JPH04285109A - Converter refining method - Google Patents

Converter refining method

Info

Publication number
JPH04285109A
JPH04285109A JP5169591A JP5169591A JPH04285109A JP H04285109 A JPH04285109 A JP H04285109A JP 5169591 A JP5169591 A JP 5169591A JP 5169591 A JP5169591 A JP 5169591A JP H04285109 A JPH04285109 A JP H04285109A
Authority
JP
Japan
Prior art keywords
oxygen
converter
refining
nozzle
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5169591A
Other languages
Japanese (ja)
Inventor
Minoru Ishikawa
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5169591A priority Critical patent/JPH04285109A/en
Publication of JPH04285109A publication Critical patent/JPH04285109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To improve the efficiency of converter refining by specifying the pressure at the main of upward blow oxygen, the diameter of an upward blow lance nozzle and the flow rate of oxygen. CONSTITUTION:In converter refining where decarburization, dephosphorization, elevating temp., etc., are carried out by blowing oxygen to molten iron and molten steel in a converter through an upward blow lance, the pressure P0 at the main of upward blow oxygen and the diameters D1 D2 of upward blow lance nozzles are controlled to a proper value, refining is performed so that the flow rate of oxygen may be commensurate with the rate of decarburization. Thereby the efficiency of decarburization can be improved and slag and the concentration of oxygen in steel can be decreased without causing metal to stick to the nozzles to prevent trouble in blow smelting oxygen converter steelmaking.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、転炉精練方法、特に、
転炉内の溶銑または溶鋼に上吹きランスを介して酸素を
吹き込んで脱炭・脱りん・昇温等を行う転炉精練方法に
関する。
[Industrial Field of Application] The present invention relates to a converter scouring method, in particular,
The present invention relates to a converter refining method in which oxygen is blown into hot metal or molten steel in a converter through a top blowing lance to decarburize, dephosphorize, raise temperature, etc.

【0002】0002

【従来の技術】高炉で製造された溶銑を原料として鋼を
製造する精錬炉としては、現在、転炉が最も一般的に採
用されている。特に、上吹き転炉精練方法は、炉内の溶
銑または溶鋼に上吹きランスを介して超音速酸素ジェッ
トを吹き付けることによって脱炭・脱りん等の精錬反応
および昇温を効率良く行う精錬方法である。
BACKGROUND OF THE INVENTION At present, a converter is most commonly used as a refining furnace for producing steel from hot metal produced in a blast furnace. In particular, the top-blown converter smelting method is a smelting method that efficiently performs refining reactions such as decarburization and dephosphorization, as well as temperature increases, by blowing a supersonic oxygen jet onto hot metal or molten steel in the furnace through a top-blowing lance. be.

【0003】転炉の上吹きランスには一般的にラバール
ノズルが用いられている。図1に、ラバールノズルの横
向き断面を模式的に示すが、このラバールノズル10は
スロート部12と末広がり部14から成り、図中、矢印
で示すように外部酸素供給源 (図示せず) からの酸
素はノズル口16を経て炉内溶鋼表面に向かって超音速
で吹付けられる。その際、効率的に酸素を転炉内に吹き
込むためにはノズルスロート径D1、出口径D2、酸素
元圧P0、炉内雰囲気圧P2を下式(1) を満足する
ように定める必要があると言われている。(「鉄と鋼」
62(1976)p.1795)
[0003] A Laval nozzle is generally used for the top blowing lance of a converter. FIG. 1 schematically shows a horizontal cross section of a Laval nozzle. This Laval nozzle 10 consists of a throat section 12 and a flared section 14, and oxygen from an external oxygen supply source (not shown) is supplied as indicated by the arrow in the figure. It is sprayed at supersonic speed through the nozzle port 16 toward the surface of the molten steel in the furnace. At this time, in order to efficiently blow oxygen into the converter, it is necessary to set the nozzle throat diameter D1, outlet diameter D2, oxygen source pressure P0, and furnace atmospheric pressure P2 to satisfy the following formula (1). It is said that (“Iron and Steel”
62 (1976) p. 1795)

【0004】0004

【化2】[Case 2]

【0005】一般的に、P2は1気圧であるから、ノズ
ル形状(D1 、D2) が決まれば式(1))からも
酸素元圧P0はほぼ一義的に決まってしまう。通常のノ
ズル形状では酸素元圧P0はほぼ5〜11気圧 (5〜
11kg/cm2) と言われている。
Generally, P2 is 1 atm, so once the nozzle shape (D1, D2) is determined, the oxygen source pressure P0 is almost uniquely determined from equation (1). With a normal nozzle shape, the oxygen source pressure P0 is approximately 5 to 11 atm (5 to
11kg/cm2).

【0006】従って、通常、転炉においては上吹きO2
流量の可変幅は非常に小さく、設計酸素流量の±30%
程度である。特にP0を低くして供給酸素量を少なくす
ることは従来困難であった。
[0006] Therefore, normally, top-blown O2 is used in converters.
The variable range of flow rate is very small, ±30% of the designed oxygen flow rate.
That's about it. In particular, it has been difficult to reduce the amount of oxygen supplied by lowering P0.

【0007】一方、図2に精錬期間中の脱炭速度の変動
を模式的にグラフで示すが、上吹酸素精錬に際しての溶
銑または溶鋼の脱炭速度は、特に精錬初期および精錬末
期の精錬中大幅に変動することから、精錬初期および末
期には酸素効率の低下、スラグおよび溶鋼中の酸素量の
上昇等の問題があった。
On the other hand, FIG. 2 is a graph schematically showing the fluctuations in the decarburization rate during the refining period. Because of the large fluctuations, there were problems such as a decrease in oxygen efficiency and an increase in the amount of oxygen in slag and molten steel during the initial and final stages of refining.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、前述
の問題点を解消すると共に鋼中[O] の低減をはかり
、FeおよびMnの歩留を向上できる転炉精錬方法を提
供することである。
[Problems to be Solved by the Invention] An object of the present invention is to provide a converter refining method that solves the above-mentioned problems, reduces [O] in steel, and improves the yield of Fe and Mn. It is.

【0009】本発明の他の目的は、酸素流量の可変幅を
可及的に大きくすることによって特に精錬初期および精
錬末期の酸素効率の改善を図ることのできる転炉精錬方
法を提供することである。
Another object of the present invention is to provide a converter refining method that can improve the oxygen efficiency particularly at the initial stage and final stage of refining by widening the variable range of the oxygen flow rate as much as possible. be.

【0010】0010

【課題を解決するための手段】前記目的を達成するため
、本発明者は、上吹ランスの酸素流量の可変幅を広げる
ことにより、特に精錬初期および精錬末期の酸素効率の
向上、スラグおよび溶鋼中の酸素の低減を実現すべく、
種々検討した結果、次の2つの事実を発見した。
[Means for Solving the Problems] In order to achieve the above object, the present inventor has aimed to improve the oxygen efficiency, especially in the initial and final stages of refining, and to eliminate slag and molten steel by widening the variable range of the oxygen flow rate of the top blowing lance. In order to reduce the amount of oxygen inside,
As a result of various studies, we discovered the following two facts.

【0011】(i) ある一定の酸素元圧Po (例え
ば10kg/cm2・G)において前述の(1) 式を
満足するノズルをPoより低い圧力 (例えば6kg/
cm2・G)において使用した場合はジェットの不安定
、ノズル内の地金付のトラブルが起こり易いが、反対に
このPoより高い圧力 (例えば15kg/cm2・G
)において使用した場合は前記のようなトラブルが起こ
り難い。
(i) A nozzle that satisfies the above equation (1) at a certain original oxygen pressure Po (for example, 10 kg/cm2.G) is operated at a pressure lower than Po (for example, 6 kg/cm2.G).
cm2・G), jet instability and problems with metal attachment inside the nozzle are likely to occur;
), the above-mentioned troubles are unlikely to occur.

【0012】(ii)非常に低い酸素元圧 (例えば4
kg/cm2・G)で酸素上吹をした場合、たとえその
ノズルが(1) 式を満足していてもノズル内の地金付
着のトラブルが発生することが多い。
(ii) Very low oxygen source pressure (eg 4
When top-blowing oxygen at a rate of 1 kg/cm2・G), trouble often occurs with metal adhesion inside the nozzle, even if the nozzle satisfies equation (1).

【0013】これらの事実を踏まえ、本発明者は、従来
使用されていなかった高圧のPo(13kg/cm2・
G 以上) のもとでノズル形状を適正な値とすれば上
吹酸素の可変幅をトラブルなしに広くできることを見出
し、本発明を完成した。
Based on these facts, the present inventor developed a high-pressure Po (13 kg/cm2.
G or higher), the inventors have discovered that if the nozzle shape is set to an appropriate value, the variable range of top-blown oxygen can be widened without any trouble, and the present invention has been completed.

【0014】ここに、本発明は、転炉内の溶銑または溶
鋼に上吹ランスを介して酸素を吹き込んで行う転炉精錬
において、上吹ランスから吹き込む酸素の元圧Poを全
精錬時間の60%以上にわたり13kg/cm2・G 
以上とすることを特徴とする転炉精錬方法である。
[0014] Here, the present invention provides that, in converter refining in which oxygen is blown into hot metal or molten steel in a converter through a top blowing lance, the original pressure Po of oxygen blown from the top blowing lance is kept at 60% of the total refining time. 13kg/cm2・G over %
This is a converter refining method characterized by the above.

【0015】本発明の好適態様によれば、前記上吹ラン
スのラバールノズルのスロート径D1、出口径D2の比
D1/D2を下記式を満足するように定める。
According to a preferred embodiment of the present invention, the ratio D1/D2 of the throat diameter D1 and the outlet diameter D2 of the Laval nozzle of the top blowing lance is determined so as to satisfy the following formula.

【0016】[0016]

【化3】[Chemical formula 3]

【0017】[0017]

【作用】本発明の構成と作用を説明する。[Operation] The structure and operation of the present invention will be explained.

【0018】本発明において、酸素元圧P0を13kg
/cm2・G 以上としたのは、それ未満であると酸素
流量を低下した場合の酸素元圧が低くなってノズルへの
地金付のトラブルが生じ、その結果、酸素流量の可変幅
が狭くなってしまうからである。
In the present invention, the oxygen source pressure P0 is set to 13 kg.
/cm2・G or more is because if it is less than that, the oxygen source pressure will be low when the oxygen flow rate is reduced, causing trouble with attaching the metal to the nozzle, and as a result, the variable range of the oxygen flow rate will be narrow. This is because it will become.

【0019】特に、酸素元圧の上限はないが、一般には
25kg/cm2・G 超になると設備の大幅な改造が
必要となるので、経済的にもコスト高を招くので好まし
くない。
In particular, although there is no upper limit to the original oxygen pressure, in general, if it exceeds 25 kg/cm 2 ·G, it will require major modification of the equipment, which is not preferable from an economic standpoint, as it will lead to higher costs.

【0020】本発明の好適態様によれば、以下に定義す
るR値の値の下限を1.1 とするが、このR値は超音
速ジェットの安定性を表す指標であって、その値が1.
1 未満であると酸素流量を低下した場合のジェットが
不安定になり易く、その結果、流量の可変幅が狭くなる
からであり、一方、R値の上限を1.5 としたのは、
その値が1.5 超であると(1) 式で示されるノズ
ルの適正形状からの隔たりが大きくなる結果、剥離現象
が生じ、ジェットが不安定となるからである。
According to a preferred embodiment of the present invention, the lower limit of the R value defined below is set to 1.1, and the R value is an index representing the stability of a supersonic jet, and its value is 1.
If it is less than 1, the jet tends to become unstable when the oxygen flow rate is lowered, and as a result, the variable range of the flow rate becomes narrower.On the other hand, the upper limit of the R value is set to 1.5 because
This is because if the value exceeds 1.5, the distance from the proper shape of the nozzle shown by equation (1) increases, resulting in a peeling phenomenon and the jet becoming unstable.

【0021】[0021]

【化4】[C4]

【0022】図3に示すのは上記剥離現象を模式的に説
明する図であって、ノズル先端からの酸素ジェット18
がノズル内面19から剥離したようになって途中から絞
られた状態で吹き出される状態をいい、このような剥離
部20が見られると酸素ジェット18の流れは非常に不
安定となる。
FIG. 3 is a diagram schematically explaining the above-mentioned peeling phenomenon, and shows the oxygen jet 18 from the nozzle tip.
This refers to a state in which the oxygen jet 18 appears to have peeled off from the nozzle inner surface 19 and is blown out in a constricted state from the middle. If such a peeled part 20 is observed, the flow of the oxygen jet 18 becomes extremely unstable.

【0023】前述の式(1) による操業を行う場合に
はR 値は1となる。このとき酸素ジェットは最も安定
となる。
[0023] When operating according to the above-mentioned formula (1), the R value is 1. At this time, the oxygen jet becomes most stable.

【0024】本発明において酸素元圧P0を13kg/
cm2・G 以上とした操業は、全精錬時間の60%以
上にわたって維持するが、それ未満の精練時間であると
酸素流量が少なくなってしまい、転炉の生産性の低下を
きたすためである。
In the present invention, the oxygen source pressure P0 is set to 13 kg/
The operation at cm2·G or more is maintained for 60% or more of the total refining time, but if the refining time is shorter than that, the oxygen flow rate will decrease and the productivity of the converter will decrease.

【0025】転炉操業を吹錬初期、中期、そして末期に
分けて考えると、本発明の好適態様によれば、吹錬中期
における脱炭速度の最も大きな期間に上述のような高い
酸素元圧での吹錬を行うと、酸素効率の高い吹錬が可能
となり、MnやFeの歩留りが大幅に改善される。
When converter operation is divided into the initial, middle, and final stages of blowing, according to a preferred embodiment of the present invention, the above-mentioned high oxygen source pressure is When blowing is carried out, blowing with high oxygen efficiency becomes possible, and the yield of Mn and Fe is greatly improved.

【0026】[0026]

【実施例】本発明を実施例により具体的に説明する。[Example] The present invention will be explained in detail with reference to Examples.

【0027】実施例1 転炉に溶銑250Tを装入し、底吹ノズルよりArを1
000Nm3/hr吹き込みつつ、図1に示す上吹きラ
ンスからは表1に示すランス形状および吹錬条件で17
分間精錬した。
Example 1 250T of hot metal was charged into a converter, and 1 ton of Ar was applied from the bottom blowing nozzle.
While blowing at 000Nm3/hr, from the top blowing lance shown in Fig. 1, the lance shape and blowing conditions shown in Table 1 were used.
Refined for a minute.

【0028】本発明方法および比較例1〜3での溶鋼〔
%C〕=0.04%における溶鋼中酸素はそれぞれ42
0ppm、450ppm、550ppm、510ppm
と本発明方法が最も低かった。溶鋼中酸素が少なければ
それだけMn、Feの歩留り改善も図られる。
[0028] Molten steel in the method of the present invention and Comparative Examples 1 to 3 [
%C] = 0.04%, the oxygen in the molten steel is 42
0ppm, 450ppm, 550ppm, 510ppm
The method of the present invention had the lowest result. The less oxygen there is in molten steel, the more the yield of Mn and Fe can be improved.

【0029】また比較例1においては上吹ランスのノズ
ル内に地金付着が見られた。
Further, in Comparative Example 1, metal adhesion was observed inside the nozzle of the top blowing lance.

【0030】実施例2 転炉に溶銑250Tを装入し、実施例1と同様の底吹条
件で表1に示したランス形状および吹錬条件で精錬した
Example 2 250T of hot metal was charged into a converter and refined under the same bottom blowing conditions as in Example 1, with the lance shape and blowing conditions shown in Table 1.

【0031】本発明法および比較例での〔%C〕=0.
04%における溶鋼中酸素はそれぞれ405ppm、4
35ppmであった。また比較例においては、R 値が
1.1 未満であったため、上吹ランスのノズル内に地
金付着が見られた。
[%C]=0.
Oxygen in molten steel at 0.04% is 405 ppm and 4%, respectively.
It was 35 ppm. Furthermore, in the comparative example, since the R value was less than 1.1, metal adhesion was observed inside the nozzle of the top blowing lance.

【0032】[0032]

【表1】[Table 1]

【0033】[0033]

【発明の効果】本発明は、以上説明したように構成され
ているから、上吹酸素の元圧Po、上吹ランスのノズル
径D1、D2を適正な値にコントロールしつつ酸素流量
を脱炭速度に見合った値とすることにより、ノズルへの
地金付着を起こさずに脱炭酸素効率の向上、スラグおよ
び鋼中酸素濃度の低減が可能となり、産業上きわめて有
用である。
Effects of the Invention Since the present invention is configured as described above, the oxygen flow rate can be decarburized while controlling the original pressure Po of top-blown oxygen and the nozzle diameters D1 and D2 of the top-blowing lance to appropriate values. By setting a value commensurate with the speed, it is possible to improve decarburization oxygen efficiency and reduce the oxygen concentration in slag and steel without causing metal adhesion to the nozzle, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明において使用するラバールノズルの構造
を示す略式断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a Laval nozzle used in the present invention.

【図2】転炉精錬の全期間に亘っての脱炭速度の変化を
概略で示すグラフである。
FIG. 2 is a graph schematically showing the change in decarburization rate over the entire period of converter refining.

【図3】ジェットの剥離現象の略式説明図である。FIG. 3 is a schematic illustration of a jet separation phenomenon.

【符号の説明】[Explanation of symbols]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  転炉内の溶銑または溶鋼に上吹ランス
を介して酸素を吹き込んで行う転炉精錬において、上吹
ランスから吹き込む酸素の元圧Poを全精錬時間の60
%以上にわたり13kg/cm2・G 以上とすること
を特徴とする転炉精錬方法。
Claim 1: In converter refining by blowing oxygen into hot metal or molten steel in a converter through a top blowing lance, the original pressure Po of oxygen blown from the top blowing lance is set to 60% of the total refining time.
% or more and 13 kg/cm2・G or more.
【請求項2】  前記上吹ランスのラバールノズルのス
ロート径D1、出口径D2の比D1/D2を下式を満足
するように定める請求項1記載の転炉精錬方法。 【化1】
2. The converter refining method according to claim 1, wherein the ratio D1/D2 of the throat diameter D1 and the outlet diameter D2 of the Laval nozzle of the top blowing lance is determined to satisfy the following formula. [Chemical formula 1]
JP5169591A 1991-03-15 1991-03-15 Converter refining method Withdrawn JPH04285109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5169591A JPH04285109A (en) 1991-03-15 1991-03-15 Converter refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5169591A JPH04285109A (en) 1991-03-15 1991-03-15 Converter refining method

Publications (1)

Publication Number Publication Date
JPH04285109A true JPH04285109A (en) 1992-10-09

Family

ID=12894039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5169591A Withdrawn JPH04285109A (en) 1991-03-15 1991-03-15 Converter refining method

Country Status (1)

Country Link
JP (1) JPH04285109A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202148A (en) * 2000-11-16 2008-09-04 Jfe Steel Kk Method for blowing oxygen in converter
JP2013091847A (en) * 2011-10-04 2013-05-16 Jfe Steel Corp Blowing method of converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008202148A (en) * 2000-11-16 2008-09-04 Jfe Steel Kk Method for blowing oxygen in converter
JP2013091847A (en) * 2011-10-04 2013-05-16 Jfe Steel Corp Blowing method of converter

Similar Documents

Publication Publication Date Title
ES8101648A1 (en) Converter steelmaking process.
GB2122649A (en) Production of ultra-low phosphorous steel
WO2002040721A1 (en) Converter oxygen blowing method and upward blowing lance for converter oxygen blowing
JPH04285109A (en) Converter refining method
JP3410553B2 (en) Decarburization refining method of chromium-containing molten steel
JP3345677B2 (en) Hot metal dephosphorization method
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JPH0941018A (en) Decarburize-refining method of chromium-containing molten steel and top-blowing lance for refining gas
CN113699301B (en) Converter smelting method for improving energy production by adopting high-flow oxygen
JP2002249814A (en) Method for producing low phosphorus molten iron
US4592778A (en) Steelmaking of an extremely low carbon steel in a converter
JP2767674B2 (en) Refining method of high purity stainless steel
US4292073A (en) Steel making process
JPS6358203B2 (en)
JPH05195037A (en) Top blowing oxygen lance in converter
JPS6112812A (en) Method for decarburizing stainless steel
JPH04160109A (en) Refining method in converter
JP2561032Y2 (en) Lance for steel making
JPH06158142A (en) Vacuum decarburization refining apparatus for high chrome steel
JP3153983B2 (en) Melting method for high purity stainless steel
JPH0243311A (en) Steel making method
JPS5928608B2 (en) Manufacturing method of ultra-low carbon, nitrogen-rich chromium steel
JPS6447833A (en) Production of medium and low carbon ferromanganese
JPH0860220A (en) Efficient converter refining method for low carbon steel
JP2000212626A (en) Top-blown refining in pressurizing type converter steelmaking

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514