JP2002249814A - Method for producing low phosphorus molten iron - Google Patents

Method for producing low phosphorus molten iron

Info

Publication number
JP2002249814A
JP2002249814A JP2001389696A JP2001389696A JP2002249814A JP 2002249814 A JP2002249814 A JP 2002249814A JP 2001389696 A JP2001389696 A JP 2001389696A JP 2001389696 A JP2001389696 A JP 2001389696A JP 2002249814 A JP2002249814 A JP 2002249814A
Authority
JP
Japan
Prior art keywords
hot metal
oxygen
bath surface
dephosphorization
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001389696A
Other languages
Japanese (ja)
Inventor
Eiju Matsuno
英寿 松野
Takeshi Murai
剛 村井
Yoshiteru Kikuchi
良輝 菊地
Atsushi Watanabe
敦 渡辺
Eiji Sakurai
栄司 櫻井
Shinichi Wakamatsu
信一 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001389696A priority Critical patent/JP2002249814A/en
Priority to CN02823559.2A priority patent/CN1596316A/en
Priority to PCT/JP2002/008604 priority patent/WO2004020677A1/en
Priority claimed from PCT/JP2002/008604 external-priority patent/WO2004020677A1/en
Priority to TW091119784A priority patent/TW550295B/en
Publication of JP2002249814A publication Critical patent/JP2002249814A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/36Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing low phosphorus molten iron with which even when using flux containing no F source such as CaF2 , dephosphorization in the molten iron can efficiently be performed. SOLUTION: In the method for producing the low phosphorus molten iron, with which the dephosphorization is performed by adding the flux as CaO source into a vessel holding the molten iron and also, supplying gaseous oxygen and/or solid oxygen source as the oxygen source, at least a part of the flux to be added in the vessel, is added into the vessel by blowing a carrier gas onto bath surface while using the carrier gas from the upper part of the bath surface in the vessel. Then, it is satisfied that a supplying speed A of the gaseous oxygen conversion in the above oxygen source supplied into the vessel to a supplying speed B of the CaO conversion in the flux blown onto the bath surface by using this carrier gas is 0.3<=A/B<=7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶銑の予備処理と
して行われる脱燐処理により低燐溶銑を効率的に製造す
るための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently producing low-phosphorus hot metal by a dephosphorization treatment performed as a pretreatment of hot metal.

【0002】[0002]

【従来の技術】従来、溶銑段階で予備脱燐を行って溶銑
中のPをある程度除去した後、転炉で脱炭吹錬を実施す
る製鋼方法が発展してきた。この予備脱燐処理はトーピ
ード、溶銑鍋、転炉等の設備を用い、CaO系媒溶剤と
気体酸素や固体酸素源(例えば、酸化鉄)等の酸素源を
添加して行われる。この脱燐処理の際に溶銑からスラグ
側にPを効率的に移行させるためには、スラグの組成や
スラグ量等の制御が重要な因子となる。
2. Description of the Related Art Conventionally, a steelmaking method has been developed in which dephosphorization is performed at a hot metal stage to remove P in the hot metal to some extent, and then decarburization blowing is performed in a converter. This preliminary dephosphorization treatment is performed by using equipment such as a torpedo, a hot metal pot, and a converter, and adding a CaO-based medium solvent and an oxygen source such as gaseous oxygen or a solid oxygen source (for example, iron oxide). In order to efficiently transfer P from the hot metal to the slag side during the dephosphorization treatment, control of the slag composition, slag amount, and the like is an important factor.

【0003】特に、媒溶剤にCaFを添加すること
で、スラグの融体性が向上する、SiOのネット
ワークを分断してCaイオンの活量が増加する、Fe
Oの活量が増加する、等の作用が得られることが従来か
ら指摘されており、実操業でも脱燐の反応性を高めるた
めにCaFが広く使用されている。例えば、特公平6
−17496号公報では、添加CaOと酸素Oの重量比
CaO/O以外に[CaF+Al]/CaO及
びAl/CaFの各重量比を規定し、CaF
添加により脱燐効率を向上させる技術が開示されてい
る。
[0003] In particular, by adding CaF 2 to a solvent medium, the meltability of slag is improved, the activity of Ca ions is increased by dividing the SiO 2 network,
It has been pointed out that an effect such as an increase in the activity of O can be obtained, and CaF 2 is widely used in actual operations to enhance the reactivity of dephosphorization. For example, Tokuho 6
In Japanese Patent No. 17496, each weight ratio of [CaF 2 + Al 2 O 3 ] / CaO and Al 2 O 3 / CaF 2 is defined in addition to the weight ratio of added CaO and oxygen O, CaO / O, and CaF 2
A technique for improving the dephosphorization efficiency by addition is disclosed.

【0004】ところが、最近では環境保護の観点から、
スラグ中Fの溶出量の規制基準が強化される状況にあ
り、このため脱燐スラグ中のF濃度を極限まで低下させ
る必要が生じている。このためCaF等のF源を使わ
ない脱燐処理技術の開発が強く望まれているが、現状で
はスラグを低塩基度化してスラグ量を極端に多くした操
業を行うとか、多重処理を実施する等の方法を行ってい
るのが実情である。しかし、前者のように脱燐スラグ量
が極端に増大することは、環境保護の面から強く望まれ
ているスラグ量削減というニーズに逆行するものであ
り、また、後者のように多重処理を実施することは生産
性の低下と溶鋼の製造コストの上昇を招く問題があり、
したがって、これらは抜本的な対策にはなり得ない。
However, recently, from the viewpoint of environmental protection,
Regulation standards for the amount of F eluted in slag are being strengthened, and it is necessary to reduce the F concentration in dephosphorized slag to the utmost. Therefore, there is a strong demand for the development of a dephosphorization treatment technique that does not use an F source such as CaF 2. However, at present, slag is made to have a low basicity and operation with an extremely large amount of slag is carried out, or multiple treatments are carried out. It is the actual situation that the method of doing is performed. However, the extreme increase in the amount of dephosphorized slag, as in the former case, goes against the need to reduce the amount of slag, which is strongly demanded from the viewpoint of environmental protection. Doing so has the problem of lowering productivity and increasing the production cost of molten steel,
Therefore, they cannot be a drastic measure.

【0005】[0005]

【発明が解決しようとする課題】したがって本発明の目
的は、このような従来技術の課題を解決し、CaF
どのF源を含まない媒溶剤を用いた場合でも溶銑脱燐を
効率的に行うことができる低燐溶銑の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to efficiently perform hot metal dephosphorization even when a medium solvent not containing an F source such as CaF 2 is used. An object of the present invention is to provide a method for producing low-phosphorus hot metal that can be performed.

【0006】[0006]

【課題を解決するための手段】本発明者らは、CaF
(蛍石)などのF源を使用することなく効率的に脱燐処
理を行うことができる溶銑予備処理法を見い出すべく、
転炉型容器を用いて種々の実験と検討を行った。先に述
べたようにCaFはスラグの溶融性を確保するために
重要な働きをしており、本発明者らの実験においても、
CaFを添加しない或いは添加量が少ない場合には添
加された媒溶剤(CaO源)は見掛け上滓化したように
は見えず、脱燐反応効率も低下した。しかし、実験を繰
り返すうちに酸素の供給速度とCaO(媒溶剤)の供給
速度によって脱燐反応が大きく変化すること、具体的に
は、酸素を供給することによりスラグ中にはFeOが生
成するが、その生成量に見合うCaOの適正な供給速度
が存在することが確認された。ここで、酸素とCaOの
供給速度の比において酸素の供給速度が小さ過ぎると、
スラグ中でのFeOの生成量が少なく、CaOが固体の
まま存在して脱燐に有効に作用せず、逆に酸素の供給速
度が大き過ぎると酸素の供給量に対して脱燐に必要なC
aOが不足し、このためいずれの場合にも脱燐速度が低
下する。また、酸素の供給速度が大き過ぎると脱燐に必
要な酸素以外の無効酸素量が多くなり、これが脱炭等に
消費されるため後工程で熱源が不足し、脱炭処理での操
業コストの著しい増加を招くことになる。
Means for Solving the Problems The present inventors have proposed CaF 2
In order to find a hot metal pretreatment method that can efficiently perform dephosphorization without using an F source such as (fluorite),
Various experiments and examinations were performed using a converter type vessel. As described above, CaF 2 plays an important role in securing the melting property of the slag, and in the experiments of the present inventors,
When CaF 2 was not added or the amount added was small, the added medium solvent (CaO source) did not seem to be slag, and the dephosphorization reaction efficiency was lowered. However, as the experiment is repeated, the dephosphorization reaction greatly changes depending on the supply rate of oxygen and the supply rate of CaO (medium solvent). Specifically, FeO is generated in the slag by supplying oxygen. It was confirmed that there was an appropriate CaO supply rate commensurate with the production amount. Here, if the supply rate of oxygen is too small in the ratio of the supply rates of oxygen and CaO,
The amount of FeO generated in the slag is small, and CaO remains in a solid state and does not effectively act on dephosphorization. Conversely, if the supply rate of oxygen is too high, the amount of oxygen required for dephosphorization is reduced. C
Insufficient aO, and in any case, the dephosphorization rate decreases. On the other hand, if the supply rate of oxygen is too high, the amount of reactive oxygen other than oxygen required for dephosphorization increases, and this is consumed for decarburization and the like. This will result in a significant increase.

【0007】このように、溶銑を効率的に脱燐するため
の最適な酸素とCaOの供給速度比が存在することが判
明したが、さらに、このような酸素とCaOの供給速度
比の最適化による効果は、CaOの供給方法に大きく依
存することが判った。すなわち、溶銑脱燐反応は、炉内
に添加された酸素(気体酸素又は固体酸素源)により直
接ないしはFeOを介してメタル中[P]が酸化されて
燐酸化物(P)が生成し、この燐酸化物のままで
は熱力学的に不安定であるため、これがCaOと結合し
て3CaO・P又は4CaO・Pを形成す
ることにより進行する。したがって、生成した燐酸化物
の周辺にCaOをいかに効率よく存在させるかが、脱燐
反応を効率的に促進させるための重要な要素の一つとな
る。そして、供給された酸素により生成するFeOや燐
酸化物は主としてメタル浴面に存在するため、その領域
にCaOを主たる成分とした媒溶剤を添加することが重
要である。このような観点からして、容器内に添加すべ
き媒溶剤の少なくとも一部を容器内の浴面上方からキャ
リアガスを用いて浴面(メタル浴面)、特に好ましくは
酸素が供給されるメタル浴面領域(すなわち、FeOの
生成領域)に吹き付けることが脱燐反応を促進する上で
非常に有効であることが判った。
As described above, it has been found that there is an optimum oxygen / CaO supply rate ratio for efficiently dephosphorizing hot metal. Further, such optimization of the oxygen / CaO supply rate ratio has been found. It has been found that the effect of the method greatly depends on the method of supplying CaO. That is, in the hot metal dephosphorization reaction, [P] in the metal is oxidized directly or through FeO by oxygen (gas oxygen or solid oxygen source) added into the furnace to generate phosphor oxide (P 2 O 5 ). , while the phosphorus oxide is because it is thermodynamically unstable, which proceeds by forming a 3CaO · P 2 O 5 or 4CaO · P 2 O 5 in combination with CaO. Therefore, how efficiently CaO is present around the generated phosphor oxide is one of the important factors for efficiently promoting the dephosphorization reaction. Since FeO and phosphorous oxide generated by the supplied oxygen mainly exist on the metal bath surface, it is important to add a medium solvent containing CaO as a main component to the region. From this point of view, at least a part of the medium solvent to be added to the container is filled with a carrier gas from above the bath surface in the container using a carrier gas (metal bath surface), particularly preferably a metal to which oxygen is supplied. It has been found that spraying on the bath surface region (that is, the region where FeO is generated) is very effective in promoting the dephosphorization reaction.

【0008】さらに、媒溶剤を浴面に吹き付けるための
キャリアガスとして気体酸素を用いることにより、Ca
OとFeOの接触効率を非常に高いものとすることがで
き、脱燐反応をより顕著に促進できることが判った。ま
た、脱燐処理前の溶銑中Si濃度によっても上記酸素と
CaOの供給速度比の最適化による効果が異なり、脱燐
処理前の溶銑中Si濃度が0.10mass%以下の場合
に、特に顕著な効果が得られることが判った。本発明は
以上のような知見に基づきなされたもので、その特徴は
以下の通りである。
Further, by using gaseous oxygen as a carrier gas for spraying a solvent onto the bath surface, Ca
It was found that the contact efficiency between O and FeO could be made very high, and the dephosphorization reaction could be more remarkably promoted. Further, the effect of optimizing the supply rate ratio of oxygen and CaO also differs depending on the Si concentration in the hot metal before the dephosphorization treatment, and is particularly remarkable when the Si concentration in the hot metal before the dephosphorization treatment is 0.10 mass% or less. It was found that a great effect was obtained. The present invention has been made based on the above findings, and the features are as follows.

【0009】[1] 溶銑を保持した容器内にCaO源であ
る媒溶剤を添加するとともに、酸素源として気体酸素及
び/又は固体酸素源を供給して脱燐処理を行う低燐溶銑
の製造方法において、容器内に添加すべき媒溶剤の少な
くとも一部を、容器内の浴面上方からキャリアガスを用
いて浴面に吹き付けることにより容器内に添加するとと
もに、該キャリアガスを用いて浴面に吹き付けられる媒
溶剤のCaO換算の供給速度B(kg/min/溶銑t
on)が、容器内に供給される前記酸素源の気体酸素換
算の供給速度A(Nm/min/溶銑ton)に対し
て下記(1)式を満足することを特徴とする低燐溶銑の製
造方法。 0.3≦A/B≦7 … (1)
[1] A method for producing a low-phosphorus hot metal in which a medium solvent as a CaO source is added to a vessel holding hot metal and a dephosphorization treatment is performed by supplying a gaseous oxygen and / or a solid oxygen source as an oxygen source. In the method, at least a part of the medium solvent to be added to the container is added to the container by spraying the bath surface with a carrier gas from above the bath surface in the container, and is added to the bath surface using the carrier gas. Supply rate B (kg / min / hot metal t)
on) with respect to the supply rate A (Nm 3 / min / hot metal ton) of the oxygen source supplied into the vessel in terms of gaseous oxygen, wherein the following formula (1) is satisfied. Production method. 0.3 ≦ A / B ≦ 7 (1)

【0010】[2] 上記[1]の製造方法において、媒溶剤
のCaO換算の供給速度B(kg/min/溶銑to
n)が、酸素源の気体酸素換算の供給速度A(Nm
min/溶銑ton)に対して下記(2)式を満足するこ
とを特徴とする低燐溶銑の製造方法。 1.2≦A/B≦2.5 … (2) [3] 上記[1]又は[2]の製造方法において、容器内の浴面
上方から気体酸素を浴面に吹き付けるとともに、該気体
酸素が供給された浴面領域に媒溶剤を吹き付けることを
特徴とする低燐溶銑の製造方法。 [4] 上記[1]〜[3]のいずれかの製造方法において、媒溶
剤を浴面に吹き付けるためのキャリアガスとして、酸素
源の少なくとも一部となる気体酸素を用いることを特徴
とする低燐溶銑の製造方法。
[2] In the production method of the above [1], the supply rate B (kg / min / hot metal to
n) is the supply rate A (Nm 3 /
min / hot metal ton), wherein the following formula (2) is satisfied. 1.2 ≦ A / B ≦ 2.5 (2) [3] In the production method of the above [1] or [2], gas oxygen is blown onto the bath surface from above the bath surface in the vessel, and the gas oxygen A method for producing low-phosphorus molten iron, comprising spraying a medium solvent onto a bath surface region supplied with the molten iron. [4] The method according to any one of the above [1] to [3], wherein gaseous oxygen serving as at least a part of an oxygen source is used as a carrier gas for spraying a medium solvent onto a bath surface. Manufacturing method of hot metal.

【0011】[5] 上記[1]〜[4]のいずれかの製造方法に
おいて、Si濃度が0.10mass%以下の溶銑を脱燐処
理することを特徴とする低燐溶銑の製造方法。 [6] 上記[1]〜[5]のいずれかの製造方法において、媒溶
剤がF源を実質的に含まないか若しくは媒溶剤中に含ま
れるCaFが1kg/溶銑ton以下であることを特
徴とする低燐溶銑の製造方法。 [7] 上記[1]〜[6]のいずれかの製造方法において、脱燐
処理終了時の溶銑温度が1360℃以上であることを特
徴とする低燐溶銑の製造方法。
[5] The method for producing low-phosphorus hot metal according to any one of [1] to [4], wherein the hot metal having a Si concentration of 0.10 mass% or less is dephosphorized. [6] The method according to any one of the above [1] to [5], wherein the medium solvent does not substantially contain the F source or CaF 2 contained in the medium solvent is 1 kg / hot metal ton or less. Characteristic method for producing low-phosphorus hot metal. [7] The method for producing low-phosphorus hot metal according to any one of [1] to [6], wherein the hot metal temperature at the end of the dephosphorization treatment is 1360 ° C or more.

【0012】[0012]

【発明の実施の形態】本発明の低燐溶銑の製造方法で
は、溶銑を保持した容器内にCaO源である媒溶剤を添
加するとともに、酸素源として気体酸素及び/又は固体
酸素源を供給して脱燐処理を行う溶銑の予備脱燐におい
て、容器内に添加すべき媒溶剤の少なくとも一部を、容
器内の浴面上方からキャリアガスを用いて浴面(メタル
浴面)に吹き付けることにより容器内に添加するととも
に、このキャリアガスを用いて浴面に吹き付けられる媒
溶剤のCaO換算の供給速度B(kg/min/溶銑t
on)と、容器内に供給される前記酸素源の気体酸素換
算の供給速度A(Nm/min/溶銑ton)が下記
(1)式を満足するように脱燐処理を行うものであり、こ
れによりCaFなどのF源を含む媒溶剤を用いなくて
も、或いは媒溶剤中のF源の量を十分に低減させても、
脱燐反応効率を飛躍的に高めることが可能となる。 0.3≦A/B≦7 … (1)
DETAILED DESCRIPTION OF THE INVENTION In the method for producing low-phosphorus hot metal of the present invention, a medium solvent as a CaO source is added to a container holding hot metal, and a gaseous oxygen and / or solid oxygen source is supplied as an oxygen source. In preliminary dephosphorization of hot metal to be dephosphorized by spraying, at least a part of the medium solvent to be added into the container is sprayed onto the bath surface (metal bath surface) using a carrier gas from above the bath surface in the container. The supply rate B (kg / min / hot metal t) of the solvent added to the vessel and sprayed onto the bath surface using the carrier gas is converted into CaO.
on) and the supply rate A (Nm 3 / min / hot metal ton) of the oxygen source supplied into the container in terms of gaseous oxygen is as follows:
The dephosphorization treatment is performed so as to satisfy the formula (1), whereby the amount of the F source in the medium solvent can be sufficiently reduced without using a medium solvent containing an F source such as CaF 2. Even
The efficiency of the dephosphorization reaction can be dramatically increased. 0.3 ≦ A / B ≦ 7 (1)

【0013】また、より高い脱燐反応効率を得るために
は、上記媒溶剤のCaO換算の供給速度B(kg/mi
n/溶銑ton)と上記酸素源の気体酸素換算の供給速
度A(Nm/min/溶銑ton)が下記(2)式を満
足するよう脱燐処理を行うことが好ましい。 1.2≦A/B≦2.5 … (2)
In order to obtain a higher dephosphorization reaction efficiency, the supply rate B (kg / mi
It is preferable to perform the dephosphorization treatment so that the supply rate A (Nm 3 / min / hot metal ton) of the oxygen source in terms of gaseous oxygen satisfies the following formula (2). 1.2 ≦ A / B ≦ 2.5 (2)

【0014】先に述べたように脱燐反応効率を向上させ
るためには、酸素の供給によりスラグ中に生成するFe
Oの生成量に見合う分だけの供給速度でCaO(媒溶
剤)を供給することが重要であり、このバランスが崩れ
ると脱燐速度は低下する。すなわち、上記A/Bが0.
3未満では酸素の供給量に対してCaOの供給量が過剰
であるため、スラグ中でのFeOの生成量が少なく、C
aOがスラグ中に固体のまま存在して脱燐に有効に作用
せず、このため脱燐速度が低下する。一方、A/Bが7
を超えると酸素の供給量に対して脱燐に必要なCaOが
不足し、この場合も脱燐速度が低下する。同時に酸素の
供給速度が大き過ぎると脱燐に必要な酸素以外の無効酸
素量が多くなり、これが脱炭等に消費される結果、後工
程の脱炭処理での熱源が不足し、後工程の脱炭処理での
操業コストの著しい増加を招くことになる。また、上記
A/Bを1.2〜2.5の範囲とすることにより、酸素
の供給によるFeOの生成量とCaOの供給量のバラン
スがより最適化され、特に高い脱燐反応効率が得られ
る。
As described above, in order to improve the efficiency of the dephosphorization reaction, the amount of Fe generated in the slag by the supply of oxygen is increased.
It is important to supply CaO (medium solvent) at a supply rate corresponding to the amount of O generated, and if this balance is lost, the dephosphorization rate decreases. That is, the above A / B is 0.
If it is less than 3, the supply amount of CaO is excessive with respect to the supply amount of oxygen, so that the amount of FeO generated in the slag is small,
aO remains in the slag as a solid and does not effectively act on dephosphorization, so that the dephosphorization rate decreases. On the other hand, A / B is 7
If it exceeds, the amount of CaO required for dephosphorization becomes insufficient with respect to the supply amount of oxygen, and in this case also, the dephosphorization rate decreases. At the same time, if the supply rate of oxygen is too high, the amount of inactive oxygen other than the oxygen required for dephosphorization increases, and this is consumed for decarburization, etc. This will lead to a significant increase in operating costs in the decarburization process. Further, by setting the A / B in the range of 1.2 to 2.5, the balance between the amount of FeO produced by the supply of oxygen and the amount of CaO supplied is more optimized, and a particularly high dephosphorization reaction efficiency is obtained. Can be

【0015】本発明における酸素と媒溶剤の供給速度比
の最適化による効果は、媒溶剤の供給方法に大きく依存
する。すなわち、本発明では上記(1)式、好ましくは上
記(2)式を満足するように添加される媒溶剤は、容器内
の浴面上方からキャリアガスを用いてメタル浴面に吹き
付けられる媒溶剤であり、これにより初めて酸素と媒溶
剤の供給速度比の最適化による効果が得られる。これ
は、上述したように炉内に添加された酸素により生成す
るFeOや燐酸化物(酸素がメタル中[P]と反応して
生成した燐酸化物)は主としてメタル浴面に存在するた
め、このメタル浴面に媒溶剤を供給して燐酸化物の周辺
にCaOを存在させることにより、脱燐反応が効果的に
促進されるからである。
The effect of optimizing the supply rate ratio between oxygen and the solvent in the present invention largely depends on the method of supplying the solvent. That is, in the present invention, the medium solvent added so as to satisfy the above formula (1), preferably the above formula (2), is a medium solvent sprayed onto the metal bath surface using a carrier gas from above the bath surface in the container. Thus, for the first time, the effect of optimizing the supply rate ratio between oxygen and the solvent can be obtained. This is because, as described above, FeO and phosphor oxide (phosphor oxide generated by the reaction of oxygen with [P] in the metal) mainly generated on the surface of the metal bath are generated by the oxygen added to the furnace. This is because the dephosphorization reaction is effectively promoted by supplying a medium solvent to the bath surface and causing CaO to exist around the phosphor oxide.

【0016】本発明法では媒溶剤の一部を上記方法以外
の方法(例えば、上置き装入や浴中へのインジェクショ
ン)で容器内に添加してもよいが、これにより添加され
た媒溶剤は上記のような作用にはあまり寄与しない。よ
って、本発明法では容器内に添加すべき媒溶剤の全量
を、容器内の浴面上方からキャリアガスを用いて浴面に
吹き付けることが最も好ましく、また、容器内に添加す
べき媒溶剤の少なくとも1/3程度を容器内の浴面上方
からキャリアガスを用いて浴面に吹き付けることが好ま
しい。容器内の浴面上方からキャリアガスを用いて浴面
に吹き付ける手段としては、一般に上吹きランスが用い
られ、キャリアガスとしては窒素や不活性ガス、或いは
気体酸素(純酸素ガス又は酸素含有ガス)が用いられ
る。
In the method of the present invention, a part of the solvent may be added to the container by a method other than the above-mentioned method (for example, over-the-top charging or injection into a bath). Does not contribute significantly to the above-mentioned effects. Therefore, in the method of the present invention, it is most preferable that the entire amount of the solvent to be added to the container is sprayed onto the bath surface from above the bath surface in the container by using a carrier gas, and the amount of the solvent to be added to the container is It is preferable to spray at least about 1/3 of the bath surface from above the bath surface using a carrier gas. As means for spraying a carrier gas from above the bath surface in the container using a carrier gas, an upper blow lance is generally used, and nitrogen, an inert gas, or gaseous oxygen (pure oxygen gas or oxygen-containing gas) is used as the carrier gas. Is used.

【0017】本発明法において容器内に供給される酸素
源は気体酸素、固体酸素源のいずれでもよく、また両者
を併用してもよい。使用する気体酸素は純酸素ガス、酸
素含有ガスのいずれでもよく、また、固体酸素源として
は酸化鉄やミルスケールなどを用いることができる。ま
た、酸素源の供給方法に特別な制約はなく、気体酸素の
場合にはランスによる上吹きや溶銑中へのインジェクシ
ョン、或いは底吹きなどの任意の方法で送酸を行うこと
ができ、また、固体酸素源の場合にはインジェクション
や上置き装入などの任意の方法で溶銑中への供給を行う
ことができる。なお、気体酸素を供給する場合、脱燐処
理を転炉型容器や溶銑鍋などを用いて実施する場合には
ランスによる上吹きが、また、トーピードを用いて実施
する場合にはランスによる溶銑中へのインジェクション
が一般的である。
In the method of the present invention, the oxygen source supplied into the container may be either gaseous oxygen or solid oxygen source, or both may be used in combination. The gaseous oxygen used may be either a pure oxygen gas or an oxygen-containing gas, and iron oxide or mill scale can be used as a solid oxygen source. In addition, there is no particular limitation on the method of supplying the oxygen source, and in the case of gaseous oxygen, the acid can be supplied by an arbitrary method such as top blowing by a lance, injection into hot metal, or bottom blowing, and In the case of a solid oxygen source, it can be supplied to the hot metal by any method such as injection or overhead charging. When gaseous oxygen is supplied, the dephosphorization treatment is performed by up-blowing with a lance when the dephosphorization treatment is performed using a converter type vessel or a hot metal pot, and when the dephosphorization treatment is performed using a torpedo, the molten metal is not melted by the lance. Injection is common.

【0018】但し、本発明法の効果を最も有効に得るた
めには、酸素源の少なくとも一部として気体酸素を用
い、この気体酸素を上吹きランスなどによって浴面上方
からメタル浴面に吹き付けるとともに、この気体酸素が
供給されたメタル浴面領域にCaO源である媒溶剤を吹
き付けることが好ましい。これは、気体酸素が供給され
るメタル浴面領域は酸素供給によってFeOが生成する
場所であり、このような浴面領域に直接CaOを添加す
ることにより、CaOの滓化が効果的に促進されるとと
もにCaOとFeOの接触効率が高まり、これによって
脱燐反応効率を顕著に促進できるからである。また、媒
溶剤は気体酸素が供給されたメタル浴面領域の中でも、
特に気体酸素の上吹きにより生じる“火点”と呼ばれる
領域に供給することが最も好ましい。この火点は気体酸
素ガスジェットが衝突することにより最も高温となるメ
タル浴面領域であり、気体酸素による酸化反応が集中し
且つ気体酸素ガスジェットにより強撹拌されている領域
であるため、CaOの供給による効果が最も顕著に得ら
れる領域であると言える。また、この意味で、媒溶剤を
浴面に吹き付けるためのキャリアガスとしては、酸素源
の少なくとも一部となる気体酸素(純酸素ガス又は酸素
含有ガス)を用いることが好ましく、この場合には気体
酸素が媒溶剤とともに浴面に上吹きされ、媒溶剤は火点
に直接供給されることになり、メタル浴面でのCaOと
FeOの接触効率が最も高まり、脱燐反応を特に顕著に
促進することができる。
However, in order to obtain the effect of the method of the present invention most effectively, gaseous oxygen is used as at least a part of the oxygen source, and this gaseous oxygen is blown onto the metal bath surface from above the bath surface by an upper blowing lance or the like. It is preferable to spray a medium solvent as a CaO source on the metal bath surface area supplied with the gaseous oxygen. This is because the metal bath surface area to which gaseous oxygen is supplied is a place where FeO is generated by the supply of oxygen, and by adding CaO directly to such a bath surface area, slagging of CaO is effectively promoted. At the same time, the contact efficiency between CaO and FeO is increased, which can significantly promote the dephosphorization reaction efficiency. Also, the medium solvent is in the metal bath surface area supplied with gaseous oxygen.
In particular, it is most preferable to supply the gas to a region called "fire point" generated by the upward blowing of gaseous oxygen. This fire point is a metal bath surface area where the temperature becomes the highest when the gaseous oxygen gas jet collides, and is an area where the oxidation reaction by the gaseous oxygen is concentrated and strongly stirred by the gaseous oxygen gas jet. It can be said that this is a region where the effect of supply is most remarkably obtained. In this sense, it is preferable to use gaseous oxygen (pure oxygen gas or oxygen-containing gas) that becomes at least a part of an oxygen source as a carrier gas for spraying the medium solvent onto the bath surface. Oxygen is blown up onto the bath surface together with the medium solvent, and the medium solvent is directly supplied to the flash point, so that the contact efficiency between CaO and FeO on the metal bath surface is maximized, and the dephosphorization reaction is particularly remarkably promoted. be able to.

【0019】また、媒溶剤を気体酸素以外のキャリアガ
ス(例えば、N、Ar等の不活性ガス)を用いてメタ
ル浴面に吹き付ける場合は、上吹きランス(送酸ラン
ス)の一部のノズル孔を通じて吹き付けることが好まし
く、このようにすることにより、上吹きランスの他のノ
ズル孔を通じて気体酸素が供給されるメタル浴面領域に
媒溶剤を供給することができる。具体的には、上吹きラ
ンス先端の中央ノズル孔から気体酸素以外のガスをキャ
リアガスとして媒溶剤を供給し、中央ノズル孔の周囲の
他のノズル孔から気体酸素を供給するなどの形態が好ま
しい。
When the medium solvent is blown onto the metal bath surface using a carrier gas other than gaseous oxygen (for example, an inert gas such as N 2 or Ar), a part of the top blow lance (acid feed lance) is used. It is preferable to spray through a nozzle hole, so that a solvent can be supplied to the metal bath surface area to which gaseous oxygen is supplied through another nozzle hole of the upper blowing lance. Specifically, a mode in which a medium other than gaseous oxygen is supplied as a carrier gas from the central nozzle hole at the tip of the upper blowing lance as a carrier gas, and gaseous oxygen is supplied from other nozzle holes around the central nozzle hole is preferable. .

【0020】また、脱燐反応効率をさらに向上させるた
めには溶銑をガス撹拌することが好ましい。このガス撹
拌は、例えばインジェクションランスや底吹きノズルな
どを通じて窒素ガスやアルゴンガスなどの不活性ガスを
溶銑中に吹き込むことにより行われる。このような撹拌
ガスの供給量としては、十分な浴撹拌性を得るために
0.02Nm/min/溶銑ton以上とし、また、
浴の撹拌が強すぎると生成したFeOを溶銑中のCが還
元する速度が大きくなり過ぎるためのため0.3Nm
/min/溶銑ton以下とすることが好ましい。
Further, in order to further improve the dephosphorization reaction efficiency, it is preferable to agitate the hot metal with gas. This gas stirring is performed by blowing an inert gas such as a nitrogen gas or an argon gas into the hot metal through an injection lance, a bottom blowing nozzle, or the like. The supply amount of such a stirring gas is 0.02 Nm 3 / min / hot metal ton or more in order to obtain sufficient bath stirring properties.
If the stirring of the bath is too strong, the rate of C reduction in the hot metal to the generated FeO becomes too large, so that 0.3 Nm 3
/ Min / hot metal ton or less.

【0021】本発明法が実施される容器としては、フリ
ーボードが十分に確保できるという点から転炉型容器が
最も好ましいが、これ以外でも媒溶剤を浴面に吹き付け
することができる機能を有する容器であれば特に制限は
なく、例えば、溶銑鍋、トーピードなどの任意の容器を
用いることができる。図2は、転炉型容器を用いた本発
明法の一実施状況を示しており、1は転炉型容器、2は
上吹きランス、3は炉底部に設けられた底吹きノズルで
あり、この例では、上吹きランス2から気体酸素をキャ
リアガスとして媒溶剤がメタル浴面に吹き付けられると
ともに、底吹きノズル3から撹拌ガスが溶銑内に吹き込
まれている。
As the container in which the method of the present invention is carried out, a converter type container is most preferable in that a free board can be sufficiently secured, but other than this, it has a function of spraying a solvent onto the bath surface. There is no particular limitation as long as it is a container. For example, any container such as a hot metal pot or torpedo can be used. FIG. 2 shows one embodiment of the method of the present invention using a converter type container, 1 is a converter type container, 2 is an upper blowing lance, 3 is a bottom blowing nozzle provided at the furnace bottom, In this example, a medium solvent is blown from a top blowing lance 2 to the metal bath surface using gaseous oxygen as a carrier gas, and a stirring gas is blown into the hot metal from a bottom blowing nozzle 3.

【0022】さらに、本発明の効果は脱燐処理前の溶銑
中Si濃度によって差があり、脱燐処理前の溶銑中Si
濃度が0.10mass%以下の溶銑に対して本発明法を実
施した場合に特に顕著な脱燐反応効率が得られる。脱燐
処理前の溶銑中Si濃度が高いと生成するSiO量が
多くなり、塩基度調整のためのCaO量も増え、発生ス
ラグ量も増加するため、Siは低減することが望まし
い。一般に、脱燐処理前の溶銑中Si濃度が高いと生成
するSiOが多くなり、この結果、スラグ量が増加す
るだけでなく、塩基度調整のためのCaO量も多くな
る。したがって、このような観点からは脱燐処理前の溶
銑中Si濃度は低い方が好ましいが、一方において、脱
燐処理前の溶銑中Si濃度が低いとスラグ中のSiO
濃度が低下するためCaOの溶融性がさらに悪化し、脱
燐反応効率が低下してしまう。しかし、それにも拘らず
本発明法の場合には、脱燐処理前の溶銑中Si濃度が低
い方(好ましくは0.10mass%以下)が脱燐反応効率
が顕著に向上する。これは、本発明法ではCaO源であ
る媒溶剤の粉体を浴面に吹き付けるため、SiOが存
在しなくてもFeOによってCaOの溶融化が促進さ
れ、この結果、CaOの脱燐に寄与する効率が向上する
ためであると考えられる。
Further, the effect of the present invention differs depending on the Si concentration in the hot metal before the dephosphorization treatment,
Particularly remarkable dephosphorization efficiency can be obtained when the method of the present invention is performed on hot metal having a concentration of 0.10 mass% or less. If the Si concentration in the hot metal before the dephosphorization treatment is high, the amount of SiO 2 generated increases, the amount of CaO for adjusting the basicity increases, and the amount of generated slag increases. Therefore, it is desirable to reduce the amount of Si. In general, when the Si concentration in the hot metal before the dephosphorization treatment is high, the amount of SiO 2 generated increases, and as a result, not only the amount of slag increases, but also the amount of CaO for adjusting the basicity increases. Therefore, from such a viewpoint, it is preferable that the Si concentration in the hot metal before the dephosphorization treatment is low. On the other hand, when the Si concentration in the hot metal before the dephosphorization treatment is low, the SiO 2 in the slag is low.
Since the concentration is reduced, the melting property of CaO is further deteriorated, and the dephosphorization reaction efficiency is reduced. Nevertheless, in the case of the method of the present invention, the lower the concentration of Si in the molten iron before the dephosphorization treatment (preferably 0.10 mass% or less), the more significantly the efficiency of the dephosphorization reaction is improved. This is because, in the method of the present invention, the powder of the medium solvent, which is a CaO source, is sprayed on the bath surface, so that the melting of CaO is promoted by FeO even without the presence of SiO 2 , thereby contributing to the dephosphorization of CaO. It is thought that this is because the efficiency of the operation is improved.

【0023】このように本発明の低燐溶銑の製造方法は
Si濃度が0.10mass%以下の溶銑に対して実施した
場合に特に効果が大きく、したがって、出銑された溶銑
のSi濃度が0.10mass%を超える場合には、高炉鋳
床や溶銑鍋などで脱珪処理(通常、固体酸素源や気体酸
素などの酸素を溶銑に添加して行う)を実施し、脱燐処
理前の溶銑中Si濃度を0.10mass%以下とした上で
脱燐処理を行うことが好ましい。
As described above, the method for producing low-phosphorus hot metal of the present invention is particularly effective when applied to hot metal having a Si concentration of 0.10 mass% or less. When the content exceeds 10 mass%, desiliconization treatment (usually performed by adding oxygen such as solid oxygen source or gaseous oxygen to the hot metal) is performed in a blast furnace cast bed or hot metal pot, etc. It is preferable to perform the dephosphorization treatment after setting the Si concentration to 0.10 mass% or less.

【0024】従来の脱燐処理ではCaFなどのF源を
添加することが必須であったが、近年Fが環境に及ぼす
影響を考慮し、鋼の精錬においてもCaFなどのF源
の使用を抑えることが要請されつつある。この点、本発
明法はCaFなどのF源を含まないCaOを主体とし
た媒溶剤を使用するだけで高い脱燐反応効率が得られる
ことが最大の特徴である。但し、CaFなどのF源の
添加を排除するものでなく、例えば、CaO源の滓化を
より促進するために、許容される限度でCaF 等のF
などを添加することを妨げない。但し、その場合でも媒
溶剤中に含まれるCaFは1kg/溶銑ton以下で
あることが好ましい。なお、本発明法においてCaF
などのF源を含まないCaOを主体とした媒溶剤のみを
使用する場合、媒溶剤がF源を含まないとはF源を実質
的に含まないことを意味し、したがって、媒溶剤中に例
えば不可避的不純物などとして少量のF源が含まれるこ
とは妨げない。
In the conventional dephosphorization treatment, CaF2F source such as
Although it was essential to add it, in recent years F
Considering the effect, even in refining steel, CaF2F source such as
There is a growing demand to reduce the use of. In this regard,
Myoho is CaF2Such as CaO that does not contain F source
High dephosphorization efficiency can be obtained only by using a suitable solvent
This is the biggest feature. However, CaF2Such as F source
It does not exclude the addition, for example,
To further facilitate, CaF 2Etc. F
Do not hinder the addition of such. However, even in that case,
CaF contained in solvent2Is less than 1kg / hot metal ton
Preferably, there is. In the method of the present invention, CaF2
Only the medium solvent mainly containing CaO that does not contain the F source
When used, the medium solvent does not include the F source.
Means that it is not
For example, a small amount of F source may be included as unavoidable impurities.
Does not prevent.

【0025】脱燐反応は溶銑温度が低い方が有利であ
り、効率的な処理を行うことができるが、一方におい
て、脱燐処理後の溶銑温度が低いと次工程での熱余裕の
面で問題を生じる。この点、本発明法によれば脱燐処理
温度が高目でも高い脱燐反応効率が得られるため、低位
安定した処理後燐濃度を確保しつつ、脱燐処理終了時の
溶銑温度を従来技術では難しかった1360℃以上とす
ることができ、次工程での熱余裕を十分を確保すること
ができる。
[0025] The dephosphorization reaction is advantageous when the hot metal temperature is low, and can perform an efficient treatment. On the other hand, when the hot metal temperature after the dephosphorization treatment is low, the heat margin in the next step is reduced. Cause problems. In this regard, according to the method of the present invention, a high dephosphorization reaction efficiency can be obtained even when the dephosphorization temperature is relatively high. In this case, the temperature can be increased to 1360 ° C. or higher, and sufficient heat margin in the next step can be secured.

【0026】[0026]

【実施例】[実施例1]高炉から出銑した溶銑を鋳床及
び必要に応じて溶銑鍋内で脱珪処理し、次いで機械撹拌
を用いて溶銑鍋内で脱硫処理した後、250トンの転炉
型容器内で脱燐処理した。この脱燐処理前後での溶銑温
度は1250〜1350℃とし、脱燐用媒溶剤として
は、CaO主体の焼石灰であって、粒度200メッシュ
以下で篩ったものを使用し、CaOの原単位は溶銑中S
i濃度に応じて5〜15kg/溶銑tonとした。
EXAMPLES Example 1 Hot metal from a blast furnace was desiliconized in a casting bed and, if necessary, in a hot metal pot, and then desulfurized in a hot metal pot using mechanical stirring. Dephosphorization was performed in a converter type vessel. The hot metal temperature before and after this dephosphorization treatment was set to 1250 to 1350 ° C. As the dephosphorization medium solvent, calcined lime mainly composed of CaO and sieved with a particle size of 200 mesh or less was used. Is S in the hot metal
5 to 15 kg / hot metal ton according to the i concentration.

【0027】この脱燐処理では、図2に示すように媒溶
剤を上吹きランスを通じて酸素をキャリアガスとして浴
面に吹き付けることにより媒溶剤と酸素源の供給(吹錬
時間:10分)を行ったが、その際、酸素の供給速度A
(Nm/min/溶銑ton)と媒溶剤の供給速度B
(kg/min/溶銑ton)との比A/Bが異なる種
々の条件で操業を行った。なお、媒溶剤中には蛍石等の
F源は添加しなかった。また、炉底部の底吹きノズルか
らは撹拌用ガスとして窒素ガスを0.05〜0.15N
/min/溶銑tonの流量で溶銑中に吹き込ん
だ。脱燐処理に供した溶銑中Si濃度はtr.〜0.3
mass%であった。
In this dephosphorization treatment, as shown in FIG. 2, a medium solvent and an oxygen source are supplied (blowing time: 10 minutes) by blowing a medium solvent through a top blowing lance with oxygen as a carrier gas onto the bath surface. However, at this time, the oxygen supply rate A
(Nm 3 / min / hot metal ton) and the supply rate B of the medium solvent
(Kg / min / hot metal ton) The operation was carried out under various conditions having different ratios A / B. No F source such as fluorite was added to the solvent medium. In addition, nitrogen gas as a stirring gas from the bottom blowing nozzle at the bottom of the furnace was supplied at 0.05 to 0.15 N.
The hot metal was blown into the hot metal at a flow rate of m 3 / min / hot metal ton. The Si concentration in the hot metal subjected to the dephosphorization treatment is tr. ~ 0.3
mass%.

【0028】酸素の供給速度A(Nm/min/溶銑
ton)と媒溶剤の供給速度B(kg/min/溶銑t
on)との比A/Bと脱燐処理後の溶銑中P濃度との関
係を図1に示す。これによれば本発明例であるA/Bが
0.3〜7の領域にあるものは脱燐処理後の溶銑中P濃
度が目標[P]濃度である0.015mass%以下となっ
ており、特に脱燐処理前の溶銑中Si濃度が0.10ma
ss%以下の場合には、低P規格である[P]≦0.01
0mass%が安定して達成されている。また、A/Bが
1.2〜2.5の領域にあるものは特に低位の[P]が
得られており、この領域において最も高い脱燐反応効率
が得られることが判る。これに対して、A/Bが0.3
未満及び7超の領域にあるものは、いずれも脱燐処理後
の溶銑中P濃度が目標[P]濃度である0.015mass
%以下に達していない。
The oxygen supply rate A (Nm 3 / min / hot metal ton) and the medium solvent supply rate B (kg / min / hot metal t)
FIG. 1 shows the relationship between the ratio A / B and the P concentration in the hot metal after the dephosphorization treatment. According to this, in the case of A / B in the range of 0.3 to 7 which is the example of the present invention, the P concentration in the hot metal after the dephosphorization treatment is not more than the target [P] concentration of 0.015 mass% or less. In particular, the Si concentration in the hot metal before the dephosphorization treatment is 0.10 ma
In the case of ss% or less, the low P standard [P] ≦ 0.01
0 mass% is stably achieved. Further, those having an A / B in the range of 1.2 to 2.5 have particularly low [P], which indicates that the highest dephosphorization reaction efficiency can be obtained in this region. On the other hand, A / B is 0.3
In all cases, the P concentration in the hot metal after the dephosphorization treatment is 0.015 mass, which is the target [P] concentration.
% Or less.

【0029】[実施例2]高炉から出銑した溶銑を鋳床
及び必要に応じて溶銑鍋内で脱珪処理し、次いで機械撹
拌を用いて溶銑鍋内で脱硫処理した後、250トンの転
炉型容器内で脱燐処理した。この脱燐処理終了時の溶銑
温度は1360℃以上とし、脱燐用媒溶剤としては、C
aO主体の焼石灰であって、粒度200メッシュ以下で
篩ったものを使用した。この脱燐処理では、図2に示す
ように媒溶剤を上吹きランスを通じて酸素をキャリアガ
スとして浴面に吹き付けることにより媒溶剤と酸素源の
供給(吹錬時間:10分)を行ったが、その際、酸素の
供給速度A(Nm/min/溶銑ton)と媒溶剤の
供給速度B(kg/min/溶銑ton)との比A/B
が異なる種々の条件で操業を行った。なお、媒溶剤中に
は蛍石等のF源は添加しなかった。
[Example 2] Hot metal spouted from a blast furnace was desiliconized in a casting bed and, if necessary, in a hot metal pot, and then desulfurized in a hot metal pot using mechanical stirring. Dephosphorization was performed in a furnace type container. The hot metal temperature at the end of the dephosphorization treatment is 1360 ° C. or higher.
A calcined lime mainly composed of aO and sieved with a particle size of 200 mesh or less was used. In this dephosphorization treatment, as shown in FIG. 2, a medium solvent and an oxygen source were supplied (blowing time: 10 minutes) by blowing oxygen as a carrier gas onto the bath surface through a top blowing lance with a medium solvent. At this time, the ratio A / B between the supply rate A of oxygen (Nm 3 / min / hot metal ton) and the supply rate B of the medium solvent (kg / min / hot metal ton).
Were operated under various conditions. No F source such as fluorite was added to the solvent medium.

【0030】また、炉底部の底吹きノズルからは撹拌用
ガスとして窒素ガスを0.05〜0.15Nm/mi
n/溶銑tonの流量で溶銑中に吹き込んだ。本発明例
及び比較例の脱燐処理前後の溶銑成分及び温度とA/
B、CaO原単位を表1に示す。これによれば、本発明
例では脱燐処理終了時の溶銑温度が1360℃以上でも
処理後[P]は低位(0.015mass%以下)に安定し
ているが、比較例の場合には脱燐処理終了時の溶銑温度
が1360℃以上では処理後[P]は0.03mass%以
上であり、このような処理後溶銑温度では低い脱燐反応
効率しか得られないことが判る。
Further, nitrogen gas as a stirring gas from the bottom blow nozzle at the bottom of the furnace was supplied to the furnace at 0.05 to 0.15 Nm 3 / mi.
The hot metal was blown into the hot metal at a flow rate of n / hot metal ton. Hot metal components and temperatures before and after the dephosphorization treatment of the present invention examples and comparative examples and A /
Table 1 shows the basic unit of B and CaO. According to this, in the example of the present invention, even when the hot metal temperature at the end of the dephosphorization treatment is 1360 ° C. or higher, the [P] after treatment is stable at a low level (0.015 mass% or less), but in the comparative example, When the hot metal temperature at the end of the phosphorus treatment is 1360 ° C. or higher, the [P] after the treatment is 0.03 mass% or more, and it is understood that only a low dephosphorization reaction efficiency can be obtained at the hot metal temperature after the treatment.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上述べたように本発明法によれば、C
aFなどのF源を含まない媒溶剤を用いた場合でも極
めて優れた脱燐効率で溶銑の脱燐処理を行うことができ
る。
As described above, according to the method of the present invention, C
dephosphorization of the hot metal with excellent dephosphorization efficiency even when a medium free solvent F source, such as aF 2 can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における酸素の供給速度AとCaO系媒
溶剤の供給速度Bとの比A/Bと脱燐処理後の溶銑中燐
濃度との関係を示すグラフ
FIG. 1 is a graph showing a relationship between a ratio A / B of a supply rate A of oxygen and a supply rate B of a CaO-based solvent in an example and a phosphorus concentration in hot metal after a dephosphorization treatment.

【図2】本発明法の一実施状況を示す説明図FIG. 2 is an explanatory view showing an embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1…転炉型容器、2…上吹きランス、3…底吹きノズル 1 ... Converter type container, 2 ... Top blowing lance, 3 ... Bottom blowing nozzle

フロントページの続き (72)発明者 菊地 良輝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 渡辺 敦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 櫻井 栄司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 若松 信一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K014 AA03 AB03 AB04 AB16 AC08 AC14 AC16 AC17 AD01 AD23 AD27 Continuing from the front page (72) Inventor Yoshiteru Kikuchi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Atsushi Watanabe 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Stock Inside the company (72) Eiji Sakurai, 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside Nihon Kokan Co., Ltd. (72) Inventor Shinichi Wakamatsu 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. F term (reference) 4K014 AA03 AB03 AB04 AB16 AC08 AC14 AC16 AC17 AD01 AD23 AD27

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 溶銑を保持した容器内にCaO源である
媒溶剤を添加するとともに、酸素源として気体酸素及び
/又は固体酸素源を供給して脱燐処理を行う低燐溶銑の
製造方法において、 容器内に添加すべき媒溶剤の少なくとも一部を、容器内
の浴面上方からキャリアガスを用いて浴面に吹き付ける
ことにより容器内に添加するとともに、該キャリアガス
を用いて浴面に吹き付けられる媒溶剤のCaO換算の供
給速度B(kg/min/溶銑ton)が、容器内に供
給される前記酸素源の気体酸素換算の供給速度A(Nm
/min/溶銑ton)に対して下記(1)式を満足す
ることを特徴とする低燐溶銑の製造方法。 0.3≦A/B≦7 … (1)
1. A method for producing a low-phosphorus hot metal in which a medium solvent serving as a CaO source is added to a vessel holding hot metal and a gaseous oxygen and / or a solid oxygen source is supplied as an oxygen source to perform a dephosphorization treatment. At least a part of the medium solvent to be added into the container is added to the container by spraying the bath surface with a carrier gas from above the bath surface in the container, and is sprayed on the bath surface with the carrier gas. The supply rate B (kg / min / hot metal ton) of the medium solvent to be supplied is changed to the supply rate A (Nm
(3 / min / hot metal ton), wherein the following formula (1) is satisfied. 0.3 ≦ A / B ≦ 7 (1)
【請求項2】 媒溶剤のCaO換算の供給速度B(kg
/min/溶銑ton)が、酸素源の気体酸素換算の供
給速度A(Nm/min/溶銑ton)に対して下記
(2)式を満足することを特徴とする請求項1に記載の低
燐溶銑の製造方法。 1.2≦A/B≦2.5 … (2)
2. A supply rate B (kg) of a medium solvent in terms of CaO.
/ Min / hot metal ton) is the following with respect to the supply rate A (Nm 3 / min / hot metal ton) of the oxygen source in terms of gaseous oxygen.
2. The method for producing low-phosphorus molten iron according to claim 1, wherein the formula (2) is satisfied. 1.2 ≦ A / B ≦ 2.5 (2)
【請求項3】 容器内の浴面上方から気体酸素を浴面に
吹き付けるとともに、該気体酸素が供給された浴面領域
に媒溶剤を吹き付けることを特徴とする請求項1又は2
に記載の低燐溶銑の製造方法。
3. The method according to claim 1, wherein gas oxygen is sprayed onto the bath surface from above the bath surface in the container, and a medium solvent is sprayed onto the bath surface region to which the gas oxygen has been supplied.
3. The method for producing low-phosphorus hot metal according to item 1.
【請求項4】 媒溶剤を浴面に吹き付けるためのキャリ
アガスとして、酸素源の少なくとも一部となる気体酸素
を用いることを特徴とする請求項1、2又は3に記載の
低燐溶銑の製造方法。
4. The production of low-phosphorus hot metal according to claim 1, wherein gaseous oxygen serving as at least a part of an oxygen source is used as a carrier gas for spraying a solvent onto the bath surface. Method.
【請求項5】 Si濃度が0.10mass%以下の溶銑を
脱燐処理することを特徴とする請求項1、2、3又は4
に記載の低燐溶銑の製造方法。
5. The hot metal having a Si concentration of 0.10 mass% or less is subjected to a dephosphorization treatment.
3. The method for producing low-phosphorus hot metal according to item 1.
【請求項6】 媒溶剤がF源を実質的に含まないか若し
くは媒溶剤中に含まれるCaFが1kg/溶銑ton
以下であることを特徴とする請求項1、2、3、4又は
5に記載の低燐溶銑の製造方法。
6. The medium solvent contains substantially no F source or 1 kg of CaF 2 contained in the medium solvent / hot metal ton.
The method for producing low-phosphorus molten iron according to claim 1, wherein the method is as follows.
【請求項7】 脱燐処理終了時の溶銑温度が1360℃
以上であることを特徴とする請求項1、2、3、4、5
又は6に記載の低燐溶銑の製造方法。
7. The hot metal temperature at the end of the dephosphorization treatment is 1360 ° C.
Claims 1, 2, 3, 4, 5
Or the method for producing low-phosphorus molten iron according to 6.
JP2001389696A 2000-12-21 2001-12-21 Method for producing low phosphorus molten iron Pending JP2002249814A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001389696A JP2002249814A (en) 2000-12-21 2001-12-21 Method for producing low phosphorus molten iron
CN02823559.2A CN1596316A (en) 2000-12-21 2002-08-27 Method of manufacturing low phosphorous hot metal
PCT/JP2002/008604 WO2004020677A1 (en) 2000-12-21 2002-08-27 Method of manufacturing low phosphorous hot metal
TW091119784A TW550295B (en) 2000-12-21 2002-08-30 Method for producing molten iron having low phosphorus content

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000388749 2000-12-21
JP2000-388749 2000-12-21
JP2001389696A JP2002249814A (en) 2000-12-21 2001-12-21 Method for producing low phosphorus molten iron
PCT/JP2002/008604 WO2004020677A1 (en) 2000-12-21 2002-08-27 Method of manufacturing low phosphorous hot metal

Publications (1)

Publication Number Publication Date
JP2002249814A true JP2002249814A (en) 2002-09-06

Family

ID=32685776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389696A Pending JP2002249814A (en) 2000-12-21 2001-12-21 Method for producing low phosphorus molten iron

Country Status (3)

Country Link
JP (1) JP2002249814A (en)
CN (1) CN1596316A (en)
TW (1) TW550295B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008147B1 (en) 2003-07-16 2011-01-13 주식회사 포스코 Method for Manufacturing Molten Steel containing Low Phosphorus Using Pig Iron Manufactured by Corex Process
JP2015206091A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 Method of dephosphorizing molten iron
US20230121123A1 (en) * 2021-10-19 2023-04-20 University Of Science And Technology Beijing Method of making steel by deeply dephosphorization in hot metal tank and decarburization using semi-steel with nearly zero phosphorus load in converter

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104531948B (en) * 2006-02-28 2017-04-12 杰富意钢铁株式会社 Method of dephosphorization of molten iron
CN103014236B (en) * 2012-12-14 2014-07-30 邢台钢铁有限责任公司 Dual mode dephosphorization method carrying out in hot-metal ladle
EP3042965A1 (en) * 2015-01-09 2016-07-13 S.A. Lhoist Recherche Et Developpement Process for dephosphorization of molten metal during a refining process
CN106282487B (en) * 2016-09-13 2019-03-29 北京北科中钢工程技术有限公司 A kind of pre-dephosporizing method for molten iron
KR102189097B1 (en) * 2016-12-26 2020-12-09 닛폰세이테츠 가부시키가이샤 Pre-treatment method of molten iron and manufacturing method of ultra-low-tough steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101008147B1 (en) 2003-07-16 2011-01-13 주식회사 포스코 Method for Manufacturing Molten Steel containing Low Phosphorus Using Pig Iron Manufactured by Corex Process
JP2015206091A (en) * 2014-04-22 2015-11-19 新日鐵住金株式会社 Method of dephosphorizing molten iron
US20230121123A1 (en) * 2021-10-19 2023-04-20 University Of Science And Technology Beijing Method of making steel by deeply dephosphorization in hot metal tank and decarburization using semi-steel with nearly zero phosphorus load in converter
US11674192B2 (en) * 2021-10-19 2023-06-13 University Of Science And Technology Beijing Method of making steel by deeply dephosphorization in hot metal tank and decarburization using semi-steel with nearly zero phosphorus load in converter

Also Published As

Publication number Publication date
TW550295B (en) 2003-09-01
CN1596316A (en) 2005-03-16

Similar Documents

Publication Publication Date Title
CN102329921B (en) Semi-steel making method
CN110205437B (en) Method for reducing TFe content in semi-steel steelmaking converter final slag
JP2002249814A (en) Method for producing low phosphorus molten iron
JP3332010B2 (en) Manufacturing method of low phosphorus hot metal
CN110564908A (en) double-slag dephosphorization and steel-making method for semisteel converter
JP2008063645A (en) Steelmaking method
CN110042189A (en) A kind of converter slag-making method of high efficiency dephosphorating
JP2958848B2 (en) Hot metal dephosphorization method
JP3440630B2 (en) Hot metal dephosphorization method
JP2002309310A (en) Method for producing low-phosphorous molten iron
CN110551868A (en) Method for reducing decarburization time of semisteel steelmaking converter
JPH11323419A (en) Refining of molten iron
JP2000109924A (en) Method for melting extra-low sulfur steel
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JPH06228626A (en) Method for reforming slag as pretreatment of desulfurization
JP2607328B2 (en) Hot metal dephosphorization method
JPS6121285B2 (en)
JP3823877B2 (en) Method for producing low phosphorus hot metal
US4065297A (en) Process for dephosphorizing molten pig iron
JP3823595B2 (en) Hot metal refining method
JP3823623B2 (en) Hot metal refining method
JP2000087125A (en) Method for dephosphorize-refining molten iron
JP2000212623A (en) Dephosphorization of molten iron low in lime
JP2003328025A (en) Method for manufacturing low-phosphorus molten pig iron
SU1013489A1 (en) Method for smelting steel in converter