JPH0133771B2 - - Google Patents
Info
- Publication number
- JPH0133771B2 JPH0133771B2 JP57183680A JP18368082A JPH0133771B2 JP H0133771 B2 JPH0133771 B2 JP H0133771B2 JP 57183680 A JP57183680 A JP 57183680A JP 18368082 A JP18368082 A JP 18368082A JP H0133771 B2 JPH0133771 B2 JP H0133771B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- electrical
- information
- electrical information
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012937 correction Methods 0.000 claims description 29
- 230000005540 biological transmission Effects 0.000 claims description 27
- 238000009529 body temperature measurement Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000005611 electricity Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/16—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
- G01K7/22—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
- G01K7/24—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
- G01K7/245—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit in an oscillator circuit
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
Description
【発明の詳細な説明】
本発明はサーミスタ、白金測温抗体、ダイオー
ド等の感温によつて電気的定数が変化する測温体
を用いた温度計測方法に関し、特に測温体の製造
上発生する感温機能のバラツキや測温体による計
測から温度表示手段による温度表示までの経路に
おいて、周囲の温度条件変化に基づいて発生する
誤差を補正して正確な温度計測を行なう方法に関
する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring method using a temperature measuring element such as a thermistor, a platinum temperature measuring antibody, a diode, etc. whose electrical constant changes depending on temperature sensing, and particularly to The present invention relates to a method for accurately measuring temperature by correcting variations in the temperature sensing function and errors that occur based on changes in ambient temperature conditions in the path from measurement by a thermometer to temperature display by a temperature display means.
一般にサーミスタ、白金測温抵抗体、ダイオー
ド等の測温体の感温機能は、製造上からバラツキ
が多く、高正確度を要する温度計測に用いる場合
には一定精度の測温体を選別使用することが必要
であり、故に必然的にかかる測温体を用いる温度
計測装置はコスト高となることが不可避である。
また、測温体が感温して発生する電気的な物理定
数変化値、例えばサーミスタの場合の温度変化に
対応した電気抵抗値(これを「表温電気情報」と
本願では定義する)は、通常の場合には更に測温
体の位置から離隔した温度表示手段へ表温電気情
報を送信路を経由して伝達するために、伝達に適
した送信用電気情報に変換する方法が採られる。
故に送信路や情報変換部が周囲の温度条件の変化
(寒冷期と夏期との温度変化等)に影響され温度
表示手段の位置に到達した送信用電気情報中には
この温度条件の変化に基づく誤差値が包含される
不都合がある。 In general, the temperature-sensing functions of thermometers such as thermistors, platinum resistance thermometers, and diodes vary widely due to manufacturing reasons, and when used for temperature measurement that requires high accuracy, temperature detectors with a certain level of accuracy are selected and used. Therefore, it is inevitable that a temperature measuring device using such a temperature measuring element will be expensive.
In addition, the electrical physical constant change value that occurs when the temperature sensing element senses the temperature, for example, the electrical resistance value corresponding to the temperature change in the case of a thermistor (this is defined as "surface temperature electrical information" in this application), In normal cases, in order to transmit the surface temperature electrical information via a transmission path to the temperature display means which is further away from the position of the temperature measuring body, a method is adopted in which the electrical temperature information is converted into electrical information for transmission suitable for transmission.
Therefore, the transmission path and information converter are affected by changes in the surrounding temperature conditions (temperature changes between cold season and summer, etc.), and the electrical information for transmission that reaches the position of the temperature display means is affected by changes in the temperature conditions. There is a disadvantage that error values are included.
依つて本発明の目的は上述した欠点、不都合を
排すべく、測温体から発した表温電気情報を一旦
送信用電気情報に変換し、更にこの送信用電気情
報を、温度表示手段を有した受信部で受信かつ温
度値に変換する際に補正を加え正確な温度値を得
られるようにした温度計測方法を提供することに
ある。 SUMMARY OF THE INVENTION Therefore, in order to eliminate the above-mentioned drawbacks and inconveniences, an object of the present invention is to first convert surface temperature electrical information emitted from a thermometer into electrical information for transmission, and further convert this electrical information for transmission into a system having a temperature display means. It is an object of the present invention to provide a temperature measurement method which makes it possible to obtain an accurate temperature value by adding correction when receiving the temperature value at a receiving section and converting it into a temperature value.
測温時の温度特性が予め複数種に分類区分され
た測温体が感温発生する表音電気情報を電気−電
気変換部で送信用電気情報に変換して受信部へ送
信し、また、前記電気−電気変換部により、予め
前記分類区分毎の温度特性に割り当てた前記送信
用電気情報と同種の補正用電気情報を形成して同
じく前記受信部へ送信し、該受信部で、予め記憶
回路内に記憶した指定温度下における標準補正用
電気情報から、受信された前記補正用電気情報に
含まれる前記指定温度と実際の温度との温度差に
よる誤差分を演算すると共にその演算結果の誤差
分に従つて前記送信用電気情報に含まれた前記温
度差による誤差分を補正し、かつ前記記憶回路内
に予め記憶された前記測温体の前記複数の分類区
分から、前記送信用電気情報に含まれた前記測温
体の温度特性に基づく誤差分を更に補正し、これ
らの両補正がなされた送信用電気情報を温度値に
変換して実測温として表示することを特徴とする
温度計測方法が提供されるのである。以下本発明
を添付図面に示す実施例に基づき詳細に説明す
る。 The phonetic electrical information generated by the thermometer whose temperature characteristics are classified in advance into multiple types during temperature measurement is converted into electrical information for transmission by an electrical-electrical converter and transmitted to the receiving section, and The electrical-to-electrical converter forms correction electrical information of the same type as the transmission electrical information assigned in advance to the temperature characteristics of each classification category, and similarly transmits it to the receiving section, where the electrical information is stored in advance. Calculate the error due to the temperature difference between the specified temperature and the actual temperature included in the received correction electrical information from the standard correction electrical information under the specified temperature stored in the circuit, and calculate the error in the calculation result. The error amount due to the temperature difference included in the electrical information for transmission is corrected according to the number of minutes, and the electrical information for transmission is corrected from the plurality of classification categories of the temperature measuring body stored in advance in the storage circuit. Temperature measurement characterized by further correcting the error amount based on the temperature characteristics of the temperature measuring body included in the above, and converting the electrical information for transmission after both of these corrections into a temperature value and displaying it as an actual temperature measurement. A method is provided. The present invention will be described in detail below based on embodiments shown in the accompanying drawings.
図は、本発明による温度計測方法を実施するた
めの構成例を示すブロツク図である。 The figure is a block diagram showing an example of a configuration for implementing the temperature measurement method according to the present invention.
同図において、測温部1は測温体4を有し、冷
凍庫又は冷蔵庫の庫内温度の実測を行なう部分で
ある。この場合に測温体4としては既述のとお
り、サーミスタ、白金測温抵抗体、ダイオード等
の感温によつて電気的物理定数が変化する素子が
用いられる。測温部1によつて感測発生した表温
電気情報は電気−電気変換部2で変換され、受信
部3に送信される。本実施例では測温体4が表温
電気情報として電気抵抗値を示し、電気−電気変
換部2では、これを周波数に変換して受信部3へ
送信する実施例に基づいて以下、説明する。さ
て、電気−電気変換部2には非安定マルチバイブ
レータ回路5が設けられ、該回路5はコンデン6
と可変抵抗器7によつて決定される周波数の電気
情報と、測温体4の電気抵抗値とコンデンサ6に
よつて決定される周波数の電気情報とを出力する
ために設けられており、コンデンサ6と可変抵抗
器7によつて決定される周波数の電気情報は後述
のように補正用電気情報として用いられるために
受信部3へ送信され、一方、測温体4の電気抵抗
値とコンデンサ6とによつて決まる周波数の電気
情報は、表温電気情報を送信、伝達に適した電気
情報に変換した、送信用電気情報に相当するもの
である。なお、上記非安定マルチバイブレータ5
による上記二つの送信用電気情報の発生はスイツ
チ8による接点切換に従つて順次に受信部3へ送
信される構成が採られ、該スイツチ8の接点切換
はスイツチ切換タイマー9によつてタイミングが
制御される。そして両電気情報は共にパルス信号
として受信部3へ送信される。なお、電気−電気
変換部2に設けられているコンデンサ10はリツ
プル除去コンデンサとして設けられ、また抵抗1
1もリツプル除去抵抗として設けられている。更
に抵抗12は信号電流調節抵抗として設けられて
いるものである。 In the figure, a temperature measuring section 1 has a temperature measuring element 4 and is a part that actually measures the internal temperature of a freezer or refrigerator. In this case, as the temperature sensing element 4, as described above, an element whose electrical physical constant changes depending on temperature sensing is used, such as a thermistor, a platinum resistance temperature sensing element, or a diode. The electrical surface temperature information sensed and generated by the temperature measuring section 1 is converted by the electrical-to-electrical converting section 2 and transmitted to the receiving section 3. In this embodiment, the temperature measuring body 4 indicates an electrical resistance value as surface temperature electrical information, and the electrical-to-electrical converter 2 converts this into a frequency and transmits it to the receiver 3. . Now, the electric-electric converter 2 is provided with an unstable multivibrator circuit 5, and the circuit 5 is connected to a capacitor 6.
It is provided to output electrical information at a frequency determined by the variable resistor 7 and electrical information at a frequency determined by the electrical resistance value of the temperature sensing element 4 and the capacitor 6. 6 and the variable resistor 7 are transmitted to the receiving section 3 to be used as correction electrical information as will be described later. The electrical information of the frequency determined by the above corresponds to electrical information for transmission, which is obtained by converting surface temperature electrical information into electrical information suitable for transmission and transmission. In addition, the above-mentioned unstable multivibrator 5
The generation of the two electrical information for transmission is sequentially transmitted to the receiving section 3 according to the switching of the contacts by the switch 8, and the timing of the switching of the contacts of the switch 8 is controlled by a switch switching timer 9. be done. Both pieces of electrical information are then transmitted to the receiving section 3 as pulse signals. Note that the capacitor 10 provided in the electrical-electrical converter 2 is provided as a ripple removal capacitor, and the resistor 1
1 is also provided as a ripple removal resistor. Furthermore, the resistor 12 is provided as a signal current adjusting resistor.
さて、受信部3には上述した電気情報を受信検
出するパルス検出器13と、第1補正演算回路1
5、第2補正演算回路16、温度変換回路17、
記憶回路18のそれぞれを有した補正演算処理部
14と、温度表示部19とを具備して構成されて
いる。 Now, the receiving section 3 includes a pulse detector 13 for receiving and detecting the above-mentioned electrical information, and a first correction calculation circuit 1.
5, second correction calculation circuit 16, temperature conversion circuit 17,
It is configured to include a correction calculation processing section 14 each having a memory circuit 18, and a temperature display section 19.
上述の構成において、本発明の温度計測方法の
実施に当つては先ず、測温体4に就いて一定の温
度条件下(例えばサーミスタに就いて25℃の温度
条件下)で呈する測温体の製造上のバラツキに基
づく抵抗値巾を複数の分類区分に分別し、何れの
測温体4も何れかの分類区分に属するようにして
おく。すなわち、例えばA測温体は分類区分1
に、B測温体は分類区分2に、C測温体は分類区
分3に属することを温度計測装置の製造段階で区
分しておくのである。そしてこの場合に抵抗値の
各分類区別に対して非安定マルチバイブレータ回
路5によつて上記の一定温度条件下(例えば25
℃)で発生する補正用電気情報の周波数を適宜に
割当て、割当てられた周波数の電気情報(この場
合には割当てられた個数のパルスを1秒周期間に
有するパルス列)が発生するように可変抵抗7と
コンデンサ6の電気定数を設定する。この際に各
分類区分に対応して割当てられる周波数相互間に
おいては、離散値となるように比較的大きな周波
数差違を設けておく。斯くして、いま分類区分1
に属するA測温体を用いて温度計測を実行する場
合には分類区分1に対して割当てられた周波数の
パルス列が非安定マルチバイブレータ回路5から
発生するように可変抵抗7を調節する。従つて分
類区分2に属するB測温体を用いる場合には新た
に可変抵抗7を調節して分類区分2に対して割当
てられた周波数のパルス列を発生させるのであ
る。 In the above-mentioned configuration, in carrying out the temperature measurement method of the present invention, first, the temperature of the temperature measuring element 4 exhibiting under a certain temperature condition (for example, a temperature of 25° C. for a thermistor) is measured. Resistance value widths based on manufacturing variations are classified into a plurality of classification categories, and any temperature measuring element 4 is made to belong to any classification category. In other words, for example, thermometer A is classified as category 1.
In addition, it is determined at the manufacturing stage of the temperature measuring device that the temperature measuring device B belongs to classification 2 and the temperature measuring device C belongs to classification 3. In this case, the non-stable multivibrator circuit 5 is used for each classification of resistance value under the above-mentioned constant temperature condition (for example, 25
Appropriately assign the frequency of the correction electrical information generated at 30°F (°C), and use a variable resistor so that the electrical information of the assigned frequency (in this case, a pulse train having the assigned number of pulses in a 1-second period) is generated. 7 and the electrical constants of capacitor 6 are set. At this time, a relatively large frequency difference is provided between the frequencies assigned corresponding to each classification so that the frequencies are discrete values. Thus, now classification category 1
When temperature measurement is carried out using temperature measuring element A belonging to class A, the variable resistor 7 is adjusted so that the pulse train of the frequency assigned to classification section 1 is generated from the unstable multivibrator circuit 5. Therefore, when using the B thermometer belonging to classification 2, the variable resistor 7 is newly adjusted to generate a pulse train of the frequency assigned to classification 2.
このようにして測温体4にA測温体を用いて実
際に被測温対象の温度計測を実行する場合には、
測温体4は被測温対象内に設けて常時、表温電気
情報として温度変化に応じて変化する電気抵抗値
を発生させる。この間に今、スイツチ8が可変抵
抗7側の接点に切換えられると、非安定マルチバ
イブレータ回路5は予め可変抵抗7の抵抗値とコ
ンデンサ6の電気容量値とによつて決定される周
波数のパルス列を発生するが、実際に発生するパ
ルス列の周波数は、周囲の温度条件が例えば冬の
寒冷期と夏の酷暑期とでは大幅に異なり、従つて
可変抵抗7を25℃の一定温度で設定した条件の場
合とは異なる温度条件変化に基づく誤差分を含ん
だ周波数値を示す。このようにして非安定マルチ
バイブレータ回路5から発生したパルス列を受信
部3のパルス検出器13で検出する。このパルス
検出器13で検出されたパルス列の周波数を1と
するとき、
1=0+△1 ……(1)
となる。ここで0は一定温度条件(例えば上述の
25℃)で割当てられた補正用電気情報であるパル
ス列の周波数、また△1は周囲温度条件の変化に
よつて一定温度条件下からずれたことによる周波
数誤差分である。パルス検出器13は検出した周
波数1の電気情報を第1補正演算回路15に送出
し、予め記憶回路18に記憶させてある割当て周
波数0の電気情報と比較し、温度誤差分△1と誤
差率△1/0の演算を行なう。この際に記憶回路
18には割当て周波数0の電気情報のみならず、
他の分類区分に対応して一定温度条件下で割当て
られた周波数を有した他の電気情報も記憶されて
いるが、既述のようにこれらの電気情報の各周波
数は比較的大きな周波数差違を相互に有した離散
値として割当てられているので、パルス検出器1
3が周波数1の電気情報を検出したとき、これに
対応した基準となる電気情報の周波数が0である
ことは第一補正演算回路15で容易に判別するこ
とができ、従つて△1,△1/0の演算結果も容
易に得ることができる。この間に電気−電気変換
部2ではスイツチ8が測温体4の側の接点に切換
えられることによつて、測温体4の表温電気情報
が非安定マルチバイブレータ回路5からの送信用
電気情報(パルス列)に変換されて同じく受信部
3のパルス検出部13に送信される。パルス検出
器13はこの送信用電気情報のパルス数、すなわ
ち周波数を検出する。この周波数を2とすると、
この送信用電気情報には測温体4が分類区分され
た際の一定温度(例えば既述の如く25℃)と設置
場所が異るため当然異る被計測対象の温度を感温
していること、および電気−電気変換部2の周囲
温度条件の変化による影響を受けていることによ
つて誤差分△2を含んでいる。従つて
2=F2+△2 ……(2)
となる。ここで、F2は測温体4が感温した被計
測対象の温度に対応した周波数である。 In this way, when actually measuring the temperature of the object to be measured using temperature measuring element A as the temperature measuring element 4,
The temperature measuring body 4 is provided within the object to be temperature measured and constantly generates an electrical resistance value that changes according to temperature changes as surface temperature electrical information. During this time, when the switch 8 is switched to the contact on the variable resistor 7 side, the unstable multivibrator circuit 5 generates a pulse train with a frequency determined in advance by the resistance value of the variable resistor 7 and the capacitance value of the capacitor 6. However, the frequency of the pulse train actually generated differs greatly depending on the ambient temperature conditions, for example, in a cold period of winter and a period of extreme heat in summer. It shows a frequency value that includes an error due to a change in temperature conditions that differs from the actual case. The pulse train generated from the unstable multivibrator circuit 5 in this manner is detected by the pulse detector 13 of the receiving section 3. When the frequency of the pulse train detected by this pulse detector 13 is 1 , 1 = 0 + △ 1 (1). Here 0 is a constant temperature condition (e.g.
The frequency of the pulse train, which is electrical information for correction, is assigned at 25°C), and △ 1 is the frequency error due to deviation from the constant temperature condition due to changes in ambient temperature conditions. The pulse detector 13 sends the detected electrical information of frequency 1 to the first correction calculation circuit 15, compares it with the electrical information of assigned frequency 0 stored in the storage circuit 18 in advance, and calculates the temperature error △ 1 and the error rate. Performs the calculation △ 1 / 0 . At this time, the memory circuit 18 contains not only the electrical information of the assigned frequency 0 , but also
Other electrical information with frequencies assigned under constant temperature conditions corresponding to other classification categories is also stored, but as mentioned above, each frequency of this electrical information has a relatively large frequency difference. Since they are assigned as mutually discrete values, the pulse detector 1
3 detects electrical information with frequency 1 , the first correction calculation circuit 15 can easily determine that the frequency of the corresponding reference electrical information is 0 , and therefore △ 1 , △ You can also easily obtain the calculation result of 1/0 . During this time, the switch 8 is switched to the contact on the temperature measuring element 4 side in the electrical-electrical converter 2, so that the surface temperature electrical information of the temperature measuring element 4 becomes unstable. (pulse train) and similarly transmitted to the pulse detecting section 13 of the receiving section 3. The pulse detector 13 detects the number of pulses, that is, the frequency, of this electrical information for transmission. If this frequency is 2 ,
This electrical information for transmission includes the constant temperature at which the thermometer 4 is classified (for example, 25 degrees Celsius as mentioned above) and the temperature of the object to be measured, which naturally differs because the installation location is different. This includes an error of △ 2 due to the influence of changes in the ambient temperature conditions of the electric-to-electric converter 2. Therefore, 2 = F 2 + △ 2 ...(2). Here, F 2 is a frequency corresponding to the temperature of the object to be measured whose temperature is sensed by the temperature measuring element 4 .
パルス検出器13は検出した周波数2の電気情
報を再び第一補正演算回路15へ送出する。ここ
で電気−電気変換部2の周囲温度条件変化による
誤差分に就いては、先の補正用電気情報の場合を
共通の非安定マルチバイブレータ回路5が用いら
れていることから該補正用電気情報の場合の誤差
分と同一誤差傾向を示している。 The pulse detector 13 sends the detected electrical information of frequency 2 to the first correction calculation circuit 15 again. Here, regarding the error due to changes in the ambient temperature conditions of the electrical-to-electrical converter 2, in the case of the correction electrical information, since the common unstable multivibrator circuit 5 is used, the correction electrical information It shows the same error tendency as the error in the case of .
故に △1/0≒△2/F2 ……(3) の関係が成立する。上記(3)式から △2≒F2×△1/0 ……(4) 故に(2)、(4)式から2 =F2+F2×△1/0≒F2(1+△1/0)、 従つて F2=2/1+Δf1/f0 ……(5) が成立する。 Therefore, the relationship △ 1 / 0 ≒ △ 2 /F 2 ...(3) holds true. From formula (3) above, △ 2 ≒F 2 ×△ 1 / 0 ... (4) Therefore, from formulas (2) and (4), 2 = F 2 +F 2 ×△ 1 / 0 ≒F 2 (1 + △ 1 / 0 ), therefore, F 2 = 2 / 1 + Δf 1 /f 0 ...(5) holds true.
故に先に第一補正演算回路15において演算し
た△1/0の値を用いることによつて(5)式からF2
を演算算出することができる。このようにして演
算算出したF2を第一補正演算回路15から第二
補正演算回路16に送出し、ここで予め記憶回路
18に記憶させた測温体4の温度特性、すなわち
測温体4が有する温度と表温電気情報との間の非
線形特性を該記憶回路18から第二補正演算回路
16に読み込むことによつて更に上記の周波数
F2を補正する。このようにして得られた補正後
の周波数F′2の電気情報は最終補正された周波数
の電気情報である。つまり非線形特性を線形特性
に補正したものである。依つてこのような周波数
F′2の電気情報を第二補正演算回路16から温度
変換回路17に送出し、予め記憶回路18に記憶
させた測温体4に関する周波数と温度との対照情
報を該温度変換回路17に読み込んで上記周波数
F′の電気情報に対応する温度値を得て、温度表示
部19におき温度表示を行なうのである。 Therefore, by using the value of △ 1 / 0 previously calculated in the first correction calculation circuit 15, F 2 can be obtained from equation (5).
can be calculated. The F 2 calculated in this way is sent from the first correction calculation circuit 15 to the second correction calculation circuit 16, and here the temperature characteristic of the temperature measuring element 4 stored in advance in the storage circuit 18, that is, the temperature characteristic of the temperature measuring element 4 By reading the nonlinear characteristics between the temperature and surface temperature electrical information from the storage circuit 18 into the second correction calculation circuit 16, the above-mentioned frequency can be further adjusted.
Correct F2 . The electrical information of the corrected frequency F′ 2 obtained in this way is the electrical information of the final corrected frequency. In other words, the nonlinear characteristics are corrected to linear characteristics. Such a frequency
The electrical information of F′ 2 is sent from the second correction calculation circuit 16 to the temperature conversion circuit 17, and the comparison information between the frequency and temperature regarding the temperature measuring body 4, which has been stored in the storage circuit 18 in advance, is read into the temperature conversion circuit 17. At above frequency
A temperature value corresponding to the electrical information of F' is obtained and the temperature is displayed on the temperature display section 19.
上述の説明から明らかなように本発明によれ
ば、測温体を用いて温度計測を行なう際に測温体
自体の温度特性に基づく計測誤差分と、測温体で
計測された表温情報を遠近種々の送信経路を経て
温度表示手段により温度表示するまでの間に周囲
環境の温度条件が変化することによつて混入する
計測誤差分との両誤差分を補正しているために高
い計測性能を有した温度計測方法が実現され、か
つ測温体は従来の選別による取捨選択によつて少
数の測温体だけを用いる方法と異なり、単に性能
に応じて分類区分することによつて全てを使用す
ることができるのでコスト低減効果をも得ること
ができる。 As is clear from the above description, according to the present invention, when measuring temperature using a thermometer, the measurement error based on the temperature characteristics of the thermometer itself and the surface temperature information measured by the thermometer The measurement accuracy is high because both the measurement error and the measurement error mixed in due to changes in the temperature conditions of the surrounding environment are corrected during the time when the temperature is displayed by the temperature display means through various transmission paths near and far. A temperature measurement method with high performance has been realized, and unlike the conventional method of using only a small number of thermometers through selection, all thermometers can be classified and divided according to their performance. It is also possible to obtain cost reduction effects.
なお、上述の実施例の説明は測温体の表温電気
情報が電気抵抗値であり、送信用電気情報と補正
用電気情報が非安定マルチバイブレータからのパ
ルス列情報である場合に基づいて説明したが、他
の電気的物理定数を利用しても本発明による二つ
の補正演算を利用した温度計測方法を実現するこ
とは可能であることを理解すべきである。 Note that the above embodiment was explained based on the case where the surface temperature electrical information of the temperature measuring body is an electrical resistance value, and the electrical information for transmission and the electrical information for correction are pulse train information from an unstable multivibrator. However, it should be understood that it is possible to implement the temperature measurement method using the two correction operations according to the present invention even if other electrical and physical constants are used.
図は本発明による温度計測方法を実施する構成
例を示すブロツク図である。
1……測温部、2……電気−電気変換部、3…
…受信部、4……測温体。
The figure is a block diagram showing a configuration example for implementing the temperature measurement method according to the present invention. 1...Temperature measurement section, 2...Electrical-electrical conversion section, 3...
...Receiving section, 4...Temperature measuring body.
Claims (1)
れた測温体が感温発生する表音電気情報を電気−
電気変換部で送信用電気情報に変換して受信部へ
送信し、また、前記電気−電気変換部により、予
め前記分類区分毎の温度特性に割り当てた前記送
信用電気情報と同種の補正用電気情報を形成して
同じく前記受信部へ送信し、該受信部で、予め記
憶回路内に記憶した指定温度下における標準補正
用電気情報から、受信された前記補正用電気情報
に含まれる前記指定温度と実際の温度との温度差
による誤差分を演算すると共にその演算結果の誤
差分に従つて前記送信用電気情報に含まれた前記
温度差による誤差分を補正し、かつ前記記憶回路
内に予め記憶された前記測温体の前記複数の分類
区分から、前記送信用電気情報に含まれた前記測
温体の温度特性に基づく誤差分を更に補正し、こ
れらの両補正がなされた送信用電気情報を温度値
に変換して実測温として表示することを特徴とす
る温度計測方法。 2 前記電気−電気変換部は前記送信用電気情報
と、前記補正用電気情報とを前記受信部へ一定タ
イミングで交互に連続送信され、前記表示部にそ
れらの送信用及び補正用電気情報に基づく、補正
後の送信用電気情報が連続表示されるようにした
ことを特徴とする特許請求の範囲第1項に記載の
温度計測方法。[Claims] 1. A thermometer whose temperature characteristics at the time of temperature measurement are classified in advance into a plurality of types.
The electrical conversion section converts the electrical information into transmission electrical information and transmits it to the receiving section, and the electrical-electrical conversion section also generates correction electrical information of the same type as the electrical transmission information that has been assigned in advance to the temperature characteristics of each classification category. Information is formed and transmitted to the receiving section, and the receiving section calculates the specified temperature included in the received correction electrical information from the standard correction electrical information under the specified temperature stored in advance in the storage circuit. and the actual temperature, and correct the error due to the temperature difference contained in the electrical information for transmission according to the error of the calculation result, and From the plurality of stored classification categories of the temperature measuring body, an error based on the temperature characteristics of the temperature measuring body included in the transmission electrical information is further corrected, and the transmitting electricity is obtained by correcting both of these corrections. A temperature measurement method characterized by converting information into a temperature value and displaying it as an actual temperature. 2. The electrical-to-electrical conversion unit alternately and continuously transmits the electrical information for transmission and the electrical information for correction to the receiving unit at a constant timing, and displays information on the display unit based on the electrical information for transmission and the electrical information for correction. 2. The temperature measuring method according to claim 1, wherein the corrected transmission electrical information is displayed continuously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57183680A JPS5973745A (en) | 1982-10-21 | 1982-10-21 | Method for measuring temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57183680A JPS5973745A (en) | 1982-10-21 | 1982-10-21 | Method for measuring temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5973745A JPS5973745A (en) | 1984-04-26 |
JPH0133771B2 true JPH0133771B2 (en) | 1989-07-14 |
Family
ID=16140040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57183680A Granted JPS5973745A (en) | 1982-10-21 | 1982-10-21 | Method for measuring temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5973745A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0277631A (en) * | 1988-09-14 | 1990-03-16 | Yamatake Honeywell Co Ltd | Operation point correction circuit of temperature sensor |
JP2553174B2 (en) * | 1988-11-28 | 1996-11-13 | 日立電線株式会社 | Optical fiber distributed temperature measurement method |
JP6330406B2 (en) * | 2014-03-20 | 2018-05-30 | 株式会社ノーリツ | Water heater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5369685A (en) * | 1976-12-03 | 1978-06-21 | Toshiba Corp | Temperature measuring apparatus |
JPS5716918B2 (en) * | 1977-10-31 | 1982-04-07 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716918U (en) * | 1980-07-02 | 1982-01-28 |
-
1982
- 1982-10-21 JP JP57183680A patent/JPS5973745A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5369685A (en) * | 1976-12-03 | 1978-06-21 | Toshiba Corp | Temperature measuring apparatus |
JPS5716918B2 (en) * | 1977-10-31 | 1982-04-07 |
Also Published As
Publication number | Publication date |
---|---|
JPS5973745A (en) | 1984-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4210024A (en) | Temperature measurement apparatus | |
US4361037A (en) | Device for electric monitoring of the level of a liquid in a container | |
EP0147700B1 (en) | Apparatus for temperature compensation in a digital data handling system | |
US7658539B2 (en) | Temperature sensor configuration detection in process variable transmitter | |
US4150573A (en) | Electronic digital thermometer | |
JPH0697169B2 (en) | Sensor signal temperature compensation method | |
JPH0379671B2 (en) | ||
US8874387B2 (en) | Air flow measurement device and air flow correction method | |
US12066335B2 (en) | Single calibration temperature based temperature sensing with differential signal generation | |
US20200386788A1 (en) | System And Method For Correcting Current Value Of Shunt Resistor | |
KR100323081B1 (en) | Engine control unit and air flow meter used in this unit | |
US4143549A (en) | Temperature measuring system | |
US20090067474A1 (en) | Adjusting method and system thereof for a temperature sensing element | |
JPH0133771B2 (en) | ||
JPH0333213B2 (en) | ||
US20020128791A1 (en) | Integrated circuit of an electronic thermometer | |
JPS6147371B2 (en) | ||
JPS5895230A (en) | Method and apparatus for electronic type temperature measurement | |
JP3410562B2 (en) | Temperature / wind speed measurement device | |
US20190293508A1 (en) | Means for implementing a method for detecting and compensating for a rapid temperature change in a pressure measuring cell | |
JP4011181B2 (en) | Measuring apparatus and measuring method | |
JP3210222B2 (en) | Temperature measuring device | |
JP2000214030A (en) | Pressure sensor circuit | |
US11402289B2 (en) | Means for implementing a method for detecting and compensating for a rapid temperature change in a pressure measuring cell | |
JPH0453574Y2 (en) |