it cannot be extracted, and on the other hand, if the content exceeds 40/60, the wettability with the Fe group metal deteriorates.

尚、本発明者等の実験結果によれば、80/20≦第3
の硬質物質M≦50/50では、さらに靭性、耐摩耗性
、耐熱性において望ましい改善効果が得られた。
According to the experimental results of the present inventors, 80/20≦3rd
When the hard material M≦50/50, desirable improvement effects were obtained in toughness, wear resistance, and heat resistance.

本発明において、第3の硬質物質Mにおける窒化物の置
換量を30%以下としたのも上記と同様の理由による。
In the present invention, the substitution amount of nitride in the third hard material M is set to 30% or less for the same reason as above.

また、本発明において、TiN置換量をTiCの50%
以内にした理由は、それ以上置換した場合には機械的性
質が低下し望ましくないためである。
In addition, in the present invention, the amount of TiN substitution is 50% of that of TiC.
The reason for this is that if more than that amount is substituted, the mechanical properties will deteriorate, which is undesirable.

さらに、上記第3の硬質物質MとしてTaCとNbCの
固溶体を用いる場合には、TaCとNbCの重量比が0
.3≦NbC/(TaC+NbC≦0.5の範囲にある
ことが望ましい。その理由は、0.3未満の添加含有で
は経済的効果が薄く、一方、0.5を超える含有では耐
熱衝撃性が悪くなり実用に供し得ないためである。
Furthermore, when using a solid solution of TaC and NbC as the third hard material M, the weight ratio of TaC and NbC is 0.
.. It is desirable that the range is 3≦NbC/(TaC+NbC≦0.5.The reason is that if the added content is less than 0.3, the economic effect will be weak, while if the added content exceeds 0.5, the thermal shock resistance will be poor. This is because it cannot be put to practical use.

〔実施例〕〔Example〕

以下、本発明を実施例により詳述する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 重量比で、76WC−5TiC−3TiN−4TaC−
8Coの組成になるように、第6表に示す原料粉末を用
いて配合した。
Example 1 In terms of weight ratio, 76WC-5TiC-3TiN-4TaC-
The raw material powders shown in Table 6 were blended to have a composition of 8Co.

次に、この配合粉末にプレス助剤としてパラフィンを2
重量%加え有機溶剤中アトライターで6時間混合した。
Next, add 2 paraffin to this mixed powder as a press aid.
% by weight was added and mixed for 6 hours using an attritor in an organic solvent.

これを乾燥後、1t/cm2の圧力にプレス成形した後
1425℃で真空焼結し、試験片を得た。得られた超硬
合金は第2表に示すごとく、SSを使用した本発明によ
る試料2は比較材試料1に比べて靭性がはるかに優れ、
また硬さも高いことがわかる。
After drying, this was press-molded to a pressure of 1 t/cm 2 and vacuum sintered at 1425° C. to obtain a test piece. As shown in Table 2 of the obtained cemented carbide, Sample 2 according to the present invention using SS has far superior toughness compared to Comparative Sample 1.
It can also be seen that the hardness is high.

実施例2 重量比で、71WC−12TiC−7HfC−1HfN
−9Coの組成になるように、第3表に示す原料粉末を
用いて配合した。
Example 2 In terms of weight ratio, 71WC-12TiC-7HfC-1HfN
-9Co was blended using the raw material powders shown in Table 3.

試料3は固溶体を使用しないものであり、試料4はD.
Cを使用したもの、試料5はSSを用いた本発明のもの
である。但し、本実施例におけるSSはWC−TiC−
HfC−HfNの4元固溶体である。
Sample 3 does not use a solid solution, and sample 4 uses D.
Sample 5 is a sample of the present invention using SS. However, SS in this example is WC-TiC-
It is a quaternary solid solution of HfC-HfN.

この配合粉末から実施例1と同様の方法を用いて試料を
作成し、諸物性を調査した。その結果を第4表に示す。
Samples were prepared from this blended powder using the same method as in Example 1, and various physical properties were investigated. The results are shown in Table 4.

第4表から明らかなごとくSSを使用した本発明による
試料5は硬さ、抗折力ともに従来材より優れていること
がわかる。
As is clear from Table 4, Sample 5 according to the present invention using SS is superior to conventional materials in both hardness and transverse rupture strength.

実施例3 重量%で、第5表に示す組成の合金となるよう原料を配
合し、実施例1と同様な方法により試料を作成した。
Example 3 A sample was prepared in the same manner as in Example 1 by blending raw materials so as to form an alloy having the composition shown in Table 5 in terms of weight percent.

ただし、試料No.6、8、10、及び12は第6表に
示す組成の固溶炭窒化物を用いて配合した。但し、6、
8、10、及び12に用いた固溶体炭窒化物は、いずれ
もWC/TiC=55/45、TiC/M=60/40
のものである。また、第6表中の数値はいずれも重量%
であるが、重量比は100%に換算していない。また第
7表に抗折力と硬さを示す。
However, sample No. Nos. 6, 8, 10, and 12 were blended using solid solution carbonitrides having the compositions shown in Table 6. However, 6.
The solid solution carbonitrides used in Nos. 8, 10, and 12 were all WC/TiC=55/45 and TiC/M=60/40.
belongs to. In addition, all values in Table 6 are weight%.
However, the weight ratio is not converted to 100%. Table 7 also shows transverse rupture strength and hardness.

この表から、本発明による試料6、8、10、12のも
のは、他の従来の試料に比べて優れた抗折力を有する事
がわかる。このように本発明材は優れた靭性を示すこと
がわかる。
From this table, it can be seen that Samples 6, 8, 10, and 12 according to the present invention have superior transverse rupture strength compared to other conventional samples. It can thus be seen that the material of the present invention exhibits excellent toughness.

実施例4 重量%で、第8表に示す組成の合金となるよう原料を配
合し、実施例1と同様な方法により試料を作成した。但
し、試料No.14、16、18、20及び22は第9
表に示す固溶体炭窒化物を用いて配合したものである。
Example 4 A sample was prepared in the same manner as in Example 1 by blending raw materials so as to form an alloy having the composition shown in Table 8 in terms of weight percent. However, sample no. 14, 16, 18, 20 and 22 are the 9th
It is formulated using the solid solution carbonitride shown in the table.

但し、14、16、18、20及び22に用いた固溶体
炭窒化物は、いずれもWC/TiC=50/50、Ti
C/M=60/40のものである。
However, the solid solution carbonitrides used in Nos. 14, 16, 18, 20, and 22 were all WC/TiC=50/50, Ti
C/M=60/40.

また、第11表中の数値はいずれも重量%であるが、重
量比は100%に換算していない。
In addition, although all the values in Table 11 are weight %, the weight ratios are not converted to 100%.

これらの試料の抗折力と硬さを第15表に示す。Table 15 shows the transverse rupture strength and hardness of these samples.

この表から、本発明による試料22、24、26、28
および30のものは、他の従来の試料に比べて優れた抗
折力を有する事がわかる。
From this table, samples 22, 24, 26, 28 according to the invention
It can be seen that specimens with 30 and 30 have superior transverse rupture strength compared to other conventional samples.

以上詳述したように、本発明は出発原料としてB1型固
溶体を使用し、特に固溶体中のWCとTiCの比を調整
することにより、焼結過程中においてB1型固溶体表面
上にFe族金属との濡れ性の良いWCを析出させ、それ
によって、従来、添加量が限られていたZr、Hf、V
の炭化物あるいは炭窒化物を多量に添加することを可能
ならしめて著しい靭性、耐摩耗性の向上をみたものであ
る。
As detailed above, the present invention uses a B1 type solid solution as a starting material, and by particularly adjusting the ratio of WC and TiC in the solid solution, Fe group metals are formed on the surface of the B1 type solid solution during the sintering process. By depositing WC with good wettability, Zr, Hf, and V
By making it possible to add a large amount of carbides or carbonitrides, the toughness and wear resistance were significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

 第1図はWC−TiC−第3硬質物質Mの重量比率を
表す図、第2図はB1型固溶体の焼結過程中での組成の
変化を示した図、第3図はB1型固溶体の有芯組織を示
す図、第4図は出発原料のWC/TiC比の変化を示す
図である。
Figure 1 is a diagram showing the weight ratio of WC-TiC-third hard material M, Figure 2 is a diagram showing changes in composition during the sintering process of B1 type solid solution, and Figure 3 is a diagram showing the composition change during the sintering process of B1 type solid solution. FIG. 4 is a diagram showing a cored structure and a diagram showing changes in the WC/TiC ratio of the starting material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】WCおよびB1型固溶体(但し、WC/B
1型固溶体の重量比は、97/3〜70/30)98〜
70重量%と、Coを主体とするFe族金属2〜30重
量%から構成されるWC基超硬合金において、上記B1
型固溶体が、WC、TiC、および第3の硬質物質M(
但し、該第3の硬質物質MはHfC、ZrC、またはV
Cのうちの1種または2種以上からなり、その5〜30
重量%がHfN、ZrN、またはVNで置換されたもの
)から構成され、かつWC−TiC−Mの重量比率を表
す第1図における点A(63.8WC−34.4TiC
−1.8M)、点B(38.8WC−58.1TiC−
3.1M)、点C(21.1WC−31.5TiC−4
7.4M)、点D(42.6WC−23.0TiC−3
4.4M)の4点を結ぶ線で囲まれた領域内の固溶体で
あることを特徴とするWC基超硬合金。
Claim 1: WC and B1 type solid solution (however, WC/B
The weight ratio of type 1 solid solution is 97/3 to 70/30) 98 to
In the WC-based cemented carbide composed of 70% by weight and 2 to 30% by weight of Fe group metal mainly composed of Co, the above B1
The type solid solution is composed of WC, TiC, and a third hard substance M (
However, the third hard material M is HfC, ZrC, or V
Consisting of one or more of C, 5 to 30 of them
Point A in FIG. 1 (63.8WC-34.4TiC
-1.8M), point B (38.8WC-58.1TiC-
3.1M), point C (21.1WC-31.5TiC-4
7.4M), point D (42.6WC-23.0TiC-3
A WC-based cemented carbide characterized by being a solid solution within a region surrounded by a line connecting four points of 4.4M).
【請求項2】上記TiCの5〜50%をTiNで置換し
たことを特徴とする特許請求の範囲第1項記載のWC基
超硬合金。
2. The WC-based cemented carbide according to claim 1, wherein 5 to 50% of the TiC is replaced with TiN.
【請求項3】上記第3の硬質物質Mが、TaCとNbC
の固溶炭化物であり、かつTaCとNbCの重量比が0
.3≦NbC/(TaC+NbC≦0.5であることを
特徴とする特許請求の範囲第1項記載のWC基超硬合金
3. The third hard material M is TaC and NbC.
solid solution carbide, and the weight ratio of TaC and NbC is 0.
.. WC-based cemented carbide according to claim 1, characterized in that 3≦NbC/(TaC+NbC≦0.5).
JP2091637A 1990-04-06 1990-04-06 Cemented carbide Expired - Lifetime JPH0696751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2091637A JPH0696751B2 (en) 1990-04-06 1990-04-06 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2091637A JPH0696751B2 (en) 1990-04-06 1990-04-06 Cemented carbide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9706181A Division JPS57210950A (en) 1981-06-23 1981-06-23 Sintered hard alloy

Publications (2)

Publication Number Publication Date
JPH04263038A true JPH04263038A (en) 1992-09-18
JPH0696751B2 JPH0696751B2 (en) 1994-11-30

Family

ID=14032048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2091637A Expired - Lifetime JPH0696751B2 (en) 1990-04-06 1990-04-06 Cemented carbide

Country Status (1)

Country Link
JP (1) JPH0696751B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277873A (en) * 2002-03-22 2003-10-02 Kyocera Corp Supper hard alloy
DE10244955C5 (en) 2001-09-26 2021-12-23 Kyocera Corp. Cemented carbide, use of a cemented carbide and method for making a cemented carbide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124607A (en) * 1975-04-25 1976-10-30 Mitsubishi Metal Corp A high-toughness-wc-based super alloy
JPS6214025A (en) * 1985-07-11 1987-01-22 Komatsu Ltd Pay-load weight measuring apparatus for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124607A (en) * 1975-04-25 1976-10-30 Mitsubishi Metal Corp A high-toughness-wc-based super alloy
JPS6214025A (en) * 1985-07-11 1987-01-22 Komatsu Ltd Pay-load weight measuring apparatus for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10244955C5 (en) 2001-09-26 2021-12-23 Kyocera Corp. Cemented carbide, use of a cemented carbide and method for making a cemented carbide
JP2003277873A (en) * 2002-03-22 2003-10-02 Kyocera Corp Supper hard alloy

Also Published As

Publication number Publication date
JPH0696751B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US3490901A (en) Method of producing a titanium carbide-containing hard metallic composition of high toughness
US4857108A (en) Cemented carbonitride alloy with improved plastic deformation resistance
US5330553A (en) Sintered carbonitride alloy with highly alloyed binder phase
JPS5823457B2 (en) Tough cermet
JPH055152A (en) Hard heat resisting sintered alloy
JP2578679B2 (en) TiCN-based cermet
JPH04263038A (en) Sintered hard alloy
JPS613853A (en) Manufacture of sintered hard alloy
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
KR100388891B1 (en) Method of producing a titanium carbonitride-based cermet having no materials of tantalum-contained component
JP3232599B2 (en) High hardness cemented carbide
JPS6334217B2 (en)
JPS5823455B2 (en) sintered hard alloy
JP2578677B2 (en) TiCN-based cermet
KR100485994B1 (en) Ti(CN)-based cermets containing high nitrogen and manufacturing method thereof
JP2578678B2 (en) TiCN-based cermet
JPS6214025B2 (en)
JPH0471986B2 (en)
JPS58189345A (en) Manufacture of tough cermet
KR100453720B1 (en) Ti(CN)-based cermets containing Zr or Hf components and manufacturing method thereof
JP2797048B2 (en) Melt erosion resistant material
JPS6056428B2 (en) Coated cemented carbide member and its manufacturing method
JPS6356299B2 (en)
JPS5952950B2 (en) Tungsten carbide-based cemented carbide with excellent high-temperature properties
JPH05279783A (en) Cutting tool made of ti-based carbonitride boride base cermet excellent in wear resistance