JPH04287678A - Bioreactor - Google Patents

Bioreactor

Info

Publication number
JPH04287678A
JPH04287678A JP5436291A JP5436291A JPH04287678A JP H04287678 A JPH04287678 A JP H04287678A JP 5436291 A JP5436291 A JP 5436291A JP 5436291 A JP5436291 A JP 5436291A JP H04287678 A JPH04287678 A JP H04287678A
Authority
JP
Japan
Prior art keywords
light
bioreactor
culture solution
wavelength
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5436291A
Other languages
Japanese (ja)
Inventor
Moriaki Tsukamoto
守昭 塚本
Isao Sumida
勲 隅田
Hisamichi Inoue
久道 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5436291A priority Critical patent/JPH04287678A/en
Publication of JPH04287678A publication Critical patent/JPH04287678A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • C12M41/10Filtering the incident radiation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To improve solar light utilizing efficiency in a bioreactor in which algae are proliferated. CONSTITUTION:A flow path of culturing liquid is composed of a tubular wavelength converter 7. In an to increase further growth effect, a cold filter 6 is arranged in the upper part of the wavelength converter 7 and a reflecting plate 2 in the lower part thereof and a twist plate 8 in the culturing liquid flow path. Thereby light with wavelength effective for culture of algae among incident solar light into the bioreactor is allowed to impinge in nearly uniform light intensity from whole circumference of the culturing liquid flow path.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、太陽,人工光源等から
の光を利用して藻類等を増殖するバイオリアクタに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bioreactor for growing algae using light from the sun, an artificial light source, or the like.

【0002】0002

【従来の技術】藻類等の植物は光のもとで光合成を行な
い、炭酸同化作用等により種々の有用物質を生産する。 しかし、自然状態における植物の太陽光利用効率は2%
前後と低く、工業化のためにはこの効率を高める必要が
ある。そのため、藻類の培養に最適な条件を設定可能な
バイオリアクタの開発が注目されている。しかし、太陽
光又は人工光などの光源からの光スペクトルは、必ずし
も藻類の培養に最適な光スペクトルではない。従って、
光源からの光スペクトルを藻類の培養に最適な光スペク
トルに近付けることができれば、バイオリアクタの光利
用効率を高めることができる。さらに、バイオリアクタ
では藻類を高密度で培養するため、水中の藻類全体にで
きるだけ均一な光を入射する必要がある。ただし、藻類
の増殖率は太陽からの日射量(〜1kW/m2)より相
当低い光強度(日射量の1/10〜1/3)で飽和する
ので、太陽光を有効に利用するためには飽和光強度程度
に光を効率良く分散して藻類に入射する必要がある。
BACKGROUND OF THE INVENTION Plants such as algae carry out photosynthesis under light and produce various useful substances through carbon dioxide assimilation. However, the sunlight utilization efficiency of plants in their natural state is 2%.
This efficiency is relatively low, and it is necessary to increase this efficiency for industrialization. Therefore, the development of bioreactors that can set optimal conditions for culturing algae is attracting attention. However, the light spectrum from light sources such as sunlight or artificial light is not necessarily the optimal light spectrum for culturing algae. Therefore,
If the light spectrum from the light source can be brought closer to the light spectrum optimal for culturing algae, the light utilization efficiency of the bioreactor can be increased. Furthermore, since algae are cultivated at high density in bioreactors, it is necessary to make light as uniform as possible throughout the algae in the water. However, the growth rate of algae is saturated at a light intensity (1/10 to 1/3 of the solar radiation) that is considerably lower than the solar radiation (~1kW/m2), so in order to effectively utilize sunlight, It is necessary to efficiently disperse the light to a saturation light intensity level before it enters the algae.

【0003】光の波長を変換する機能をもつ物質は、蛍
光体が知られている。すなわち、蛍光体では特定の波長
範囲の光を吸収し、その吸収スペクトルに相当する光よ
り長波長側にスペクトルをもつ光を発光する。この蛍光
体の波長変換機能を利用した太陽電池,集光装置,温室
等が知られている。
Phosphors are known as substances that have the function of converting the wavelength of light. That is, the phosphor absorbs light in a specific wavelength range and emits light having a spectrum on the longer wavelength side than the light corresponding to the absorption spectrum. Solar cells, light concentrators, greenhouses, etc. that utilize the wavelength conversion function of this phosphor are known.

【0004】従来の蛍光体を用いた太陽電池では、特開
昭57−152170号公報に記載のように、蛍光体を
溶解した透明プラスチック(波長変換層)に入射する光
のうち、蛍光体の吸収スペクトルに相当する光をより長
波長の光に変換して、この光を残りの入射光とともに光
学的に接続した太陽電池により電気エネルギに変換する
構造となっていた。これにより、太陽電池に適した波長
成分を増加させて、入射光の電気エネルギへの変換効率
を向上していた。
[0004] In a conventional solar cell using a phosphor, as described in Japanese Patent Laid-Open No. 152170/1982, the phosphor is used as a component of the light incident on the transparent plastic (wavelength conversion layer) in which the phosphor is dissolved. The structure was such that the light corresponding to the absorption spectrum was converted into light with a longer wavelength, and this light, along with the remaining incident light, was converted into electrical energy by an optically connected solar cell. This increases the wavelength components suitable for solar cells and improves the efficiency of converting incident light into electrical energy.

【0005】また、従来の蛍光体を用いた温室装置では
、特開昭61−147056号公報に記載のように、透
明なガラス板の裏面前面に吸収スペクトルに相当する光
以外には透明である波長変換体(蛍光体)の層を設けて
集光板(波長変換層)を構成し、その波長変換層で温室
の屋根を構成していた。これにより、屋根に入射する光
の一部をより長波長の光に変換して波長変換層界面の全
反射を利用して集光し、波長変換層の一部から取り出し
た光を光ファイバ等により伝送して地中蓄熱に利用する
ともに、残りの入射光と波長変換された光のうち全反射
条件を満たさずに温室の内側に入射する光を温室内の植
物に入射させていた。
[0005] In addition, in conventional greenhouse apparatuses using phosphors, as described in Japanese Patent Application Laid-open No. 147056/1982, a transparent glass plate is provided with a transparent plate on the back and front surfaces of the glass plate, which is transparent except for light corresponding to the absorption spectrum. A layer of wavelength converter (phosphor) was provided to constitute a light condensing plate (wavelength conversion layer), and the wavelength conversion layer constituted the roof of the greenhouse. This converts a portion of the light that enters the roof into longer wavelength light, focuses the light using total internal reflection at the wavelength conversion layer interface, and directs the light extracted from a portion of the wavelength conversion layer to an optical fiber, etc. At the same time, among the remaining incident light and the wavelength-converted light, the light that enters the inside of the greenhouse without satisfying the total internal reflection condition is allowed to enter the plants inside the greenhouse.

【0006】[0006]

【発明が解決しようとする課題】従来の蛍光体を用いた
太陽電池の構造では、光の入射方向に面した平板状の波
長変換層の裏面に太陽電池を光学的に接続している。従
って、太陽電池のかわりに藻類を含む培養液に置き換え
るだけでは太陽光および波長変換された光は片面からの
み入射するため、波長変換層の表面近くの藻類にのみ飽
和光強度以上の過剰な光強度で入射する。しかし、その
光は培養液の表面近くで吸収,散乱され、水中に分散し
た大部分の藻類へ入射する光強度は不足する。そのため
、入射した光の一部しか藻類の培養に利用できないとい
う問題がある。
[Problems to be Solved by the Invention] In the structure of a conventional solar cell using a phosphor, the solar cell is optically connected to the back surface of a flat wavelength conversion layer facing the direction of light incidence. Therefore, if you simply replace solar cells with a culture solution containing algae, sunlight and wavelength-converted light will enter from only one side, so the algae near the surface of the wavelength conversion layer will receive excessive light above the saturation light intensity. incident with intensity. However, this light is absorbed and scattered near the surface of the culture solution, and the light intensity that enters most of the algae dispersed in the water is insufficient. Therefore, there is a problem in that only a portion of the incident light can be used for culturing algae.

【0007】従来の蛍光体を用いた温室装置でも従来技
術と同様に、太陽に面した植物にのみ光が入射すること
になり、植物全体にできるだけ均一な光を分散して入射
することは困難であった。また、本従来技術では波長変
換された光を集光することに主眼が置かれている。その
ため、波長変換されなかった光は温室内へ入射するが、
波長変換された光はその一部のみが温室内に入射するに
すぎなかった。
[0007] Even in conventional greenhouse equipment using phosphors, as with the conventional technology, light enters only the plants facing the sun, making it difficult to distribute and enter the light as uniformly as possible over the entire plant. Met. Further, in this prior art, the main focus is on condensing wavelength-converted light. Therefore, the light that has not been wavelength converted enters the greenhouse,
Only a portion of the wavelength-converted light entered the greenhouse.

【0008】従って、本発明の目的は、光源からの光及
びその一部が波長変換された光を水中の藻類全体に過不
足なく効率良く分散して入射させることの可能なバイオ
リアクタを提供することである。
[0008] Therefore, an object of the present invention is to provide a bioreactor that can efficiently disperse and inject light from a light source and light whose wavelength has been partially converted into the entire algae in the water. That's true.

【0009】[0009]

【課題を解決するための手段】光源からの光及びその一
部が波長変換された光を水中の藻類全体に過不足なく効
率良く分散して入射させるため本発明のバイオリアクタ
要素では、透明プラスチック、例えばアクリル樹脂に有
機蛍光体を溶解した管状波長変換体で培養液を取り囲む
ように培養液流路を構成した。さらに性能を向上するた
め、培養液流路内にねじり板を配置した。また、バイオ
リアクタ要素の下側に断面が概略半円状の反射板を配置
し、このバイオリアクタ要素を複数本直列、又は並列に
接続してバイオリアクタを構成した。また、このバイオ
リアクタの太陽光入射側に赤外線反射フィルタを配置し
た。
[Means for Solving the Problems] In order to efficiently disperse and inject light from a light source and a portion of the light whose wavelength has been converted into the entire algae in the water, the bioreactor element of the present invention uses transparent plastic. For example, a culture solution flow path was constructed so as to surround the culture solution with a tubular wavelength converter made of an acrylic resin and an organic phosphor dissolved therein. To further improve performance, a torsion plate was placed inside the culture medium flow path. Further, a reflecting plate having a roughly semicircular cross section was placed below the bioreactor element, and a plurality of bioreactor elements were connected in series or in parallel to form a bioreactor. In addition, an infrared reflection filter was placed on the sunlight incident side of this bioreactor.

【0010】0010

【作用】本発明のバイオリアクタの特徴的な作用,効果
を以下に説明する。
[Function] Characteristic functions and effects of the bioreactor of the present invention will be explained below.

【0011】管状波長変換体の上部に入射した太陽光の
うち蛍光体の吸収スペクトルに相当する光は、波長変換
体内でより長波長の光に変換される。その他の太陽光は
波長変換体を透過して培養液に入射する。波長変換され
た光は等方的に蛍光体より放射され、太陽光入射側の界
面(管状波長変換体の外表面)および培養液との界面(
管状波長変換体の内表面)への入射角の大きさにより、
(1) 太陽光入射側の表面より外部に逃げる光、(2
) 太陽光入射側の界面(表面)で全反射される光、(
3) 波長変換体と培養液との界面を通過して培養液に
入射する光、(4) 波長変換体と培養液との界面で全
反射される光、に分かれる。これらの光のうち(2) 
と(4) は全反射を繰り返して波長変換体内に分散さ
れる。その過程で波長変換体内の微小な欠陥などにより
方向が変わったり、界面の微小な凹凸などにより全反射
条件を満たさなくなった光が界面より出ていく。このと
き、空気,アクリル樹脂(波長変換体の母材),水(培
養液の母材)の屈折率はそれぞれ1.00,1.49,
1.33 であるので、大部分の光は培養液との界面で
先に全反射条件を満たさなくなり、培養液流路に入射す
ることになる。これにより波長変換された光が太陽光が
直接入射しない培養液流路にまで回りこむことができ、
効率良く分散して培養液流路に入射させることが可能と
なる。
Of the sunlight incident on the upper part of the tubular wavelength converter, light corresponding to the absorption spectrum of the phosphor is converted into light with a longer wavelength within the wavelength converter. Other sunlight passes through the wavelength converter and enters the culture solution. The wavelength-converted light is isotropically emitted from the phosphor, and is emitted from the interface on the sunlight incident side (the outer surface of the tubular wavelength converter) and the interface with the culture medium (
Depending on the angle of incidence on the inner surface of the tubular wavelength converter,
(1) Light escaping from the surface on the sunlight incident side, (2
) The light that is totally reflected at the interface (surface) on the sunlight incident side, (
3) Light that passes through the interface between the wavelength converter and the culture solution and enters the culture solution, and (4) Light that is totally reflected at the interface between the wavelength converter and the culture solution. Of these lights (2)
and (4) are repeatedly totally reflected and dispersed within the wavelength converting body. During this process, the direction changes due to minute defects within the wavelength converter, or due to minute irregularities on the interface, light that no longer satisfies the conditions for total reflection exits from the interface. At this time, the refractive indices of air, acrylic resin (base material of the wavelength converter), and water (base material of the culture solution) are 1.00, 1.49, and 1.49, respectively.
1.33, most of the light no longer satisfies the total reflection condition at the interface with the culture solution and enters the culture solution flow path. This allows the wavelength-converted light to reach the culture medium flow path where sunlight does not directly enter.
It becomes possible to efficiently disperse the liquid and make it enter the culture liquid flow path.

【0012】培養液流路内のねじり板は培養液の流れを
撹拌するので、培養液流路の周方向に光の強度分布があ
ったとしても、培養液内の藻類に平等に光を吸収する機
会を与えるのを助ける作用をする。
[0012] Since the torsion plate in the culture solution flow path stirs the flow of the culture solution, even if there is a light intensity distribution in the circumferential direction of the culture solution flow path, the algae in the culture solution absorb light equally. It acts to help give people the opportunity to do something.

【0013】バイオリアクタ要素の下側に配置した断面
が概略半円状の反射板は、太陽光を反射して培養液流路
の下側からも太陽光を入射させるので、培養液流路の周
方向の光強度分布をさらに均一にする。
[0013] The reflector plate, which has a roughly semicircular cross section and is placed below the bioreactor element, reflects sunlight and allows sunlight to enter from the bottom of the culture medium flow path. To make the light intensity distribution in the circumferential direction more uniform.

【0014】バイオリアクタの太陽光入射側に配置した
赤外線反射フィルタは、太陽光から藻類の増殖に不必要
な赤外線を除去する。これにより、培養液が必要以上に
加熱されるのを防ぐ。
[0014] The infrared reflection filter placed on the sunlight incident side of the bioreactor removes infrared rays unnecessary for the growth of algae from sunlight. This prevents the culture solution from being heated more than necessary.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1により説明す
る。図1は本発明のバイオリアクタの平面図である。図
1において、カバーとしてコールドフィルタ6を設けた
ケース5の内部に複数本のバイオリアクタ要素1が並列
に配置され、それぞれのバイオリアクタ要素1の両端は
それぞれ入口ヘッダ4,出口ヘッダ3に接続されている
。また、それぞれのバイオリアクタ要素1の下側には、
それぞれ断面が半円状の反射板2が配置されている。
[Embodiment] An embodiment of the present invention will be explained below with reference to FIG. FIG. 1 is a plan view of the bioreactor of the present invention. In FIG. 1, a plurality of bioreactor elements 1 are arranged in parallel inside a case 5 provided with a cold filter 6 as a cover, and both ends of each bioreactor element 1 are connected to an inlet header 4 and an outlet header 3, respectively. ing. In addition, on the underside of each bioreactor element 1,
Reflection plates 2 each having a semicircular cross section are arranged.

【0016】図2は図1のバイオリアクタのA−A断面
図である。図2において、バイオリアクタ要素1は、円
管状の波長変換体7とその内部に配置されたねじり板8
とで構成され、藻類及びその培養に必要な炭酸ガス等を
含む培養液9が流れる培養液の流路を構成している。円
管状の波長変換体7は、例えば、蛍光体としてRED−
300(商品名)を溶かし込んだアクリル樹脂を、管状
に形成することによって得られる。
FIG. 2 is a sectional view taken along line A-A of the bioreactor shown in FIG. In FIG. 2, the bioreactor element 1 includes a cylindrical wavelength converter 7 and a torsion plate 8 disposed inside the wavelength converter 7.
It constitutes a flow path for a culture solution through which a culture solution 9 containing algae and carbon dioxide gas necessary for culturing the same flows. The cylindrical wavelength converter 7 is made of, for example, RED- as a phosphor.
It is obtained by forming an acrylic resin into which 300 (trade name) is dissolved into a tubular shape.

【0017】以下、本発明の作用を図2を参照して説明
する。バイオリアクタに入射する太陽光の内、藻類の増
殖に不必要な波長700〜800nm以上の光はコール
ドフィルタ6の反射により除去され、可視光のみが透過
する。これにより、バイオリアクタ要素1が不必要に加
熱されるのを防止できる。透過した可視光は、直接、円
管状の波長変換体7に入射するか、又は、反射板2で反
射されて波長変換体7に入射する。これにより、下側か
らも太陽光が入射するので波長変換体7の周方向の光強
度分布を均一に近付ける。しかし、これだけで光強度分
布を均一にすることは困難であり、影になる部分が残る
The operation of the present invention will be explained below with reference to FIG. Of the sunlight that enters the bioreactor, light with a wavelength of 700 to 800 nm or more that is unnecessary for the growth of algae is removed by reflection by the cold filter 6, and only visible light is transmitted. This can prevent the bioreactor element 1 from being heated unnecessarily. The transmitted visible light either directly enters the wavelength converter 7 having a circular tubular shape, or is reflected by the reflector 2 and enters the wavelength converter 7 . As a result, sunlight enters from the lower side as well, so that the light intensity distribution in the circumferential direction of the wavelength converter 7 is made uniform. However, it is difficult to make the light intensity distribution uniform with this alone, and some shadow areas remain.

【0018】管状の波長変換体7に入射した光のうち藻
類増殖への寄与が小さい波長500〜600nmの光は
蛍光体に吸収される。それ以外の光は培養液9に入射す
る。蛍光体に吸収された光は藻類の増殖に有効な波長6
00〜650nmの光に変換されて放射される。この放
射光は等方的に放射され、太陽光入射側の界面(波長変
換体7の外表面)および培養液9との界面(波長変換体
7の内表面)への入射角の大きさにより、(1) 太陽
光入射側の表面より外部に逃げる光、(2) 太陽光入
射側の界面(表面)で全反射される光、(3) 波長変
換体7と培養液9との界面を通過して培養液9に入射す
る光、(4)波長変換体と培養液との界面で全反射され
る光に分かれる。これらの光のうち(2) と(4) 
は全反射を繰り返して波長変換体7内に分散される。そ
の過程で波長変換体7内の微小な欠陥などにより方向が
変わったり、界面の微小な凹凸などにより全反射条件を
満たさなくなった光が界面より出ていく。このとき、空
気,アクリル樹脂(波長変換体7の母材),水(培養液
の母材)の屈折率はそれぞれ1.00,1.49,1.
33 であるので、大部分の光は培養液との界面で先に
全反射条件を満たさなくなり、培養液流路に入射するこ
とになる。これにより波長変換された光が影の部分の波
長変換体部分にまで回りこむので、波長変換体7内の培
養液に入射する光強度分布をさらに均一に近付ける。
Of the light incident on the tubular wavelength converter 7, light with a wavelength of 500 to 600 nm, which has a small contribution to algae growth, is absorbed by the phosphor. The other light enters the culture solution 9. The light absorbed by the phosphor has a wavelength 6 that is effective for algae growth.
It is converted into light with a wavelength of 00 to 650 nm and is emitted. This synchrotron radiation is emitted isotropically, and depends on the size of the incident angle to the interface on the sunlight incident side (the outer surface of the wavelength converter 7) and the interface with the culture solution 9 (the inner surface of the wavelength converter 7). , (1) light escaping to the outside from the surface on the sunlight incident side, (2) light totally reflected at the interface (surface) on the sunlight incident side, (3) the interface between the wavelength converter 7 and the culture solution 9. The light is divided into (4) light that passes through and enters the culture solution 9, and (4) light that is totally reflected at the interface between the wavelength converter and the culture solution. Of these lights (2) and (4)
is repeatedly totally reflected and dispersed within the wavelength converter 7. During this process, the direction of the light changes due to minute defects in the wavelength converter 7, or light that no longer satisfies the total reflection condition due to minute irregularities at the interface exits from the interface. At this time, the refractive indexes of air, acrylic resin (base material of wavelength converter 7), and water (base material of culture solution) are 1.00, 1.49, and 1.00, respectively.
33, most of the light no longer satisfies the total reflection condition at the interface with the culture solution and enters the culture solution flow path. As a result, the wavelength-converted light reaches the shaded wavelength converter portion, so that the light intensity distribution incident on the culture solution in the wavelength converter 7 is made more uniform.

【0019】培養液流路内のねじり板8は培養液の流れ
を撹拌することにより、培養液流路内の藻類に平等に光
を吸収する機会を与えるのを助ける。
The torsion plate 8 in the medium flow path helps to give the algae in the medium flow path an equal opportunity to absorb light by agitating the flow of the medium.

【0020】図3は本発明の他の実施例を示すバイオリ
アクタの断面図である。図3において、コールドフィル
タ26と反射板22の間に配置されたバイオリアクタ要
素21は、楕円管状の波長変換体27とその内部に配置
されたねじり板28とで構成され、藻類及びその培養に
必要な炭酸ガス等を含む培養液29が流れる培養液流路
を構成している。基本的な作用は図2の実施例と同様で
あるが、本実施例では波長変換体27の断面形状を縦長
の楕円状にしている。これにより、波長変換体27の単
位表面積当たりの入射光強度を藻類の培養に必要な程度
に低下させることができるので、太陽光を有効に利用す
ることができる。
FIG. 3 is a sectional view of a bioreactor showing another embodiment of the present invention. In FIG. 3, the bioreactor element 21 disposed between the cold filter 26 and the reflection plate 22 is composed of an elliptical tubular wavelength converter 27 and a torsion plate 28 disposed inside it, and is suitable for algae and its cultivation. It constitutes a culture solution flow path through which a culture solution 29 containing necessary carbon dioxide and the like flows. The basic operation is the same as that of the embodiment shown in FIG. 2, but in this embodiment, the cross-sectional shape of the wavelength converter 27 is a vertically long ellipse. Thereby, the intensity of incident light per unit surface area of the wavelength converter 27 can be reduced to the extent necessary for culturing algae, so that sunlight can be used effectively.

【0021】図4は本発明の他の実施例を示すバイオリ
アクタ要素の断面図である。同図において、ガラスなど
の透明な外管41と内管42により構成した二重管の隙
間に蛍光体を溶解させたアルコール43を充填すること
により、管状の波長変換体37を構成している。培養液
39は、内管42の内側を流れる。これにより、蛍光体
が劣化した場合にも蛍光体を溶解させたアルコール43
を取り替えるだけで良い。
FIG. 4 is a cross-sectional view of a bioreactor element showing another embodiment of the invention. In the figure, a tubular wavelength converter 37 is constructed by filling alcohol 43 in which a phosphor is dissolved into the gap between a double tube made up of a transparent outer tube 41 and an inner tube 42 made of glass or the like. . The culture solution 39 flows inside the inner tube 42 . As a result, even if the phosphor deteriorates, the alcohol 43 that has dissolved the phosphor can be used.
Just replace it.

【0022】[0022]

【発明の効果】本発明によれば、太陽からの光及びその
一部が波長変換された光を培養液中の藻類に効率良く分
散して入射させることができる。
According to the present invention, light from the sun and light whose wavelength has been partially converted can be efficiently dispersed and made incident on the algae in the culture solution.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示すバイオリアクタの平面図
FIG. 1 is a plan view of a bioreactor showing an embodiment of the present invention.

【図2】図1のA−A断面図。FIG. 2 is a sectional view taken along line AA in FIG. 1;

【図3】本発明の他の実施例を示すバイオリアクタの断
面図。
FIG. 3 is a sectional view of a bioreactor showing another embodiment of the present invention.

【図4】本発明のさらに他の実施例を示すバイオリアク
タの断面図。
FIG. 4 is a sectional view of a bioreactor showing still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…バイオリアクタ要素、2…反射板、6…コールドフ
ィルタ、7…波長変換体、8…ねじり板、9…培養液。
DESCRIPTION OF SYMBOLS 1...Bioreactor element, 2...Reflector, 6...Cold filter, 7...Wavelength converter, 8...Twisted plate, 9...Culture solution.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】太陽光等の光を利用して培養液中に分散さ
せた藻類などの植物の培養を行なうバイオリアクタにお
いて、プラスチック,有機溶媒等の透明体に蛍光体を溶
解した波長変換体で培養液を取り囲むように培養液流路
を構成したことを特徴とするバイオリアクタ。
Claim 1: A wavelength converter in which a phosphor is dissolved in a transparent material such as plastic or an organic solvent, which is used in a bioreactor that uses sunlight or other light to cultivate plants such as algae dispersed in a culture solution. A bioreactor characterized in that a culture solution flow path is configured to surround a culture solution.
【請求項2】請求項1において、前記培養液の流路内に
ねじり板等の流れ撹拌体を配置したバイオリアクタ。
2. The bioreactor according to claim 1, wherein a flow agitator such as a torsion plate is arranged in the flow path of the culture solution.
【請求項3】請求項1において、前記培養液流路の下側
に反射板を配置したバイオリアクタ。
3. The bioreactor according to claim 1, further comprising a reflecting plate disposed below the culture fluid channel.
【請求項4】請求項1において、透明な二重管の内管の
内側を前記培養液流路とし、外管と内管の間に蛍光体を
溶かした液体状の溶媒を入れて波長変換体を構成したバ
イオリアクタ。
4. In claim 1, the inside of the inner tube of the transparent double tube is used as the culture medium flow path, and a liquid solvent in which a phosphor is dissolved is placed between the outer tube and the inner tube for wavelength conversion. A bioreactor made up of a body.
【請求項5】請求項1,2,3または4に記載の複数本
の前記バイオリアクタを直列、又は並列に接続したバイ
オリアクタ。
5. A bioreactor comprising a plurality of the bioreactors according to claim 1, 2, 3, or 4 connected in series or in parallel.
【請求項6】請求項5に記載の前記バイオリアクタの太
陽光入射側に赤外線除去機能をもつ光学フィルタを配置
したバイオリアクタ。
6. The bioreactor according to claim 5, wherein an optical filter having an infrared ray removal function is disposed on the sunlight incident side of the bioreactor.
JP5436291A 1991-03-19 1991-03-19 Bioreactor Pending JPH04287678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5436291A JPH04287678A (en) 1991-03-19 1991-03-19 Bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5436291A JPH04287678A (en) 1991-03-19 1991-03-19 Bioreactor

Publications (1)

Publication Number Publication Date
JPH04287678A true JPH04287678A (en) 1992-10-13

Family

ID=12968538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5436291A Pending JPH04287678A (en) 1991-03-19 1991-03-19 Bioreactor

Country Status (1)

Country Link
JP (1) JPH04287678A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958761A (en) * 1994-01-12 1999-09-28 Yeda Research And Developement Co. Ltd. Bioreactor and system for improved productivity of photosynthetic algae
JP2002541788A (en) * 1999-04-13 2002-12-10 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. Photobioreactor with improved light input through increased surface area, wavelength shifter or light transmission
DE19746343B4 (en) * 1997-10-21 2006-04-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for introducing solar radiation energy into a photoreactor
WO2010085853A1 (en) * 2009-01-30 2010-08-05 Zero Discharge Pty Ltd Method and apparatus for cultivation of algae and cyanobacteria
WO2010086310A3 (en) * 2009-01-27 2010-12-16 Photofuel Sas Method and device for culturing algae
US8551769B2 (en) 2009-01-30 2013-10-08 Zero Discharge Pty Ltd. Method and apparatus for cultivation of algae and cyanobacteria
CN103355155A (en) * 2012-03-31 2013-10-23 莫塔赫德·索赫尔 Integrated pool-photobioreactor
US8709795B2 (en) 2009-11-09 2014-04-29 Industrial Technology Research Institute Light transformation particle and photobioreactor
ES2479340R1 (en) * 2013-01-22 2014-09-08 Iberdrola Ingeniería Y Construcción, S.A.U. SOLAR RADIATION OPTIMIZATION DEVICE FOR PHOTOBIOR REACTORS, PHOTOBIOR REACTOR THAT INCORPORATES SUCH DEVICE, AND METHOD FOR MOUNTING THE DEVICE IN A PHOTOBIOR REACTOR
JP2019187348A (en) * 2018-04-27 2019-10-31 東京電力ホールディングス株式会社 Algae culture reactor
EP4276165A1 (en) * 2022-05-09 2023-11-15 Sherpa Space Inc. Microalgae reaction unit using wavelength conversion and microalgae culture system using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958761A (en) * 1994-01-12 1999-09-28 Yeda Research And Developement Co. Ltd. Bioreactor and system for improved productivity of photosynthetic algae
DE19746343B4 (en) * 1997-10-21 2006-04-20 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method and device for introducing solar radiation energy into a photoreactor
JP2002541788A (en) * 1999-04-13 2002-12-10 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. Photobioreactor with improved light input through increased surface area, wavelength shifter or light transmission
WO2010086310A3 (en) * 2009-01-27 2010-12-16 Photofuel Sas Method and device for culturing algae
WO2010085853A1 (en) * 2009-01-30 2010-08-05 Zero Discharge Pty Ltd Method and apparatus for cultivation of algae and cyanobacteria
US8551769B2 (en) 2009-01-30 2013-10-08 Zero Discharge Pty Ltd. Method and apparatus for cultivation of algae and cyanobacteria
US8709795B2 (en) 2009-11-09 2014-04-29 Industrial Technology Research Institute Light transformation particle and photobioreactor
CN103355155A (en) * 2012-03-31 2013-10-23 莫塔赫德·索赫尔 Integrated pool-photobioreactor
ES2479340R1 (en) * 2013-01-22 2014-09-08 Iberdrola Ingeniería Y Construcción, S.A.U. SOLAR RADIATION OPTIMIZATION DEVICE FOR PHOTOBIOR REACTORS, PHOTOBIOR REACTOR THAT INCORPORATES SUCH DEVICE, AND METHOD FOR MOUNTING THE DEVICE IN A PHOTOBIOR REACTOR
JP2019187348A (en) * 2018-04-27 2019-10-31 東京電力ホールディングス株式会社 Algae culture reactor
EP4276165A1 (en) * 2022-05-09 2023-11-15 Sherpa Space Inc. Microalgae reaction unit using wavelength conversion and microalgae culture system using the same

Similar Documents

Publication Publication Date Title
CN1204244C (en) Photosynthesis culture apparatus and group of photosynthesis culture apparatuses
US5958761A (en) Bioreactor and system for improved productivity of photosynthetic algae
TWI553119B (en) Photobioreactor in a closed environment for the culture of photosynthetic microorganisms
US4900678A (en) Apparatus for photosynthesis
JPH04287678A (en) Bioreactor
JPS5898081A (en) Photosynthetic apparatus
US20120156762A1 (en) Solar hybrid photobioreactor
CN107935104A (en) Solar energy photocatalytic reactor and the photocatalysis water treatment system with the device
CN2918431Y (en) Photosynthetic microorganism hydrogen production reactor
JP3085393B2 (en) Culture method and culture apparatus for photosynthetic organisms
JP3151710U (en) Algae culture equipment
CN106957790A (en) A kind of semi-enclosed culture pipeline of microalgae algae kind optical-biological reaction and its application method
CN100494047C (en) Solar energy hydrogen production plant by photosynthetic organism
CN108365035A (en) A kind of optical electivity solar panel suitable for both culturing microalgae
CA1207695A (en) Apparatus for photosynthesis
KR101663108B1 (en) Light Tube for Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
AU681243B2 (en) A bioreactor and system for improved productivity of photosynthetic algae
CN2921027Y (en) Sunlight methane tank
CN215454373U (en) Rural-shake-based farming-fishing-optical module integrated planting and breeding system
CN201981184U (en) Photo bioreactor for culturing oil-producing microalgae
CN106538294B (en) Greenhouse with photon well energy storage device
KR101663109B1 (en) Light Tube With Various Shape Light Collector for Photobioreactor
Salmean et al. Design and testing of an externally-coupled planar waveguide photobioreactor
JPH089809A (en) Condenser plug and algae-culturing apparatus using the plug
KR101360909B1 (en) Apparatus for Cultivation Microalgae using Natural Light