JPH042865B2 - - Google Patents

Info

Publication number
JPH042865B2
JPH042865B2 JP58073349A JP7334983A JPH042865B2 JP H042865 B2 JPH042865 B2 JP H042865B2 JP 58073349 A JP58073349 A JP 58073349A JP 7334983 A JP7334983 A JP 7334983A JP H042865 B2 JPH042865 B2 JP H042865B2
Authority
JP
Japan
Prior art keywords
temperature
circuit
linear
resistance
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58073349A
Other languages
Japanese (ja)
Other versions
JPS59197760A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7334983A priority Critical patent/JPS59197760A/en
Publication of JPS59197760A publication Critical patent/JPS59197760A/en
Publication of JPH042865B2 publication Critical patent/JPH042865B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は、温度調節範囲が広く、かつ温度精度
が厳しく要求される冷凍機に好適な冷凍機用制御
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigerator control device suitable for a refrigerator that has a wide temperature control range and requires strict temperature accuracy.

海上輸送用冷凍ユニツトなどのように温度調節
範囲が広く(−25℃〜+25℃)、かつ温度精度が
厳しく要求される冷凍機にあつては、温度制御の
ための温度検出素子としては、通常高精度でかつ
直線性にも優れている白金測温抵抗体が使用され
ているが、実用面から見た場合、下記の欠点も有
している。
For refrigerators that have a wide temperature control range (-25°C to +25°C) and require strict temperature accuracy, such as refrigeration units for marine transportation, the temperature detection element for temperature control is usually Platinum resistance thermometers are used because they have high precision and excellent linearity, but from a practical standpoint, they also have the following drawbacks.

(1) 極めて高価な素子であること。(1) It must be an extremely expensive element.

(2) 温度係数が小さいため(約0.4Ω/℃)、リー
ド線の抵抗や接続部の接触抵抗の影響を受け易
く、逆に精度が落ちてしまう場合があり、安定
性(信頼性)の面で問題になる。
(2) Because the temperature coefficient is small (approximately 0.4Ω/°C), it is easily affected by the resistance of the lead wires and the contact resistance of the connection parts, which may reduce accuracy and reduce stability (reliability). It becomes a problem on the surface.

(3) 上記(2)の欠点を改善する方法として、調整段
階で誤差抵抗分を補償する方法やブリツジ回路
構成(4線式)にする方法があるが、前者は振
動、衝撃等環境ストレスの影響による接触抵抗
の変化に対すしては無力であり、また後者はも
ともと高価なものをさらに助長させる欠点をも
つ。
(3) Methods to improve the drawback of (2) above include a method of compensating for error resistance in the adjustment stage and a method of using a bridge circuit configuration (4-wire type). It is powerless against changes in contact resistance due to influences, and the latter has the disadvantage of further increasing the already expensive nature.

本発明は、上記した点に鑑み提案されたもの
で、その目的とするところは、温度調節の範囲が
広く、かつ温度精度が強く要求される冷凍機に使
用する温度制御装置に関し、安価、高精度かつ高
信頼度を有するものを具現化することにある。
The present invention has been proposed in view of the above points, and its purpose is to provide an inexpensive, high-performance temperature control device for use in refrigerators that have a wide temperature control range and require strong temperature accuracy. The aim is to realize something that is accurate and highly reliable.

本発明は、制御対象の空気温度を温度検出素子
で検出し、同検出値と温度設定器により設定され
た設定値とを比較して圧縮機の運転を制御する温
度制御回路を備えた冷凍機用制御装置において、
前記温度検出素子として冷凍機に要求される温度
調節範囲における温度に対しての出力特性が非直
線性を有する温度検出素子を用いると共に、同温
度検出素子の非直線的な出力特性を直線的な出力
特性に補正する温度補正回路を有し、同温度補正
回路からの出力値と前記温度設定器の設定値とを
比較して前記圧縮機の運転を制御する前記温度制
御回路を備えたことを特徴とする冷凍機用制御装
置を要旨とするもので、温度検出素子として、一
般的に使用されている安価で、通常、温度調節範
囲が広く、温度精度が厳しく要求される場合に、
非直線性が目立ち、そのままでは精度を確保でき
ない温度に対して非直線性の出力特性を有する素
子を使用し、この素子の非直線性の特性を温度補
正回路を設けて直線的に特性に補正することによ
つて精度面での問題をカバーするようにしている
ため、安価で、高精度で、かつ信頼性の高い制御
装置を得ることができる。
The present invention provides a refrigerator equipped with a temperature control circuit that detects the temperature of air to be controlled with a temperature detection element, and controls the operation of a compressor by comparing the detected value with a set value set by a temperature setting device. In the control device for
As the temperature detecting element, a temperature detecting element having a non-linear output characteristic with respect to temperature in the temperature control range required for the refrigerator is used, and the non-linear output characteristic of the temperature detecting element is converted into a linear one. The temperature control circuit has a temperature correction circuit that corrects output characteristics, and controls the operation of the compressor by comparing an output value from the temperature correction circuit with a set value of the temperature setting device. The gist is a control device for a refrigerator that is characterized by its low cost, generally used as a temperature detection element, and usually has a wide temperature control range, and when temperature accuracy is strictly required.
We use an element with non-linear output characteristics at temperatures where non-linearity is noticeable and accuracy cannot be ensured as is, and a temperature correction circuit is installed to correct the non-linear characteristics of this element to linear characteristics. By doing so, problems in terms of accuracy are covered, so that it is possible to obtain a control device that is inexpensive, highly accurate, and highly reliable.

以下、本発明を実施例に基いて説明する。 The present invention will be explained below based on examples.

第1図乃至第4図において、1は圧縮機、2は
凝縮器、3は絞り装置、4は蒸発器であり以上に
より冷凍サイクルが構成されている。5は制御装
置で、庫内空気6の温度を検出するサーミスタ測
温抵抗体7で検出された温度とデイジタル温度設
定器9で設定された温度とから温度制御回路8を
介して圧縮機1をON・OFF制御するようになつ
ている。なお、上記の冷凍サイクル及び制御装置
においては、関係部分のみを示し、他の部分は省
略されている。
In FIGS. 1 to 4, 1 is a compressor, 2 is a condenser, 3 is a throttle device, and 4 is an evaporator, which constitute a refrigeration cycle. Reference numeral 5 denotes a control device that controls the compressor 1 via a temperature control circuit 8 based on the temperature detected by the thermistor resistance thermometer 7 that detects the temperature of the indoor air 6 and the temperature set by the digital temperature setting device 9. It has become possible to control ON/OFF. In addition, in the above-mentioned refrigeration cycle and control device, only relevant parts are shown and other parts are omitted.

第2図は温度検出回路で、V1は定電圧源、V2
はブリツジ出力電圧、R1は直列抵抗、Rtは庫内
温度空気抵抗、AD1はアナログ/デイジタル変換
器、Dt1は非直線的な庫内温度デイジタル量を示
す。
Figure 2 shows the temperature detection circuit, where V 1 is a constant voltage source and V 2
is the bridge output voltage, R 1 is the series resistance, Rt is the internal temperature air resistance, AD 1 is the analog/digital converter, and Dt 1 is the nonlinear internal temperature digital quantity.

第3図は温度補正回路で、補正温度デイジタル
量記憶回路10、直線化補正量選択回路11、加
算回路12を有し、非直線的な庫内温度デイジタ
ル量Dt1を直線的な庫内温度デイジタル量Dtに補
正する回路である。
FIG. 3 shows a temperature correction circuit, which has a correction temperature digital value storage circuit 10, a linear correction amount selection circuit 11, and an addition circuit 12, and converts a non-linear internal temperature digital value Dt 1 into a linear internal temperature This is a circuit that corrects the digital amount Dt.

第4図は、温度比較回路で、庫内温度デイジタ
ル量Dtと設定温度デイジタル量Dsを比較器Cで、
庫内温度デイジタル量Dtが大きい場合、圧縮機
1に運転指令を出し、小さい場合、停止と指令を
出すようになつている。
Figure 4 shows a temperature comparison circuit, in which the internal temperature digital amount Dt and the set temperature digital amount Ds are measured by a comparator C.
When the internal temperature digital amount Dt is large, an operation command is issued to the compressor 1, and when it is small, a stop command is issued.

上記構成において、冷凍機用制御装置5の指令
により運転を行う圧縮機1により圧縮された高温
高圧の冷媒ガスは凝縮器2にて放熱し、凝縮液化
して絞り装置3に至る。ここで減圧された冷媒は
蒸発器4に入り、同蒸発器4を流れる庫内空気6
より熱を奪い、蒸発、気化して圧縮機1に戻り冷
凍サイクルを完了する。
In the above configuration, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1 which is operated in response to instructions from the refrigerator control device 5 radiates heat in the condenser 2, is condensed and liquefied, and reaches the expansion device 3. The depressurized refrigerant enters the evaporator 4, and the indoor air 6 flowing through the evaporator 4
It absorbs more heat, evaporates and vaporizes, and returns to the compressor 1, completing the refrigeration cycle.

この間において、庫内空気6の庫内温度は、温
度対抵抗特性の非直線で温度係数が数100Ω/℃
と大きいサーミスタ測温抵抗体7により抵抗とし
て感知される。この感知された抵抗は温度制御回
路8で変換検出され、デイジタル温度設定器9の
設定温度デイジタル量Dsと比較される。庫内温
度が設定温度デイジタル量Dsより低くなると温
度制御回路8は圧縮機1の運転を停止させて冷却
運転を中止する。また外部よりの熱侵入等により
庫内温度が上昇し、設定温度デイジタル量Dsよ
り高くなると温度制御回路8は再度、圧縮機1の
運転指令を出し冷却運転を再開する。
During this period, the temperature inside the refrigerator air 6 has a nonlinear temperature-resistance characteristic, and the temperature coefficient is several hundred Ω/℃.
This is sensed as resistance by the large thermistor resistance temperature detector 7. This sensed resistance is converted and detected by the temperature control circuit 8 and compared with the set temperature digital amount Ds of the digital temperature setter 9. When the temperature inside the refrigerator becomes lower than the set temperature digital amount Ds, the temperature control circuit 8 stops the operation of the compressor 1 and stops the cooling operation. Further, when the temperature inside the refrigerator increases due to heat intrusion from the outside and becomes higher than the set temperature digital amount Ds, the temperature control circuit 8 issues an operation command to the compressor 1 again and restarts the cooling operation.

以下に温度制御回路8の作用について第2図〜
第4図により説明する。
The operation of the temperature control circuit 8 is shown below in Figure 2.
This will be explained with reference to FIG.

第2図aは温度検出回路で電源が投入され定電
圧源V1が作動するとブリツジ出力電圧V2にはサ
ーミスタ測温抵抗体7によつて感知された庫内温
度空気抵抗Rtと相関のある非直線的な電圧が発
生する。
Figure 2a shows a temperature detection circuit in which when the power is turned on and the constant voltage source V1 is activated, the bridge output voltage V2 has a correlation with the internal temperature air resistance Rt sensed by the thermistor resistance temperature detector 7. A non-linear voltage is generated.

第2図bは庫内温度空気抵抗Rtと庫内温度の
関係を表わし、第2図cは出力電圧V2と庫内温
度の関係(非直線的電圧)を表わし、第2図dは
デイジタル量Dt1と庫内温度の関係(非直線的庫
内温度デイジタル量)を表わしている。
Fig. 2b shows the relationship between the internal temperature air resistance Rt and the internal temperature, Fig. 2c shows the relationship between the output voltage V 2 and the internal temperature (non-linear voltage), and Fig. 2d shows the digital It shows the relationship between the amount Dt 1 and the internal temperature (non-linear internal temperature digital quantity).

この回路においてブリツジ出力電圧V2は次式
によつて決まる。
In this circuit, the bridge output voltage V 2 is determined by the following equation.

ブリツジ出力電圧V2=直列抵抗R1/サーミスタ測温抵抗
体抵抗Rt+直列抵抗R1×定電圧源V1の電圧 なお、上式には本来、サーミスタ測温抵抗体7
のリード線抵抗及び接続部の接触抵抗が加味され
るが、温度係数の大きいサーミスタ測温抵抗体7
のため無視しても影響がないことから省略してあ
る。また、本例では負性特性の感温素子を使用し
ている。
Bridge output voltage V 2 = Series resistance R 1 / Thermistor resistance temperature detector resistance Rt + Series resistance R 1 × Voltage of constant voltage source V 1 Note that the above equation originally includes the thermistor resistance temperature detector 7.
Although the lead wire resistance and the contact resistance of the connection part are taken into account, the thermistor resistance temperature detector 7 has a large temperature coefficient.
Therefore, it has been omitted because it has no effect even if ignored. Further, in this example, a temperature sensing element with negative characteristics is used.

さてこの温度と相関のある非直線的なブリツジ
出力電圧V2は、デイジタル温度設定器9の設定
温度デイジタル量Dsと比較しレベルを合わせる
ためにアナログ/デイジタル変換器AD1で庫内空
気温度と相関のある非直線的な庫内温度デイジタ
ル量Dt1に変換される。次に第3図aは温度補正
回路で第2図aの温度検出回路で検出された非直
線的な庫内温度デイジタル量Dt1は、さらに直線
的な設定温度デイジタル量Dsと比較しやすくす
るために直線化補正量選択回路11に取り込ま
れ、直線化補正量選択回路11によつて、あらか
じめ標準のサーミスタ測温抵抗体7の直線からの
温度誤差量を規定してある補正温度デイジタル量
記憶回路10より、非直線的な庫内温度デイジタ
ル量Dt1に応じた補正温度デイジタル量を選択
し、加算器回路12にて非直線な庫内温度デイジ
タル量Dt1と加算して直線的な庫内温度デイジタ
ル量Dtに補正される。第3図bは庫内温度デイ
ジタル量Dtと庫内温度の関係(直線的庫内温度
デイジタル量)を表わす。次に第4図は比較回路
で第3図aの温度補正回路で直線補正された庫内
温度デイジタル量Dtは設定温度デイジタル量Ds
と比較器Cで比較され、庫内温度デイジタル量
Dtが大きい場合は圧縮機1に運転指令を出す。
また小さい場合は圧縮機1に停止指令を出して温
度制御を行う。
Now, the non-linear bridge output voltage V2 , which has a correlation with this temperature, is compared with the set temperature digital value Ds of the digital temperature setting device 9, and in order to match the level, it is converted to the internal air temperature using the analog/digital converter AD1 . It is converted into a correlated, non-linear internal temperature digital quantity Dt 1 . Next, Fig. 3a shows a temperature correction circuit, and the non-linear internal temperature digital quantity Dt1 detected by the temperature detection circuit of Fig. 2a is made easier to compare with the more linear set temperature digital quantity Ds. A correction temperature digital quantity memory is taken into the linearization correction amount selection circuit 11 for the purpose of the present invention, and the linearization correction amount selection circuit 11 predefines the temperature error amount from the straight line of the standard thermistor resistance temperature detector 7. A corrected temperature digital quantity corresponding to the non-linear refrigerator temperature digital quantity Dt 1 is selected from the circuit 10, and added to the non-linear refrigerator temperature digital quantity Dt 1 by the adder circuit 12 to obtain a linear refrigerator temperature digital quantity Dt 1. The internal temperature is corrected to the digital quantity Dt. FIG. 3b shows the relationship between the internal temperature digital quantity Dt and the internal temperature (linear internal temperature digital quantity). Next, Fig. 4 shows a comparison circuit, and the internal temperature digital amount Dt linearly corrected by the temperature correction circuit shown in Fig. 3a is the set temperature digital amount Ds.
is compared with comparator C, and the internal temperature digital quantity is calculated.
If Dt is large, an operation command is issued to compressor 1.
If the temperature is too small, a stop command is issued to the compressor 1 to control the temperature.

以上のように本実施例では、安価で、かつ温度
係数が大きい特性を有するサーミスタ測温抵抗体
を使いデイジタル補正を施した制御装置を用いて
いるため下記効果が得られる。
As described above, in this embodiment, the following effects can be obtained because a control device that uses a thermistor resistance temperature detector that is inexpensive and has a large temperature coefficient and is digitally corrected is used.

(1) 白金測温抵抗体使用時と同等程度の精度が得
られる。
(1) Accuracy equivalent to that obtained when using a platinum resistance thermometer is obtained.

(2) リード線抵抗及び接続部抵抗による温度誤差
がなくなり安定性(信頼性)が向上する。
(2) Temperature errors due to lead wire resistance and connection resistance are eliminated, improving stability (reliability).

(3) 安価な温度検出素子を使用するため全体とし
ても低コスト化がはかれる。
(3) Since an inexpensive temperature detection element is used, the overall cost can be reduced.

なお、上記実施例では、温度検出素子としてサ
ーミスタ測温抵抗体を例に説明したが、必らずし
もこれに限定せず、温度係数が大きくリード線及
び接続部の接触抵抗の影響の少ない素子であれば
構わない。また素子として温度に対する出力が
「抵抗変化」のものに限定する必要ななく、例え
ば半導体温度検出素子のように出力が「電圧変
化」のものであつても構わない。
In the above embodiment, a thermistor resistance temperature detector is used as an example of the temperature detection element, but the temperature detection element is not limited to this. It does not matter if it is an element. Furthermore, it is not necessary to limit the element to one whose output is a "resistance change" with respect to temperature, but may be one whose output is a "voltage change" such as a semiconductor temperature detection element, for example.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示すも
ので、第1図は冷凍機の構成図、第2図a,b,
c,dは温度検出回路を示す図で、aは回路図、
bは庫内温度空気抵抗と庫内温度との関係を示す
図、cは出力電圧と庫内温度との関係を示す図、
dは非直線的なデイジタル量と庫内温度との関係
を示す図、第3図a,bは温度補正回路を示す図
で、aは回路図、bは直線的なデイジタル量と庫
内温度との関係を示す図、第4図は温度比較回路
の回路図である。 1:圧縮機、2:凝縮器、3:絞り装置、4:
蒸発器、5:制御装置、7:サーミスタ測温抵抗
体、8:温度制御回路、9:デイジタル温度設定
器、10:補正温度デイジタル量記憶回路、1
1:直線化補正量選択回路、12:加算回路。
Figures 1 to 4 show an embodiment of the present invention, in which Figure 1 is a configuration diagram of a refrigerator, Figures 2 a, b,
c and d are diagrams showing the temperature detection circuit, a is a circuit diagram,
b is a diagram showing the relationship between internal temperature air resistance and internal temperature; c is a diagram showing the relationship between output voltage and internal temperature;
d is a diagram showing the relationship between the non-linear digital quantity and the temperature inside the refrigerator, Figure 3 a and b are diagrams showing the temperature correction circuit, a is a circuit diagram, and b is a diagram showing the relationship between the linear digital quantity and the temperature inside the refrigerator. FIG. 4 is a circuit diagram of a temperature comparison circuit. 1: Compressor, 2: Condenser, 3: Squeezing device, 4:
Evaporator, 5: Control device, 7: Thermistor resistance temperature detector, 8: Temperature control circuit, 9: Digital temperature setting device, 10: Correction temperature digital quantity storage circuit, 1
1: Linearization correction amount selection circuit, 12: Addition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 制御対象の空気温度を温度検出素子で検出
し、同検出値と温度設定器により設定された設定
値とを比較して圧縮機の運転を制御する温度制御
回路を備えた冷凍機用制御装置において、前記温
度検出素子として冷凍機に要求される温度調節範
囲における温度に対しての出力特性が非直線性を
有する温度検出素子を用いると共に、同温度検出
素子の非直線的な出力特性を直線的な出力特性に
補正する温度補正回路を有し、同温度補正回路か
らの出力値と前記温度設定器の設定値とを比較し
て前記圧縮機の運転を制御する前記温度制御回路
を備えたことを特徴とする冷凍機用制御装置。
1. A refrigerator control device equipped with a temperature control circuit that detects the temperature of the air to be controlled using a temperature detection element, and controls the operation of a compressor by comparing the detected value with a set value set by a temperature setting device. In this method, a temperature detection element having a non-linear output characteristic with respect to temperature in the temperature control range required for the refrigerator is used as the temperature detection element, and the non-linear output characteristic of the temperature detection element is converted into a linear one. the temperature control circuit which controls the operation of the compressor by comparing an output value from the temperature correction circuit with a set value of the temperature setting device; A control device for a refrigerator characterized by the following.
JP7334983A 1983-04-26 1983-04-26 Controller for refrigerator Granted JPS59197760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334983A JPS59197760A (en) 1983-04-26 1983-04-26 Controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334983A JPS59197760A (en) 1983-04-26 1983-04-26 Controller for refrigerator

Publications (2)

Publication Number Publication Date
JPS59197760A JPS59197760A (en) 1984-11-09
JPH042865B2 true JPH042865B2 (en) 1992-01-21

Family

ID=13515593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334983A Granted JPS59197760A (en) 1983-04-26 1983-04-26 Controller for refrigerator

Country Status (1)

Country Link
JP (1) JPS59197760A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735928B2 (en) * 1988-02-24 1995-04-19 三洋電機株式会社 Refrigeration system operation protection device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111039U (en) * 1979-01-31 1980-08-04

Also Published As

Publication number Publication date
JPS59197760A (en) 1984-11-09

Similar Documents

Publication Publication Date Title
US6871538B2 (en) Flow sensor and flow rate measuring method
US6334093B1 (en) Method and apparatus for economical drift compensation in high resolution difference measurements and exemplary low cost, high resolution differential digital thermometer
US7386985B2 (en) Detection of refrigerant charge adequacy based on multiple temperature measurements
US11604100B2 (en) Temperature sensor module
JPS60235044A (en) Measuring device for detecting liquid component in refrigerant
US4609292A (en) Device and method for measuring a temperature difference
JPH042865B2 (en)
WO2011152776A1 (en) Temperature measurement system and method for a temperature measurement system comprising at least one thermocouple
JP2016017889A (en) Humidity sensor and humidity sensor calibration system
JP4212952B2 (en) Temperature detection apparatus and method using thermocouple
JPH09324955A (en) Refrigerating device
US20240264102A1 (en) Gas sensor
JPH05196484A (en) Intake air flow detector of internal combustion engine
JP2005106380A (en) Freezing cycle device
US20240230570A9 (en) Gas sensor
JPH0133771B2 (en)
JPS6038859Y2 (en) Rice low temperature storage
JPH0376412B2 (en)
JPS602578B2 (en) Refrigeration equipment
US20170307287A1 (en) Apparatus for sensing temperature of refrigerator
JPH0633825A (en) Intake air flow rata detecting device for internal combustion engine
JP2024112766A (en) Gas Sensors
JP2024104826A (en) Gas Sensors
JPH1078339A (en) Heating resistor type flow rate measuring device
JPS63213766A (en) Detector for shortage of quantity of refrigerant for refrigerator