JPH0428774A - Electrically conductive coating - Google Patents

Electrically conductive coating

Info

Publication number
JPH0428774A
JPH0428774A JP13345790A JP13345790A JPH0428774A JP H0428774 A JPH0428774 A JP H0428774A JP 13345790 A JP13345790 A JP 13345790A JP 13345790 A JP13345790 A JP 13345790A JP H0428774 A JPH0428774 A JP H0428774A
Authority
JP
Japan
Prior art keywords
copper
paint
parts
conductive paint
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13345790A
Other languages
Japanese (ja)
Inventor
Kinichi Shirakawa
白川 欣一
Kazunori Miura
三浦 一憲
Arihiro Sakai
在広 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rengo Co Ltd
Kanae Chemicals Co Ltd
Original Assignee
Rengo Co Ltd
Kanae Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rengo Co Ltd, Kanae Chemicals Co Ltd filed Critical Rengo Co Ltd
Priority to JP13345790A priority Critical patent/JPH0428774A/en
Publication of JPH0428774A publication Critical patent/JPH0428774A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject coating consisting essentially of an aqueous resin emulsion, copper (alloy) powder and phosphonic acids without deteriorating electric conductivity for a long period. CONSTITUTION:The objective coating is composed of an aqueous resin emulsion (preferably having 5-35 deg.C glass transition temperature, e.g. an acrylic resin), copper and/or copper alloy powder (having preferably 60-450 mesh particle size distribution and 0.7-2.3g/cc apparent density), phosphonic acids (preferably triphosphonic acid or alkali metal salts thereof) and preferably a silane coupling agent, a titanate coupling agent, a chelating agent and/or an ascorbic acid derivative.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性塗料に関し、更に詳しくは導電性が長期
間にわたり低下しない導電性塗料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a conductive paint, and more particularly to a conductive paint whose conductivity does not decrease over a long period of time.

〔従来の技術〕[Conventional technology]

最近、コンピューター、ワードプロセッサーVTRなど
の電子機器の発達には目覚ましいものがある。これらの
電子機器には精密な回路素子が組み込まれている。この
電子回路素子は高集積化により微電流で作動するように
なり、外部からの電磁波により破壊されたり、誤動作が
発生しやすくなっている。電子回路素子を従来のごとく
金属製の筐体に収容していた時には、この筐体が回路素
子を電磁波障害から保護する機能も有していたので、特
に問題となることはなかった。
Recently, the development of electronic devices such as computers and word processors and VTRs has been remarkable. These electronic devices incorporate precision circuit elements. Due to the high degree of integration, these electronic circuit elements operate with a small current, making them more likely to be destroyed by external electromagnetic waves or to malfunction. When electronic circuit elements were conventionally housed in metal casings, this casing also had the function of protecting the circuit elements from electromagnetic interference, so there was no particular problem.

しかるに電子機器の筐体は、軽量化や量産性等の要望に
よりプラスチック成形品が代替され、これが−膜化して
きている。プラスチック製筐体は金属製のそれと異なり
、電気絶縁性であるために、電磁波を容易に透過させ、
内部に収納されている電子回路素子を外部の電磁波から
十分に保護することはできない。
However, the housings of electronic devices are being replaced by plastic molded products due to demands for weight reduction and mass production, and these are now becoming film-based. Unlike metal casings, plastic casings are electrically insulating, allowing electromagnetic waves to easily pass through them.
Electronic circuit elements housed inside cannot be sufficiently protected from external electromagnetic waves.

従来、プラスチックに導電性を付与するために種々の方
法が考案され、それによって電磁波障害を防止しようと
する試みが多くなされてきている。
Conventionally, various methods have been devised to impart conductivity to plastics, and many attempts have been made to prevent electromagnetic interference by using these methods.

導電性塗料をプラスチック製筐体の内面に塗布し電磁波
障害から電子部品を保護しようとするのもその一つの方
法である。
One method is to apply conductive paint to the inner surface of plastic housings to protect electronic components from electromagnetic interference.

導電性塗料は、塗料ビヒクル中に金属粉末等の導電性微
粉末を混入せしめることにより乾燥塗膜が導電性を発揮
するものが主流である。金属粉末には、金、銀、ニッケ
ル、銅等が一般的に用いられている。金、銀等の貴金属
は優れた導電性を有し、且つ酸化に対して安定で長期間
にわたり安定した導電性を保持する点で好ましいが、一
方高価であるため、電磁波シールド用塗料としてはコス
トが高くなり実用化が困難である。そのため、貴金属以
外のニッケル、銅等の安価な金属粉末を用いた塗料が多
用されている。
The mainstream of conductive paints is one in which a dried paint film exhibits conductivity by mixing conductive fine powder such as metal powder into a paint vehicle. Gold, silver, nickel, copper, etc. are commonly used as metal powders. Precious metals such as gold and silver are preferable because they have excellent conductivity, are stable against oxidation, and maintain stable conductivity over a long period of time, but they are also expensive, so they are expensive as paints for electromagnetic shielding. is difficult to put into practical use. Therefore, paints using inexpensive metal powders other than noble metals, such as nickel and copper, are often used.

これらの金属粉末を用いた導電性塗料はその殆どが溶剤
系塗料であり、僅かにニッケルタイプの水性導電塗料(
特開昭63−6069号)が知られているにすぎない。
Most of the conductive paints using these metal powders are solvent-based paints, with only a few nickel-type water-based conductive paints (
JP-A No. 63-6069) is only known.

しかし有機溶剤の毒性、火災の危険性、大気中への有機
溶剤の揮散による環境汚染の問題、プラスチックの溶剤
亀裂あるいは塗装機器を水で洗浄できるなどの利点を考
えると、水性導電性塗料の出現が強く望まれている。ま
た金属粉末として、ニッケルと銅を比較すると導電性、
コスト等の点から、銅の方が多くの点で有利である。以
上のような状況を鑑み、本発明者らは、先に銅タイプ水
性導電塗料を提案した。(特願平1−298187号)
However, considering the toxicity of organic solvents, the risk of fire, the problems of environmental pollution due to the volatilization of organic solvents into the atmosphere, the problems caused by solvent cracks in plastics, and the advantages of being able to clean painting equipment with water, water-based conductive paints emerged. is strongly desired. Also, when comparing nickel and copper as metal powders, their conductivity and
Copper is advantageous in many respects, including cost. In view of the above situation, the present inventors first proposed a copper type water-based conductive paint. (Patent Application No. 1-298187)
.

この新しく開発された銅タイプ水性導電塗料は優れた貯
蔵安定性、塗膜の常温での安定した導電性を有し、極め
て優れたものであるが、塗膜が高温下に置かれた場合、
経時的に導電性が劣化し、その電磁波シールド効果が不
十分になる傾向が生じる場合がある。
This newly developed copper type water-based conductive paint has excellent storage stability and stable conductivity of the paint film at room temperature, and is extremely excellent. However, when the paint film is exposed to high temperatures,
There are cases where the conductivity deteriorates over time and the electromagnetic shielding effect tends to become insufficient.

溶剤系の銅タイプ導電塗料に於いては、長期にわたり導
電性を安定させる目的で、アントラセン及びその誘導体
(特開昭56−163165号)、有機チタネート(特
開昭56−36553号)、アミノフェノール誘導体及
びフェニレンジアミン誘導体(特開昭58−22516
8号)その他種々の化合物を配合させたものが提案され
ている。
Solvent-based copper-type conductive paints use anthracene and its derivatives (Japanese Unexamined Patent Publication No. 56-163165), organic titanates (Japanese Unexamined Patent Publication No. 56-36553), and aminophenols in order to stabilize conductivity over a long period of time. Derivatives and phenylenediamine derivatives (JP-A-58-22516
No. 8) Products containing various other compounds have been proposed.

しかし、これらの化合物を先に本発明者が提案した銅タ
イプ水性導電塗料に適用すること自体従来全く考えられ
ないことである。即ち本来溶剤系と水系という根本的な
差異があり、特に導電性については溶剤と水とでは全く
その挙動が異なるため、同じような効果は全く考えられ
ないものである。
However, it is completely unthinkable to apply these compounds to the copper type water-based conductive paint proposed by the present inventor. That is, there is a fundamental difference between solvent-based and water-based systems, and in particular, the behavior of solvents and water is completely different when it comes to conductivity, so similar effects cannot be expected at all.

そして実際に本発明が適用してみたところ、ゲル化を生
したり、必ずしも長期にわたり安定した導電性を保持す
るものではないことが見出された。
When the present invention was actually applied, it was found that gelation occurred and that stable conductivity was not necessarily maintained over a long period of time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明が解決しようとする課題は、上記本発明者が既に
開発した銅タイプ水性導電塗料を更に一段と改良するこ
と、即ち高温に於いても導電性と電磁波シールド効果を
低下させることなく、塗膜の安定した導電性を有する導
電性塗料を提供することにある。
The problem to be solved by the present invention is to further improve the copper-type water-based conductive paint that the inventor has already developed. An object of the present invention is to provide a conductive paint having stable conductivity.

[課題を解決するための手段] 本発明者らは上記の如き課題を解決すべく鋭意研究を重
ねた結果、ホスホン酸類を配合せしめた銅タイプ水性導
電塗料が、高温の環境下に於いても安定した導電性を有
することを見出し本発明に至った。
[Means for Solving the Problems] As a result of extensive research by the present inventors in order to solve the above-mentioned problems, we have found that a copper-type water-based conductive paint containing phosphonic acids can be used even in high-temperature environments. It was discovered that it has stable conductivity, leading to the present invention.

即ち本発明の導電性塗料は、水性樹脂エマルジョン、銅
及び/又は銅合金の粉末を主体とする塗料組成物に、ホ
スホン酸類を含有させてなることを特徴とするものであ
る。
That is, the conductive paint of the present invention is characterized by containing phosphonic acids in a paint composition mainly consisting of an aqueous resin emulsion, copper and/or copper alloy powder.

〔発明の作用並びに構成〕[Function and structure of the invention]

本発明に於いて使用する銅粉としては所謂通常電解銅粉
と称せ、られるものが最も適している。
The most suitable copper powder for use in the present invention is so-called ordinary electrolytic copper powder.

般に銅粉としてボールミル、クラッシャーなどの粉砕機
でつくられる粉砕銅粉あるいはアトマイズ銅粉などがよ
く知られているが、粉砕銅粉は見掛密度が小さく粒度分
布がやや粗く、粉砕の際に油脂が表面に付着しているこ
とが多く、本発明に於いては好ましい銅粉とは言い難い
。またアトマイズ銅粉は形状が球形で粒度分布が電解銅
粉に比して粗いため、やはり好ましいものではない。こ
れに対し本発明で好ましく使用される電解銅粉はその形
状は樹枝状であり、粒度分布は通常60〜450メツシ
ユであり、見掛密度は0.7〜2.3 g/cc程度で
あって、油脂等の付着の少ないものである。尚本発明に
於いては上記物性を全て満足するものであれば電解銅粉
以外の銅粉でも好ましく使用できる。銅粉の使用量は乾
燥塗膜中に40〜95重量%好ましくは60〜90重量
%である。
Generally speaking, pulverized copper powder or atomized copper powder, which is produced using a pulverizer such as a ball mill or crusher, is well known as copper powder, but pulverized copper powder has a small apparent density and a slightly rough particle size distribution, and is Since oil and fat often adhere to the surface, it is difficult to say that it is a preferable copper powder in the present invention. Furthermore, atomized copper powder is spherical in shape and has a rougher particle size distribution than electrolytic copper powder, so it is not preferable. On the other hand, the electrolytic copper powder preferably used in the present invention has a dendritic shape, a particle size distribution of usually 60 to 450 mesh, and an apparent density of about 0.7 to 2.3 g/cc. Therefore, it has less adhesion of oils and fats. In the present invention, copper powder other than electrolytic copper powder can be preferably used as long as it satisfies all the above-mentioned physical properties. The amount of copper powder used is 40 to 95% by weight, preferably 60 to 90% by weight in the dry coating film.

銅合金としては、銅とその他の金属との合金であり、そ
の他の金属の割合が40重量%以下好ましくは20重量
%以下である。その他の金属としては、例えば亜鉛、錫
、鉛、ニッケル、アルミニウム等が好ましいものとして
例示できる。
The copper alloy is an alloy of copper and other metals, and the proportion of other metals is 40% by weight or less, preferably 20% by weight or less. Preferred examples of other metals include zinc, tin, lead, nickel, and aluminum.

本発明に於ける水性樹脂エマルジョン(以下、エマルジ
ョンと記す)は、アクリル樹脂、酢酸ビニル樹脂、エチ
レン−酢酸ビニル共重合樹脂、塩化ビニル樹脂、塩化ビ
ニル−塩化ビニリデン共重合樹脂などの樹脂エマルジョ
ンが挙げられるが、これら樹脂のガラス転移温度が−5
°C以上好ましくは5〜35℃のものを使用するのが好
ましい。これらのエマルジョンの調製は、最初から七ツ
マ−を乳化重合してエマルジョンとなしてもよく、或い
は一旦重合体とし、これを再度エマルジョンとなしでも
よい。更に、エマルジョンに乳化剤、特にノニオン性乳
化剤を含有せしめることが好ましい。エマルジョン中の
樹脂の濃度は30〜60重量%程貴重ある。
Examples of the aqueous resin emulsion (hereinafter referred to as emulsion) in the present invention include resin emulsions such as acrylic resin, vinyl acetate resin, ethylene-vinyl acetate copolymer resin, vinyl chloride resin, and vinyl chloride-vinylidene chloride copolymer resin. However, the glass transition temperature of these resins is -5
It is preferable to use a temperature of 5°C to 35°C or higher. These emulsions may be prepared by emulsion polymerization of the hexamer from the beginning to form an emulsion, or by forming a polymer once and then forming it into an emulsion again. Furthermore, it is preferable that the emulsion contains an emulsifier, particularly a nonionic emulsifier. The concentration of resin in the emulsion is as high as 30-60% by weight.

本発明に於けるホスホン酸類としては、ジホスホン酸類
、トリホスホン酸類、テトラホスホン酸類、ペンタホス
ホン酸類及びこれらのナトリウム等のアルカリ金属塩が
挙げられ、好適にはアミノトリメチレンホスホン酸、ア
ミノトリエチリデンホスホン酸、アミノトリエチレンホ
スホン酸等のトリホスホン酸類及びこれらのアルカリ金
属塩が使用される。更に好ましくはアミノトリメチレン
ホスホン酸及びこれのアルカリ金属塩である。アルカリ
金属塩のアルカリ金属としては、ナトリウム、カリウム
等を代表例として例示できるが、特にカリウムが好まし
い。
Examples of the phosphonic acids in the present invention include diphosphonic acids, triphosphonic acids, tetraphosphonic acids, pentaphosphonic acids, and alkali metal salts thereof such as sodium, preferably aminotrimethylenephosphonic acid and aminotriethylidenephosphonic acid. , triphosphonic acids such as aminotriethylenephosphonic acid, and alkali metal salts thereof. More preferred are aminotrimethylenephosphonic acid and its alkali metal salts. Representative examples of the alkali metal of the alkali metal salt include sodium and potassium, with potassium being particularly preferred.

これらホスホン酸類は銅粉の酸化を防止することにより
導電性維持に寄与するものであると考えられる。またこ
れらは水に溶解する化合物であるため水性塗料に好まし
く配合させることができる。
These phosphonic acids are thought to contribute to maintaining conductivity by preventing oxidation of the copper powder. Furthermore, since these are compounds that dissolve in water, they can be preferably incorporated into water-based paints.

これらホスホン酸類の配合量は銅及び/又は銅合金の粉
末100重量部に対し0.1〜10重量部、好ましくは
0.5〜5重量部である。配合量が0.1重量部未満で
は十分な効果が得られず、また10重量部を越えると効
果は増大せず、かえって塗膜が脆くなったり、導電性以
外の性能が低下してしまうので好ましくない。
The blending amount of these phosphonic acids is 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, per 100 parts by weight of copper and/or copper alloy powder. If the amount is less than 0.1 part by weight, a sufficient effect will not be obtained, and if it exceeds 10 parts by weight, the effect will not increase, and on the contrary, the coating film will become brittle and properties other than conductivity will deteriorate. Undesirable.

本発明の導電性塗料には、更にシランカップリング剤、
チタネートカップリング剤、キレート形成剤、アスコル
ビン酸誘導体よりなる群から選ばれた少なくとも1種の
化合物を配合せしめることが好ましい。これらの化合物
は上記ホスホン酸類と協働して、塗膜形成時の導電性を
更に向上させると共に、高温環境下での経時安定性を増
大させる。
The conductive paint of the present invention further includes a silane coupling agent,
It is preferable to incorporate at least one compound selected from the group consisting of titanate coupling agents, chelate forming agents, and ascorbic acid derivatives. These compounds work together with the above-mentioned phosphonic acids to further improve the conductivity during coating film formation and to increase the stability over time in a high temperature environment.

シランカップリング剤としてはT−グリコシドキシプロ
ビルトリメトキシシラン、ビニルメトキシシラン、γ−
(2−アミノエチル)アミノプロピルメチルジメトキシ
シラ−ン等が挙げられる。
As the silane coupling agent, T-glycosidoxypropyltrimethoxysilane, vinylmethoxysilane, γ-
Examples include (2-aminoethyl)aminopropylmethyldimethoxysilane.

チタネートカップリング剤としてはイソプロピルトリイ
ソステアロイルチタネート、ビス(ジオクチルピロホス
フェート)オキシアセテートチタネート、イソプロピル
トリ(N−アミノエチル−アミノエチル)チタネート等
が挙げられる。
Examples of the titanate coupling agent include isopropyltriisostearoyltitanate, bis(dioctylpyrophosphate)oxyacetate titanate, isopropyltri(N-aminoethyl-aminoethyl)titanate, and the like.

キレート形成剤としては、キレート形成能のある化合物
が使用され、例えばエチレンジアミン四酢酸、ジエチレ
ントリアミン五酢酸及びこれらのアルカリ金属塩又はア
ルカリ土類金属塩等が挙げられる。
As the chelate forming agent, a compound capable of forming a chelate is used, and examples thereof include ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and alkali metal salts or alkaline earth metal salts thereof.

アスコルビン酸誘i 体としては、し=アスコルビン酸
リン酸エステル、L−アスコルビン酸−2=硫酸・ジナ
トリウム三水塩等が挙げられる。
Examples of ascorbic acid derivatives include ascorbic acid phosphate, L-ascorbic acid-2 sulfuric acid disodium trihydrate, and the like.

これらの化合物の配合量は銅及び/又は銅合金の粉末1
00重量部に対し0.1〜5重量部、好ましくは0.5
〜3重量部である。配合量が0.1重量部未満では十分
な効果が得られず、また5重量部を越えると効果は増大
せず、かえって塗膜が脆くなったり、導電性以外の性能
が低下してしまうので好ましくない。
The blending amount of these compounds is copper and/or copper alloy powder 1
0.1 to 5 parts by weight, preferably 0.5 parts by weight
~3 parts by weight. If the amount is less than 0.1 part by weight, a sufficient effect will not be obtained, and if it exceeds 5 parts by weight, the effect will not increase and the coating film will become brittle or properties other than conductivity will deteriorate. Undesirable.

本発明の導電性塗料を製造するに際し、これらの化合物
の添加方法は特に制限されるものではなく、これらを予
め使用するエマルジョンに添加混合しておき、しかる後
に銅及び/又は銅合金の粉末を加えて混合する方法や、
銅及び/又は銅合金の粉末とエマルジョンを混合し一旦
塗料とした後にこれらの化合物を添加混合する方法、及
び銅及び/又は銅合金の粉末とエマルジョンとこれらの
化合物とを同時に混合する方法等が採用できる。
When producing the conductive paint of the present invention, the method of adding these compounds is not particularly limited; they are added and mixed in advance to the emulsion to be used, and then copper and/or copper alloy powder is added. How to add and mix,
There are two methods: a method of mixing copper and/or copper alloy powder and an emulsion and adding and mixing these compounds after forming a paint, and a method of simultaneously mixing copper and/or copper alloy powder, an emulsion, and these compounds. Can be adopted.

本発明の導電性塗料には、顔料分散剤、増粘剤、可塑剤
及び消泡剤等通常一般の水性塗料に添加する各種の添加
剤を配合させることができる。また一般に知られている
酸化防止剤を適宜添加使用できる。さらに、ガラス転移
温度の高い樹脂エマルジョンを使用した場合に、常温で
も十分造膜しうるように、通常の水性塗料に使用される
成膜助剤を広範に使用できる。成膜助剤としては、トル
エンやキシレン等の芳香族炭化水素、酢酸ブチル等のエ
ステル類、セロソルブアセテート、ブチルカルピトール
アセテート等のエチレングリコールまたはジエチレング
リコールのモノ及びジアルキルエーテル誘導体が例示で
きる。
The conductive paint of the present invention can contain various additives that are usually added to general water-based paints, such as pigment dispersants, thickeners, plasticizers, and antifoaming agents. Additionally, generally known antioxidants can be added as appropriate. Furthermore, when a resin emulsion with a high glass transition temperature is used, a wide range of film-forming aids used in ordinary water-based paints can be used so that film formation can be achieved even at room temperature. Examples of film-forming aids include aromatic hydrocarbons such as toluene and xylene, esters such as butyl acetate, and mono- and dialkyl ether derivatives of ethylene glycol or diethylene glycol such as cellosolve acetate and butylcarpitol acetate.

このようにして得られた本発明の導電性塗料はスプレー
塗装、ハケ塗り、ロールコータ−やスクリーン印刷等の
適宜な方法で塗布又は印刷すれば導電性が高く、しかも
長期間にわたり導電性が安定である塗膜を容易に得るこ
とができる。また水性であるために、水で希釈もできる
し塗装機器の水洗も可能である。更には有機溶剤による
環境汚染や中毒、火災の危険もないなどの特徴がある。
The thus obtained conductive paint of the present invention has high conductivity when applied or printed by an appropriate method such as spray painting, brush painting, roll coater or screen printing, and has stable conductivity for a long period of time. A coating film can be easily obtained. Also, since it is water-based, it can be diluted with water and painting equipment can be washed with water. Furthermore, it has the characteristics that there is no risk of environmental pollution, poisoning, or fire caused by organic solvents.

また本発明塗料は塗料としてばかりでなく、電磁波シー
ルド用成形物としても使用することができる。
Furthermore, the paint of the present invention can be used not only as a paint but also as a molded product for electromagnetic shielding.

[実 施 例] 以下実施例により本発明を具体的に説明するが、本発明
はこのような実施例に限定されるものではない。尚これ
らの例に記載の「部」は重量部を意味する。
[Examples] The present invention will be specifically described below with reference to Examples, but the present invention is not limited to these Examples. Note that "parts" in these examples mean parts by weight.

実施例1 水15部にポリオキシエチレンノニルフェニルエーテル
0.3部、アミノトリメチレンホスホン酸2部を溶解し
、アクリル酸エステルとメタクリル酸エステルを主体と
するアクリル系エマルジョン32部に加え均一になるま
で撹拌混合した。更に、ブチルセロソルブ5部を加えて
均一になるまで撹拌した。このものに電解銅粉(福田金
属箔粉工業■のrCE−]15J、粒度250〜350
メソシユ)46部を撹拌下に加え、最後に消泡剤0.2
部を加えて、導電性塗料を得た。この塗料を評価するた
めアート紙に乾燥膜厚が60μmになるように塗布し、
20°C・65%RHで一晩放置した後、初期表面抵抗
を測定した。その後70°Cの熱風循環乾燥機中で10
00時間及び2000時間曝露した後、表面抵抗を測定
した。結果を第1表に示す。
Example 1 Dissolve 0.3 parts of polyoxyethylene nonyl phenyl ether and 2 parts of aminotrimethylene phosphonic acid in 15 parts of water, add to 32 parts of an acrylic emulsion mainly composed of acrylic esters and methacrylic esters, and mix until homogeneous. Stir and mix until combined. Furthermore, 5 parts of butyl cellosolve was added and stirred until uniform. Electrolytic copper powder (Fukuda Metal Foil Powder Industry ■ rCE-) 15J, particle size 250-350
Add 46 parts of anti-foaming agent under stirring, and finally add 0.2 parts of antifoaming agent.
A conductive paint was obtained. To evaluate this paint, it was applied to art paper to a dry film thickness of 60 μm.
After standing overnight at 20°C and 65% RH, the initial surface resistance was measured. Then in a hot air circulation dryer at 70°C for 10
Surface resistance was measured after 00 hours and 2000 hours of exposure. The results are shown in Table 1.

実施例2 実施例1に於いてアミノトリメチレンホスホン酸2部の
ところを1部とし、更にT−グリコシドキシプロビルト
リメトキシシランを0.5部加え、その他は実施例1と
同様にして導電性塗料を得た。
Example 2 In Example 1, 2 parts of aminotrimethylenephosphonic acid was replaced with 1 part, and 0.5 part of T-glycosidoxypropyltrimethoxysilane was added, and the other conditions were the same as in Example 1 to prepare a conductive material. Obtained sex paint.

この塗料の評価を実施例1と同様にして行った。This paint was evaluated in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

実施例3 実施例2に於けるγ−グリコシドキシプロビルトリメト
キシシラン0.5部とブチロセロソルブ5部を加えず、
変わりにイソプロピルトリイソステアロイルチタネート
0.5部を溶解したブチルカルピトールアセテート5部
を加えて、その他は実施例1と同様にして導電性塗料を
得た。この塗料の評価を実施例1と同様にして行った。
Example 3 Without adding 0.5 parts of γ-glycosidoxyprobyltrimethoxysilane and 5 parts of butyrocellosolve in Example 2,
A conductive coating material was obtained in the same manner as in Example 1 except that 5 parts of butylcarpitol acetate in which 0.5 parts of isopropyl triisostearoyl titanate was dissolved was added instead. This paint was evaluated in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

実施例4 実施例1に於いて更にエチレンジアミン四酢酸:ナトリ
ウム1部を用いて、その他は実施例1と同様にして導電
性塗料を得た。この塗料の評価を実施例1と同様にして
行った。結果を第1表に示す。
Example 4 A conductive paint was obtained in the same manner as in Example 1 except that 1 part of sodium ethylenediaminetetraacetic acid was further used. This paint was evaluated in the same manner as in Example 1. The results are shown in Table 1.

実施例5 実施例1に於いてアミノトリメチレンホスホン酸2部の
ところを0.5部とし、更にL−アスコルビン酸−2−
硫酸・ジナトリウムニ水塩0.5部加え、その他は実施
例1と同様にして導電性塗料を得た。
Example 5 In Example 1, 2 parts of aminotrimethylenephosphonic acid was changed to 0.5 parts, and L-ascorbic acid-2-
A conductive paint was obtained in the same manner as in Example 1 except that 0.5 part of sulfuric acid/disodium dihydrate was added.

この塗料の評価を実施例1と同様にして行った。This paint was evaluated in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

比較例1 実施例1に於けるアミノトリメチレンホスホン酸を用い
ず、その他は実施例1と同様にして導電性塗料を得た。
Comparative Example 1 A conductive paint was obtained in the same manner as in Example 1 except that aminotrimethylenephosphonic acid was not used.

この塗料の評価を実施例1と同様にして行った。結果を
第1表に示す。
This paint was evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例2 実施例2に於けるアミノトリメチレンホスホン酸を用い
ず、T−グリコシドキシプロピルトリメトキシシランを
2部加え、その他は実施例1と同様にして導電性塗料を
得た。この塗料の評価を実施例1と同様にして行った。
Comparative Example 2 A conductive coating material was obtained in the same manner as in Example 1 except that 2 parts of T-glycosidoxypropyltrimethoxysilane was added without using the aminotrimethylenephosphonic acid in Example 2. This paint was evaluated in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

比較例3 実施例3に於けるアミノトリメチレンホスホン酸を用い
ず、イソプロピルトリイソステアロイルチタネート2部
加え、その他は実施例1と同様にして導電性塗料を得た
。この塗料の評価を実施例1と同様にして行った。結果
を第1表に示す。
Comparative Example 3 A conductive coating material was obtained in the same manner as in Example 1 except that 2 parts of isopropyl triisostearoyl titanate was added instead of using the aminotrimethylenephosphonic acid in Example 3. This paint was evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例4 実施例Iに於けるアミノトリメチレンホスホン酸とブチ
ロセロソルブを用いず、T−グリコシドキシプロピルト
リメトキシシラン1部とイソプロピルトリイソステアロ
イルチタネート2部を溶解したブチルカルピトールアセ
テート5部を加え、その他は実施例1と同様にして導電
性塗料を得た。
Comparative Example 4 Instead of using aminotrimethylenephosphonic acid and butyrocellosolve in Example I, 5 parts of butylcarpitol acetate in which 1 part of T-glycosidoxypropyltrimethoxysilane and 2 parts of isopropyl triisostearoyl titanate were dissolved was used. In addition, a conductive paint was obtained in the same manner as in Example 1 except for the above.

この塗料の評価を実施例1と同様にして行った。This paint was evaluated in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

比較例5 実施例4に於けるアミノトリメチレンホスホン酸を用い
ず、その他は実施例1と同様にして導電性塗料を得た。
Comparative Example 5 A conductive paint was obtained in the same manner as in Example 1 except that the aminotrimethylenephosphonic acid in Example 4 was not used.

この塗料の評価を実施例1と同様にして行った。結果を
第1表に示す。
This paint was evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例6 実施例5に於けるアミノトリメチレンホスホン酸を用い
ず、その他は実施例1と同様にして導電性塗料を得た。
Comparative Example 6 A conductive paint was obtained in the same manner as in Example 1 except that the aminotrimethylenephosphonic acid in Example 5 was not used.

この塗料の評価を実施例1と同様にして行った。結果を
第1表に示す。
This paint was evaluated in the same manner as in Example 1. The results are shown in Table 1.

Claims (3)

【特許請求の範囲】[Claims] (1)水性樹脂エマルジョン、銅及び/又は銅合金の粉
末、及びホスホン酸類を主成分としてなることを特徴と
する導電性塗料。
(1) A conductive paint characterized by being mainly composed of an aqueous resin emulsion, copper and/or copper alloy powder, and phosphonic acids.
(2)ホスホン酸類がトリホスホン酸及びこれらのアル
カリ金属塩の少なくとも1種である請求項(1)に記載
の導電性塗料。
(2) The conductive paint according to claim (1), wherein the phosphonic acid is at least one of triphosphonic acid and an alkali metal salt thereof.
(3)更にシランカップリング剤、チタネートカップリ
ング剤、キレート形成剤及びアスコルビン酸誘導体より
なる群から選ばれた少なくとも1種を配合してなる請求
項(1)に記載の導電性塗料。
(3) The conductive paint according to claim (1), further comprising at least one selected from the group consisting of a silane coupling agent, a titanate coupling agent, a chelate forming agent, and an ascorbic acid derivative.
JP13345790A 1990-05-23 1990-05-23 Electrically conductive coating Pending JPH0428774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13345790A JPH0428774A (en) 1990-05-23 1990-05-23 Electrically conductive coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13345790A JPH0428774A (en) 1990-05-23 1990-05-23 Electrically conductive coating

Publications (1)

Publication Number Publication Date
JPH0428774A true JPH0428774A (en) 1992-01-31

Family

ID=15105230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13345790A Pending JPH0428774A (en) 1990-05-23 1990-05-23 Electrically conductive coating

Country Status (1)

Country Link
JP (1) JPH0428774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022210A (en) * 2017-05-16 2017-08-08 福建泉州市铭源通电子有限公司 Intercommunication casing external coating with high temperature protection and anti-electromagnetic-radiation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107022210A (en) * 2017-05-16 2017-08-08 福建泉州市铭源通电子有限公司 Intercommunication casing external coating with high temperature protection and anti-electromagnetic-radiation

Similar Documents

Publication Publication Date Title
EP0170063B1 (en) Copper-type conductive coating composition
JP2611347B2 (en) Copper-based conductive coating composition
JPS63165457A (en) Electrically conductive resin composition
KR20080090261A (en) Conductive paste and wiring board using same
JPH0428774A (en) Electrically conductive coating
JP5881613B2 (en) Conductive composition and method for forming conductive film
JP3360389B2 (en) Conductive composition
US4180419A (en) Solder flux
JP7145869B2 (en) Fine silver particle dispersion
JPH05247383A (en) Electrically conductive coating
JP2876022B2 (en) Conductive paint
JPH05230400A (en) Electrically conductive paste and electrically conductive coating film
JPH05217422A (en) Conductive paste and conductive coating
JPH0358393B2 (en)
EP0292190B1 (en) Electrically conductive coating composition
JPH04146972A (en) Conductive paste composition
JP3144300B2 (en) Conductive composition for forming conductive coating
KR20040055103A (en) A Conductive Paints Composition
JPH0436903A (en) Copper conductive paste
CN101481555B (en) Aqueous antistatic coating solution composition and preparation thereof
JP3243655B2 (en) Hybrid IC
JPH056592B2 (en)
JPH05314813A (en) Copper paste for conductor circuit and manufacture thereof
JPH1121477A (en) Electrically conductive paste composition and electronic part using the same
JP2018133223A (en) Conductive paste and method for producing conductive paste