JPS59197760A - Controller for refrigerator - Google Patents

Controller for refrigerator

Info

Publication number
JPS59197760A
JPS59197760A JP7334983A JP7334983A JPS59197760A JP S59197760 A JPS59197760 A JP S59197760A JP 7334983 A JP7334983 A JP 7334983A JP 7334983 A JP7334983 A JP 7334983A JP S59197760 A JPS59197760 A JP S59197760A
Authority
JP
Japan
Prior art keywords
temperature
circuit
digital
resistance
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7334983A
Other languages
Japanese (ja)
Other versions
JPH042865B2 (en
Inventor
小川 広志
押谷 克己
完次 磯道
村井 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7334983A priority Critical patent/JPS59197760A/en
Publication of JPS59197760A publication Critical patent/JPS59197760A/en
Publication of JPH042865B2 publication Critical patent/JPH042865B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 度が厳しく吸求される冷凍機に好適な冷凍機用制御装的
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a refrigerator suitable for a refrigerator in which suction is strictly performed.

海」二輪送用冷凍ユニノトなどのように温度調節範囲が
広<(−25℃〜+25℃)、かつ温度精度が厳しく要
求される冷凍機にあっては,温度制御のだめの温度検出
素子としては,通常高精度でかつ直線性にも優れている
白金側温抵抗体か1史用されているが,実用面から見た
場合2前記の欠点も有している。
For refrigerators that have a wide temperature control range (-25°C to +25°C) and require strict temperature accuracy, such as the two-wheeled refrigeration system "Umi", it is necessary to use a temperature sensing element for temperature control. However, from a practical point of view, it also has the drawbacks mentioned above, although platinum temperature resistors have been used for a long time because they are usually highly accurate and have excellent linearity.

(1)  極めて高価な素子であること。(1) It is an extremely expensive element.

(2)  温度係数が小さいため(約04Ω/’C)、
IJ−ド線の抵抗や接続部の接触抵抗の影響を受は易く
,逆に精度が落ちてし甘う場合があり。
(2) Because the temperature coefficient is small (approximately 04Ω/'C),
It is easily affected by the resistance of the IJ-wire and the contact resistance of the connection part, and the accuracy may deteriorate.

安定性(信頼性)の面で問題になる。This poses a problem in terms of stability (reliability).

(3)  上記(2)の欠点を改善する方法として,調
整段階で誤差抵抗分を補償する方法やブリノジ回路構成
(4線式)にする方法があるが,前者は振動,衝撃等環
境ストレスの影響による接触抵抗の変化に対すしては加
力であり,寸だ後者はもともと高価なものをさらに助長
きせる欠点をもつ。
(3) Methods to improve the drawback of (2) above include a method of compensating for error resistance in the adjustment stage and a method of using a Blinozi circuit configuration (4-wire type), but the former method is effective against environmental stresses such as vibration and shock. The change in contact resistance due to influence is due to the addition of force, and the latter has the disadvantage of making the already expensive product even more expensive.

本発明は,上記した点に鑑み提案されたもので,その目
的とするところは,温度調節の範囲が広く,かつ温度精
度が強く要求される冷凍機に使用する温度制御装置に関
し,安価,冒精度かつ面信頼度を有するものを具現化す
ることにある。
The present invention has been proposed in view of the above points, and its purpose is to provide an inexpensive and inexpensive temperature control device for use in refrigerators that have a wide temperature control range and require high temperature accuracy. The aim is to realize something that has accuracy and surface reliability.

本発明(l−t 、温度制御用の温度検出素子として。The present invention (lt) as a temperature detection element for temperature control.

冷凍機に要求きれる温度調節範囲における温度に対して
の出力特性として非直線性を有する素子を使用すると共
に同素子の特性を要求される温度調節範囲において要求
される精度で温度制御できるよう補正する補正手段を設
けたことを特徴とする冷凍機用制御装置を要旨とするも
ので、温度検出素子として、一般的に使用されている安
価で1通常、温度調節範囲が広く、温度精度が厳しく要
求される場合に、非直線性が目立ち、その丑までは精度
を確保できない温度に対して非直線性の出力特性を有す
る素子を使用し、この素子の非直線性の特性を補正手段
を設けて補正することによって精度面での問題をカバー
するようにしているため、安価で、高精度で、かつ信頼
性の高い制御装置を得ることができる。
An element with non-linearity is used as an output characteristic with respect to temperature in the temperature control range required for the refrigerator, and the characteristics of the element are corrected so that the temperature can be controlled with the required accuracy in the required temperature control range. The gist of this is a control device for a refrigerator, which is characterized by the provision of a correction means, and is generally used as a temperature detection element, is inexpensive, has a wide temperature control range, and requires strict temperature accuracy When non-linearity is noticeable and accuracy cannot be ensured up to that temperature, an element with non-linear output characteristics is used, and a means for correcting the non-linear characteristics of this element is provided. Since problems in terms of accuracy are covered by the correction, it is possible to obtain a control device that is inexpensive, highly accurate, and highly reliable.

以下7本発明を実施例に基いて説明する。The present invention will be explained below based on seven examples.

第1図乃至第4図において、lは圧縮機、2は凝縮器、
3は絞り装置、4け蒸発器であり以上により冷凍サイク
ルが構成されている。5は制御装置で、庫内空気6の温
度を検出するサーミスタ側温抵抗体7で検出された温度
とディジタル温度設定器9で設定された温度とから温度
制御回路8を介して圧縮機1をON・OF F制御する
ようになっている。なお、上記の冷凍サイクル及び制御
装置においては、関係部分のみを示し、他の部分は省略
されている。
In FIGS. 1 to 4, l is a compressor, 2 is a condenser,
3 is a throttle device and a 4-place evaporator, and the above constitutes a refrigeration cycle. Reference numeral 5 denotes a control device that controls the compressor 1 via a temperature control circuit 8 based on the temperature detected by the thermistor-side temperature resistance element 7 that detects the temperature of the indoor air 6 and the temperature set by the digital temperature setting device 9. It is designed for ON/OFF control. In addition, in the above-mentioned refrigeration cycle and control device, only relevant parts are shown and other parts are omitted.

第2図は温度検出回路で、vlは定電圧源、v2はブリ
ッジ出力電圧+ R4は直列抵抗、 Rtは庫内温度空
気抵抗、 AI)、はアナログ/ディジタル変換器+D
Jは非直線的な庫内温度ディジタル量を示す。
Figure 2 shows the temperature detection circuit, vl is the constant voltage source, v2 is the bridge output voltage + R4 is the series resistance, Rt is the internal temperature air resistance, AI) is the analog/digital converter + D
J indicates a non-linear internal temperature digital quantity.

第3図は温度補正回路で、補正温度ディジタル量記憶回
路10.直線化補正量選択回路11.加勢回路12を有
し、非直線的な庫内温度ディジタル量1)l弓 を直線
的な庫内温度ディジタル量Dtに補正する回路である。
FIG. 3 shows a temperature correction circuit, which includes a correction temperature digital quantity storage circuit 10. Linearization correction amount selection circuit 11. This circuit has an auxiliary circuit 12 and corrects a non-linear internal temperature digital quantity 1) to a linear internal temperature digital quantity Dt.

第4図は、温度比較回路で、庫内温度ディジタルM:D
tと設定温度ディジタル量D8を比較器Cで、庫内温度
ディジタル量1)tが大きい場合、圧縮機1に運転指令
を出し、小さい場合、停止と指令を出し、小さい場合、
停止と指令を出すようになっている。
Figure 4 shows the temperature comparison circuit, which measures the internal temperature digital M:D.
Comparator C compares t and set temperature digital quantity D8, and compares the internal temperature digital quantity 1) When t is large, an operation command is issued to the compressor 1, when it is small, a stop command is issued;
It is designed to issue commands to stop.

」二記構成において、冷凍機用制御装置50指令により
運転を行う圧縮機1により圧縮された高温高圧の冷媒ガ
スは凝綿器2にて放熱し、凝縮液化して絞シ装置3に至
る。ここで減圧はれた冷媒−蒸発器4に入υ、同蒸発器
4を流れる庫内空気6より熱を奪い、蒸発、気化して圧
縮機lに戻り冷凍サイクルを完了する。
In the above configuration, the high-temperature, high-pressure refrigerant gas compressed by the compressor 1, which is operated according to a command from the refrigerator control device 50, radiates heat in the condenser 2, is condensed and liquefied, and reaches the throttling device 3. The decompressed refrigerant enters the evaporator 4, absorbs heat from the internal air 6 flowing through the evaporator 4, evaporates and vaporizes, and returns to the compressor 1, completing the refrigeration cycle.

この間において、庫内空気6の庫内温度は・温度対M(
抗特性の非直線で温度係数が数+00Ω/Cと大きいサ
ーミスタ側温抵抗体7により抵抗どして感知きれる。こ
の感知された抵抗は温度制御回路8で変換検出され、デ
ィジタル温18設定器9の設定温度ディジタル量1)s
と比較される。
During this period, the internal temperature of the internal air 6 is - temperature vs. M (
It can be sensed through resistance by the thermistor-side temperature resistor 7, which has a non-linear resistance characteristic and a large temperature coefficient of several +00Ω/C. This sensed resistance is converted and detected by the temperature control circuit 8, and the set temperature digital quantity 1)s of the digital temperature 18 setting device 9 is detected.
compared to

庫内温度が設定温度ディジタル′fVj−D8よシ低く
なると温度制御回路8は圧縮機1の運転を停止させて冷
却運転を中止する。また外部よりの熱侵入等により庫内
温度が上昇し、設定温度ディジタル量D8より高くなる
と温度制御回路8は再度。
When the temperature inside the refrigerator becomes lower than the set temperature digital 'fVj-D8, the temperature control circuit 8 stops the operation of the compressor 1 and stops the cooling operation. Further, when the temperature inside the refrigerator rises due to heat intrusion from the outside and becomes higher than the set temperature digital amount D8, the temperature control circuit 8 is activated again.

圧縮機lの運転指令を出し冷却運転を再開する。Issue a command to operate compressor 1 and restart cooling operation.

以下に温度制御回路8の作用について第2図〜第4図に
より説明する。
The operation of the temperature control circuit 8 will be explained below with reference to FIGS. 2 to 4.

第2図(a)は温度検出回路で電源が投入され定電圧源
v1が作動するとブリノン出力電圧V2にはサーミスタ
測温抵抗体7によって感知された庫内温度空気抵抗i<
tと相関のある非直線的な電11Fが発生する。
FIG. 2(a) shows a temperature detection circuit in which when the power is turned on and the constant voltage source v1 is activated, the Brinon output voltage V2 is determined by the internal temperature air resistance i<
A non-linear electric current 11F is generated which is correlated with t.

第2図(b)は庫内温度空気抵抗R,tと庫内温度の関
係ケ表わし、第2図(、)は出力電圧v2と庫内温度の
関係(非直線的電圧)を表わし、第2図(d)はディジ
タルtDt+と庫内温度の関係(非直紳的肺内温度ティ
ジタル量)を表わしている。
Fig. 2 (b) shows the relationship between the internal temperature air resistance R, t and the internal temperature, and Fig. 2 (, ) shows the relationship between the output voltage v2 and the internal temperature (non-linear voltage). FIG. 2(d) shows the relationship between the digital tDt+ and the internal temperature (non-direct internal lung temperature digital quantity).

この回路においてブリッジ出力電圧V2は次式によって
決まる。
In this circuit, the bridge output voltage V2 is determined by the following equation.

ブリッジ出力電圧V2== なお、上式には本来、サーミスタ測温抵抗体7のリード
線抵抗及び接続部の接触抵抗が加味きれるが、温度係数
の大きいサーミスタ測温抵抗体7のため無視しても影響
がないことから省略しである。寸だ1本例では負性特性
の感温素子を使用している。
Bridge output voltage V2== Note that the above equation originally takes into account the lead wire resistance of the thermistor resistance temperature detector 7 and the contact resistance of the connection part, but since the thermistor resistance temperature detector 7 has a large temperature coefficient, it can be ignored. is also omitted as it has no effect. In this example, a temperature sensing element with negative characteristics is used.

さてこの温度と相関のある非直線的なブリッジ出力電圧
v2は、ディジタル温度設定器9の設定温度ディジタル
gDsと比較しレベルを合わせるためにアナログ/ディ
ジタル変換器A、Dlで庫内空気温度と相関のある非直
線的な庫内温度ディジタル1Dv1に変換される。次に
第3図(a)は温度補正回路で第2図(a)の温度検出
回路で検出された非直線的な庫内温度ディジタル量Dt
lは。
Now, the non-linear bridge output voltage v2, which is correlated with this temperature, is compared with the set temperature digital gDs of the digital temperature setting device 9, and in order to match the level, it is correlated with the internal air temperature using analog/digital converters A and Dl. is converted into a non-linear internal temperature digital value 1Dv1. Next, FIG. 3(a) shows a temperature correction circuit that calculates the non-linear internal temperature digital amount Dt detected by the temperature detection circuit of FIG. 2(a).
l is.

さらに直線的な設定温度ディジタル量Dsと比較しやす
くするために直線化補正量選択回路11に取り込捷れ、
直線化補正量選択回路11によって。
Furthermore, in order to facilitate comparison with the linear set temperature digital amount Ds, it is taken into the linearization correction amount selection circuit 11,
By the linearization correction amount selection circuit 11.

あらかじめ標準のサーミスタ測温抵抗体7の直線からの
温度誤差量を規定しである補正温度ディジタル量記憶回
路10より、非直線的な庫内温度ディジタル量DJに応
じだ補正温度ディジタル量を選択し、加算器回路12に
て非直線な庫内温度ディジタル量DJ と加算して直線
的な庫内温度ディジタル量Dtに補正される。第3図(
1))は庫内温度ディジタル量Dtと庫内温度の関係(
直線的庫内温度ディジタル量)を表わす。−次に第4図
は比較回路で第3図(a)の温度補正回路で直線補正さ
れた庫内温度ディンタル量1)tは設定器。
A correction temperature digital amount is selected according to the non-linear internal temperature digital amount DJ from the correction temperature digital amount storage circuit 10 which predefines the temperature error amount from the straight line of the standard thermistor resistance temperature detector 7. , is added to the non-linear internal temperature digital quantity DJ in the adder circuit 12 to correct it into a linear internal temperature digital quantity Dt. Figure 3 (
1)) is the relationship between the internal temperature digital quantity Dt and the internal temperature (
Represents the linear internal temperature (digital quantity). - Next, FIG. 4 shows a comparator circuit, and t is a setter for the internal temperature digital value linearly corrected by the temperature correction circuit shown in FIG. 3(a).

族ディンタル量Daと比較器Cで比較され、庫内温度デ
ィジタル量Dtが大きい場合は圧縮機1に運転指令を出
す。まだ小でい場合は圧縮機1に停刊二指令を出して温
度制御を行う。
A comparator C compares the digital value Da with the internal temperature digital value Dt, and issues an operation command to the compressor 1 if the internal temperature digital value Dt is large. If it is still small, a stop command is issued to compressor 1 to control the temperature.

以上のように本実施例では、安価で、かつ温度係数が大
きい特性を有するサーミスタ測温抵抗体を快いディジタ
ル補正を施した制御装置を用いているため下記効果が得
られる。
As described above, this embodiment uses a control device in which a thermistor resistance temperature detector, which is inexpensive and has a characteristic of a large temperature coefficient, is subjected to easy digital correction, so that the following effects can be obtained.

(1)  白金測温抵抗体使用時と同等程度の精度がイ
!Iられる。
(1) Accuracy equivalent to when using a platinum resistance thermometer! I get caught.

(2)リード線抵抗及び接続部抵抗による温度誤差がな
くなり安定性(信頼性)が向上する。
(2) Temperature errors due to lead wire resistance and connection resistance are eliminated, and stability (reliability) is improved.

(3)  安価な温度検出素子を使用するため全体とし
ても低コスト化がはかれる。
(3) Since an inexpensive temperature detection element is used, the overall cost can be reduced.

なお、上記実施例でfd 、温度検出素子としてサーミ
スタ測温抵抗体を例に説明したが、必らずしもこれに限
定ぜす、温度係数が大きくリード線及び接続部の接触抵
抗の影響の少ない素子であれば構わない。まだ素子とし
て温度に対する出力が「抵抗変化」のものに限定する必
要ななく1例えば半導体湿度検出素子のように出力がr
 ’+i圧変化」のものであっても構わない。
In the above embodiments, a thermistor resistance temperature detector was used as an example of the fd and temperature detection element, but it is not necessarily limited to this. It does not matter if the number of elements is small. It is not necessary to limit the output to "resistance change" as an element with respect to temperature.
It may be '+i pressure change'.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示すもので、第
1図は冷凍機の構成図、第2図(a)。 (b) 、 (c) 、 (d)は温度検出回路を示を
図で、(a)は回路図、(b)は庫内温度空気抵抗と外
内温度との関係を示す図、(C)は出力電圧と庫内温度
との関係を示す図、(d)は非直線的なディンタル邦、
と庫内温度との関係を示す図、第3図(−)、(b)は
温度補正回路を示す図で、(a)は回路図、(b)は直
線的なディジタル量と庫内温度との関係を示す図、第4
図は温度比較回路の回路図である。 1゛圧縮、2:凝縮器、3°絞シ装置、4二蒸発器、5
 制御装置、7 サーミスタ41]j温抵抗体、8:温
度制御回路、9゛デイジタル流設定器、10°補正温度
ディジタル量記憶回路。 11  直線化補正量選択回路、12′加鏝回路。
1 to 4 show an embodiment of the present invention, in which FIG. 1 is a block diagram of a refrigerator, and FIG. 2 (a). (b), (c), and (d) are diagrams showing the temperature detection circuit, (a) is a circuit diagram, (b) is a diagram showing the relationship between internal temperature air resistance and outside internal temperature, and (C ) is a diagram showing the relationship between output voltage and internal temperature, (d) is a diagram showing the relationship between output voltage and internal temperature,
Figure 3 (-) and (b) are diagrams showing the temperature correction circuit, (a) is a circuit diagram, and (b) is a linear digital quantity and internal temperature. Diagram showing the relationship between
The figure is a circuit diagram of a temperature comparison circuit. 1. Compression, 2. Condenser, 3° throttling device, 4.2 evaporator, 5.
Control device, 7 thermistor 41]j temperature resistance element, 8: temperature control circuit, 9゛digital flow setting device, 10゛corrected temperature digital quantity storage circuit. 11 Linearization correction amount selection circuit, 12' Addition trowel circuit.

Claims (1)

【特許請求の範囲】[Claims] 温度制御用の温度検出素子として、冷凍機に要求される
温度調節範囲における温度に対しての出力特性として非
直線性を有する素子を使用すると共に同素子の特性を要
求される温度調節範囲において安来される精度で温度制
御できるよう補正する補正手段を設けたことを特徴とす
る冷凍機用制御装置。
As a temperature detection element for temperature control, we use an element that has nonlinear output characteristics with respect to temperature in the temperature control range required for the refrigerator, and also 1. A control device for a refrigerator, characterized in that a correction means is provided for correcting the temperature so that temperature control can be performed with accuracy.
JP7334983A 1983-04-26 1983-04-26 Controller for refrigerator Granted JPS59197760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7334983A JPS59197760A (en) 1983-04-26 1983-04-26 Controller for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7334983A JPS59197760A (en) 1983-04-26 1983-04-26 Controller for refrigerator

Publications (2)

Publication Number Publication Date
JPS59197760A true JPS59197760A (en) 1984-11-09
JPH042865B2 JPH042865B2 (en) 1992-01-21

Family

ID=13515593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7334983A Granted JPS59197760A (en) 1983-04-26 1983-04-26 Controller for refrigerator

Country Status (1)

Country Link
JP (1) JPS59197760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217159A (en) * 1988-02-24 1989-08-30 Sanyo Electric Co Ltd Operation protection device for refrigerating plant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111039U (en) * 1979-01-31 1980-08-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111039U (en) * 1979-01-31 1980-08-04

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217159A (en) * 1988-02-24 1989-08-30 Sanyo Electric Co Ltd Operation protection device for refrigerating plant

Also Published As

Publication number Publication date
JPH042865B2 (en) 1992-01-21

Similar Documents

Publication Publication Date Title
US5339680A (en) System and method for sensing temperature
KR930003925B1 (en) Automatic control method of separated air conditioners
JPH0625560B2 (en) Engine controller
JPS58131329A (en) Fuel injection controlling method
JPS59197760A (en) Controller for refrigerator
CN110987241B (en) Fault detection method and device for outer machine temperature sensing bulb and air conditioning unit
JPH03160131A (en) Fuel injection controller
JPWO2019225072A1 (en) Physical quantity detector
JP2681569B2 (en) Intake air flow rate detection device for internal combustion engine
JP2658656B2 (en) humidifier
US6756571B2 (en) System and method for compensation of contamination of a heated element in a heated element gas flow sensor
JPH066218A (en) A/d converter with temperature compensating function
JPS63156978A (en) Refrigerating air conditioner
JPH09324955A (en) Refrigerating device
JP2001174304A (en) Sensor with built-in arithmetic device
KR100412448B1 (en) Compensation method of air charging efficiency for automobile HFM use
JPH0633824A (en) Intake air flow date detecting device for internal combustion engine
US7545181B2 (en) Reduced offset voltage comparator system
JPH06323609A (en) Temperature input circuit of controller for refrigerating air-conditioning
JPH0633825A (en) Intake air flow rata detecting device for internal combustion engine
JPH0797944A (en) Adapting and adjusting method of starting injection time to outside air pressure
JPH05149185A (en) Intake air flow rate detecting device for internal combustion engine
JPH0812096B2 (en) Intake air flow rate detection device for internal combustion engine
JPS59168651U (en) air conditioner
JPH05288113A (en) Sucked air flow detection apparatus for internal combustion engine