JPH04285059A - Refractory material and its preparing method - Google Patents

Refractory material and its preparing method

Info

Publication number
JPH04285059A
JPH04285059A JP3048191A JP4819191A JPH04285059A JP H04285059 A JPH04285059 A JP H04285059A JP 3048191 A JP3048191 A JP 3048191A JP 4819191 A JP4819191 A JP 4819191A JP H04285059 A JPH04285059 A JP H04285059A
Authority
JP
Japan
Prior art keywords
chromium
magnesia
weight
chromium oxide
ferrochrome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3048191A
Other languages
Japanese (ja)
Other versions
JP2518559B2 (en
Inventor
Hiroshi Yamamoto
博 山本
Takeyuki Tamaki
健之 玉木
Keisuke Asano
敬輔 浅野
Kiyoshi Goto
潔 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP3048191A priority Critical patent/JP2518559B2/en
Publication of JPH04285059A publication Critical patent/JPH04285059A/en
Application granted granted Critical
Publication of JP2518559B2 publication Critical patent/JP2518559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To offer stock for manufacturing a refractory material free from problems shown in the conventional refractory material as the lining of a vacuum treating vessel for molten steel, having corrosion resistance to molten steel and slag and thermal impact resistance caused by temp. change, and furthermore excellent in wear resistance to a molten steel flow. CONSTITUTION:This is a one obtd. by mixing a refractory material contg. magnesia and chromium iron ore with, by weight, 2 to 10% ferrochromium powder contg. 50 to 85% Cr with <=100mum grain diameter and 2 to 10% chromium oxide with <=100mum grain diameter and >=90% purity, and the above ferrochromium powder and chromium oxide are prepd. by preliminarily mixing each powder with <1mm grain diameter and mixing the above preliminarily mixed powder with magnesia or chromium iron ore or both. By combinedly adding relatively inexpensive ferrochromium and chromium oxide, a dense magnesia-chromium refractory having low porosity and high corrosion resistance can stably be manufactured without large chages in its manufacturing stage or the like.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の技術分野】本発明は、溶融金属容器、とくに
、溶融金属の真空処理容器の内張りに適した耐火材およ
びその調製方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory material suitable for lining molten metal containers, particularly containers for vacuum processing of molten metal, and a method for preparing the same.

【0002】0002

【従来の技術】従来より製鋼プロセスで、溶鋼中の不純
物除去のための脱ガス処理に使用されるDH、RH設備
等の真空容器の内張材として真空下で特に安定な材質を
用いる必要がある。
[Prior Art] Conventionally, in the steel manufacturing process, it has been necessary to use materials that are particularly stable under vacuum as lining materials for vacuum vessels such as DH and RH equipment used for degassing treatment to remove impurities from molten steel. be.

【0003】一般にシリカを主成分とする耐火物は高温
下で解離しやすく、この用途には不向きであるが、マグ
ネシア・クロム質の耐火物は、スラグあるいは溶鋼との
化学的反応による化学的侵食、温度変化による熱衝撃に
強い優れた耐火物であり、溶鋼流に対する耐摩耗性に優
れた焼成タイプのマグネシア・クロム質耐火物が好適と
言える。
[0003] In general, silica-based refractories tend to dissociate at high temperatures and are unsuitable for this purpose, but magnesia-chromium refractories are susceptible to chemical attack due to chemical reactions with slag or molten steel. It can be said that a fired type magnesia-chromium refractory is suitable because it is an excellent refractory that is resistant to thermal shock caused by temperature changes and has excellent wear resistance against molten steel flow.

【0004】マグネシア・クロム質れんがは、その原料
構成からダイレクトボンドれんがとリボンドれんがに大
別できる。前者は、マグネシア源として高純度の合成マ
グネシアクリンカーを、またクロム源としては天然のク
ロム鉄鉱を使用しており、これらの配合物に適当なバイ
ンダーを加えてプレス成形し、1700℃以上に高温で
焼成して製造される。一方後者は、マグネシアクリンカ
ーとクロム鉄鉱を事前に電気炉で融解・冷却後粉砕した
低不純物の電融マグクロクリンカーを使用し、前者と同
様に成形して得られるものである。また、両者に中間的
な性質を有するもの、すなわち、マグネシアクリンカー
、クロム鉄鉱、電融マグクロの配合物を使用するものも
あり、これをセミリボンドれんがと呼んでいる。
[0004] Magnesia chromium bricks can be broadly classified into direct bond bricks and ribbon bond bricks based on their raw material composition. The former uses high-purity synthetic magnesia clinker as the magnesia source and natural chromite as the chromium source.A suitable binder is added to these mixtures, press-molded, and then heated at a high temperature of 1700℃ or higher. Manufactured by firing. On the other hand, the latter is obtained by molding in the same manner as the former, using low-impurity electrofused magnesia clinker and chromite which are melted in an electric furnace, cooled and then pulverized. There are also bricks that have properties intermediate between the two, ie, those that use a blend of magnesia clinker, chromite, and electrofused maguro, and are called semi-ribbonded bricks.

【0005】ところで、耐火物の耐食性を左右する因子
の一つとして気孔率がある。すなわち、れんが組織内の
気孔を介してスラグ・溶鋼等の外来成分がれんが内に侵
入し、さらにれんが成分と反応することによってれんが
が容易に損耗するため、気孔率が小さいほどこの現象を
抑制でき、高耐食性である。
By the way, porosity is one of the factors that influences the corrosion resistance of refractories. In other words, foreign components such as slag and molten steel enter the bricks through the pores in the brick structure, and further react with the brick components, causing the bricks to be easily worn out.The lower the porosity, the better this phenomenon can be suppressed. , high corrosion resistance.

【0006】マグネシア・クロム質れんがの場合、ダイ
レクトボンド、リボンドにかかわらず、低気孔率を確保
するための手段として、配合原料を最密充填となる粒度
に調整し、高圧プレスによって充填成形し、これを超高
温で焼成することが知られており、また、酸化クロム粉
末を配合して焼結を促進する手法も特公昭57−574
28号公報によって公知である。
In the case of magnesia chromium bricks, regardless of direct bonding or ribbon bonding, as a means to ensure low porosity, the blended raw materials are adjusted to a particle size that provides close packing, and the bricks are filled and formed using a high-pressure press. It is known to sinter this at extremely high temperatures, and a method of promoting sintering by adding chromium oxide powder was also developed in Japanese Patent Publication No. 57-574.
It is known from Publication No. 28.

【0007】これらの方法以外に、金属クロムあるいは
その合金を耐火物原料配合時に添加し、これをれんが焼
成時に酸化・膨張させることで、低気孔率の耐火物を得
ようとする試みがなされている。原料中に配合された金
属クロムは、高温酸化雰囲気下で酸化するとともに周囲
のマグネシアと反応する。この際に体積膨張を起こし、
周囲の気孔を充填するため、低気孔率で緻密な耐火物を
得ることができる。
[0007] In addition to these methods, attempts have been made to obtain refractories with low porosity by adding metallic chromium or its alloys when blending raw materials for refractories, and oxidizing and expanding this during brick firing. There is. Metallic chromium blended into the raw material oxidizes in a high-temperature oxidizing atmosphere and reacts with surrounding magnesia. At this time, volumetric expansion occurs,
Since the surrounding pores are filled, a dense refractory with low porosity can be obtained.

【0008】特公昭44−18738号公報に記載の鉄
とクロムの合金であるフェロクロムを配合する技術がそ
れである。フェロクロムも金属クロムの場合と同様に働
くため、緻密で低気孔率のれんがが得られる。
This is the technique of blending ferrochrome, which is an alloy of iron and chromium, described in Japanese Patent Publication No. 44-18738. Ferrochrome works in the same way as metallic chromium, resulting in dense bricks with low porosity.

【0009】マグネシア・クロム質れんがが高い耐食性
を示すのは、焼成時に粒界に析出したクロム成分を多く
含む二次スピネルによるところが大きいと考えられてい
る。しかしながら、フェロクロム配合の場合、れんが中
の鉄分は増加し、二次スピネルの組成は鉄に富んだもの
となり、二次スピネル自体の耐食性が低下する。これが
れんがの耐食性に悪影響を及ぼし低気孔率とはなるが、
耐食性はそれほど大きく改善されない。
It is believed that the high corrosion resistance of magnesia-chromium bricks is largely due to secondary spinel containing a large amount of chromium component precipitated at grain boundaries during firing. However, in the case of ferrochrome compounding, the iron content in the brick increases, the composition of the secondary spinel becomes iron-rich, and the corrosion resistance of the secondary spinel itself decreases. Although this adversely affects the corrosion resistance of the brick and results in a low porosity,
Corrosion resistance is not significantly improved.

【0010】一方、金属クロムと酸化クロムの混合物を
添加することも特開昭62−207757号公報に開示
されている。酸化クロムは高融点物質(融点1830℃
)であるため、これを金属クロムと共存させることで両
者をより低温で共和融解させ、より効果的に焼結を促進
させることが主な目的であるが、前述のように金属クロ
ムは組織を緻密化させるので、焼結促進の効果と相まっ
て比較的緻密で低気孔率のマグネシア・クロム質耐火物
が得られるとされている。しかしながら、実際には、両
粉末を接触状態で配合するのは困難である、酸化・膨張
挙動の制御が容易でなく、金属クロム粉末が高価であり
、れんが製造コスト上昇が耐食性向上による耐火物原単
価削減分を上回るため利用価値がないこと等により、実
用化されていない。
On the other hand, the addition of a mixture of metallic chromium and chromium oxide is also disclosed in JP-A-62-207757. Chromium oxide is a high melting point substance (melting point 1830℃
), the main purpose is to have it coexist with metallic chromium to co-fuse both at a lower temperature and promote sintering more effectively, but as mentioned above, metallic chromium has a tendency to change its structure. It is said that because of the densification, it is possible to obtain a magnesia-chromium refractory that is relatively dense and has a low porosity, along with the effect of promoting sintering. However, in reality, it is difficult to blend both powders in contact, it is difficult to control oxidation and expansion behavior, metallic chromium powder is expensive, and brick manufacturing costs are increasing due to improved corrosion resistance. It has not been put into practical use because it has no value as it exceeds the unit cost reduction.

【0011】[0011]

【発明が解決しようとする課題】本発明において解決す
べき課題は、とくに、溶鋼の真空処理容器の内張りとし
て、上記従来の耐火物のような問題がなく、溶鋼とスラ
グに対する耐食性、温度変化による熱衝撃に強くさらに
は、溶鋼流に対する耐摩耗性に優れた耐火材を提供する
ことにある。
[Problems to be Solved by the Invention] The problems to be solved by the present invention are, in particular, to be used as a lining for a vacuum processing vessel for molten steel, without the problems of the conventional refractories mentioned above, to have corrosion resistance against molten steel and slag, and to be resistant to temperature changes. The object of the present invention is to provide a refractory material that is resistant to thermal shock and has excellent abrasion resistance against molten steel flow.

【0012】0012

【課題を解決するための手段】本発明に係る耐火材は、
マグネシアまたはクロム鉄鉱もしくはその両者を含む耐
火材に、粒径100μm以下でCrを50〜85重量%
含有するフェロクロム粉末を2〜10重量%と、粒径1
00μm以下で純度90重量%以上の酸化クロム粉末2
〜10重量%とを混合したものであることを特徴とする
[Means for solving the problems] The fireproof material according to the present invention is
50 to 85% by weight of Cr with a particle size of 100 μm or less in a refractory material containing magnesia or chromite or both.
Containing ferrochrome powder of 2 to 10% by weight and particle size of 1
Chromium oxide powder 2 with a diameter of 00μm or less and a purity of 90% by weight or more
~10% by weight.

【0013】また、この耐火材は、マグネシアあるいは
クロム鉄鉱もしくはその両者を含む耐火材に、フェロク
ロム粉末および酸化クロム粉末と粒径1mm未満のマグ
ネシアあるいはクロム鉄鉱もしくはその両者との予備混
合物とを混合することによって調製できる。
[0013] Furthermore, this refractory material is prepared by mixing a premixture of ferrochrome powder, chromium oxide powder, and magnesia or chromite or both with a particle size of less than 1 mm into a refractory material containing magnesia, chromite, or both. It can be prepared by

【0014】[0014]

【作用】本発明におけるクロム成分は、その酸化に伴う
体積膨張が耐火物の低気孔率化に機能する。そして、安
定した低気孔率化のためには適当に希釈して分散させる
必要がある。希釈材としては鉄が好適である。しかし鉄
とクロムの合金であるフェロクロムを添加すると、二次
スピネルの鉄成分が増加して耐食性が低下する。この耐
食性の低下の防止には、酸化クロムを適当量配合して二
次スピネル中のクロム濃度を上昇させることが非常に効
果的である。そのため、適量のフェロクロムと適量の酸
化クロムが添加配合される。
[Function] The chromium component in the present invention functions to lower the porosity of the refractory due to its volumetric expansion accompanying its oxidation. In order to stably reduce the porosity, it is necessary to dilute and disperse the material appropriately. Iron is preferred as the diluent. However, when ferrochrome, which is an alloy of iron and chromium, is added, the iron content of the secondary spinel increases and corrosion resistance decreases. To prevent this decrease in corrosion resistance, it is very effective to increase the chromium concentration in the secondary spinel by adding an appropriate amount of chromium oxide. Therefore, an appropriate amount of ferrochrome and an appropriate amount of chromium oxide are added and blended.

【0015】フェロクロムは金属クロムの場合よりも希
釈されている分だけ分散性が良く、また酸化膨張量が小
さいため、安定的に組織を低気孔率化させることができ
る。酸化クロムはれんが焼成中に移動し、最終的には二
次スピネル中に濃縮される。この結果、低気孔率でかつ
クロム成分に富んだ二次スピネルの発達した、高耐食性
のマグネシア・クロム質れんがを得ることができる。
Ferrochrome has better dispersibility than metal chromium because it is diluted, and the amount of oxidation expansion is small, so it is possible to stably lower the porosity of the structure. Chromium oxide migrates during brick firing and is eventually concentrated in the secondary spinel. As a result, a highly corrosion-resistant magnesia-chromium brick with low porosity and developed secondary spinel rich in chromium components can be obtained.

【0016】フェロクロムの品質は耐火物の特性を大き
く支配する要因の一つである。
The quality of ferrochrome is one of the factors that greatly controls the properties of refractories.

【0017】フェロクロムに要求される特性の第一は、
粒径が100μm以下であることである。これは細粒と
なるほど比表面が増加し、より低温から酸化・膨張が起
こり、安定的に低気孔率のれんがが得られるためである
。この粒径以上では膨張挙動が不安定となり、良好な組
織を得ることは難しい。また細粒とすることで分散性も
向上する。第二点は、フェロクロムに含まれるクロム成
分は50〜85重量%程度である必要がある。残りは鉄
分と若干の不純物である。この程度の希釈率で分散性が
よくなり、酸化・膨張挙動が安定し、低気孔率のれんが
が得られる。
The first characteristic required of ferrochrome is
The particle size is 100 μm or less. This is because as the particles become finer, the specific surface increases, oxidation and expansion occur from lower temperatures, and bricks with low porosity can be stably obtained. If the particle size exceeds this value, the expansion behavior becomes unstable and it is difficult to obtain a good structure. Moreover, by making the particles fine, dispersibility is also improved. The second point is that the chromium component contained in ferrochrome needs to be about 50 to 85% by weight. The remainder is iron and some impurities. A dilution rate of this level improves dispersibility, stabilizes oxidation and expansion behavior, and provides bricks with low porosity.

【0018】フェロクロムと同様に重要なのが酸化クロ
ムである。酸化クロムは粒径100μm以下で純度90
重量%以上である必要がある。粒径が100μmを超え
ると酸化クロムの分散性が悪化して焼成時にクロム成分
が移動しにくくなるため、安定した組織と適当な組成の
二次スピネルが得られなくなる。純度が90重量%を下
回ると二次スピネル中のクロム成分が充分高まらず、耐
食性を向上させることができない。
[0018] Equally important to ferrochrome is chromium oxide. Chromium oxide has a particle size of 100μm or less and a purity of 90%.
It needs to be at least % by weight. If the particle size exceeds 100 μm, the dispersibility of chromium oxide deteriorates, making it difficult for the chromium component to move during firing, making it impossible to obtain a secondary spinel with a stable structure and appropriate composition. If the purity is less than 90% by weight, the chromium component in the secondary spinel will not be sufficiently increased, making it impossible to improve corrosion resistance.

【0019】ところで、フェロクロムと酸化クロムの効
果により緻密化を図るべき部分は、耐火物のマトリック
スにあたる部分である。通常耐火物は3〜1mm程度の
粗粒、1〜0.1mm程度の中粒、0.1mm程度以下
の細粒からなっている。耐火物の組織を観察すると、粗
粒と中粒は周囲を細粒に埋めつくされている様子が判る
。この周囲の部分がマトリックスである。より効果的に
緻密化を図るためには、このマトリックスの部分に、フ
ェロクロムと酸化クロムを均一に分散させる必要がある
。このためには、マトリックスとなる中粒および細粒と
、フェロクロムと酸化クロムとを予備混合し、これをさ
らに粗粒と混合することが効果的である。これによりマ
トリックスが緻密な、耐食性に優れた耐火物を得ること
ができる。
By the way, the part that should be made denser by the effects of ferrochrome and chromium oxide is the part that corresponds to the matrix of the refractory. Usually, refractories consist of coarse particles of about 3 to 1 mm, medium particles of about 1 to 0.1 mm, and fine particles of about 0.1 mm or less. When observing the structure of refractories, it can be seen that coarse and medium grains are surrounded by fine grains. The surrounding area is the matrix. In order to achieve more effective densification, it is necessary to uniformly disperse ferrochrome and chromium oxide in this matrix portion. For this purpose, it is effective to premix medium and fine particles that will serve as a matrix, ferrochrome and chromium oxide, and further mix this with coarse particles. As a result, a refractory with a dense matrix and excellent corrosion resistance can be obtained.

【0020】[0020]

【実施例】実施例1 フェロクロムと酸化クロムの適正添加量を調査するため
にれんがを試作し、その耐食性を調査した。
[Example] Example 1 In order to investigate the appropriate addition amount of ferrochrome and chromium oxide, a prototype brick was made and its corrosion resistance was investigated.

【0021】使用原料はクロム成分64重量%で粒径1
00μm以下のフェロクロム粉末、純度90重量%以上
で粒径100μm以下の酸化クロム粉末、純度95重量
%の焼結マグネシア、MgO成分とCr2 O3 成分
の和が60重量%のクロム鉄鉱である。焼結マグネシア
とクロム鉄鉱の量比は7:3とした。フェロクロム粉末
、酸化クロム粉末、1mm以下のマグネシア、1mm以
下のクロム鉄鉱については予備混練を実施し、フリクシ
ョンプレスで75×114×230mmに成形し、乾燥
後、最高温度1850℃で焼成した。こうして製造した
試作れんがから30×70×230mm程度の試料を切
り出してるつぼ内壁に内張りした。これを真空誘導炉に
セットし、この中で鋼を誘導溶解して1650℃に保持
した。さらに侵食材であるスラグを溶鋼上に乗せて溶解
し、れんがを溶損させた。なお、スラグの組成はAl2
 O3 =20,CaO=60,CaF2 =20(各
重量%)、真空容器内の全圧は5torr以下、実験時
間は4時間であった。侵食試験終了後、試料を取り出し
て切断し、最大溶損部の残存厚さを測定して、これを元
の厚さから差し引くことで溶損量を求めた。溶損量測定
結果をフェロクロム添加量と酸化クロム添加量の関係で
整理した結果を表1に示す。
The raw material used has a chromium content of 64% by weight and a particle size of 1.
00 μm or less ferrochrome powder, chromium oxide powder with a purity of 90% by weight or more and a particle size of 100 μm or less, sintered magnesia with a purity of 95% by weight, and chromite with a sum of MgO and Cr2O3 components of 60% by weight. The amount ratio of sintered magnesia and chromite was 7:3. Ferrochrome powder, chromium oxide powder, magnesia of 1 mm or less, and chromite of 1 mm or less were pre-kneaded, molded into 75 x 114 x 230 mm using a friction press, dried and fired at a maximum temperature of 1850°C. A sample of approximately 30 x 70 x 230 mm was cut out from the prototype brick thus manufactured and lined on the inner wall of the vase. This was set in a vacuum induction furnace, and steel was induction melted therein and maintained at 1650°C. Furthermore, slag, which is an erosive material, was placed on top of the molten steel and melted, causing the bricks to melt away. The composition of the slag is Al2
O3 = 20, CaO = 60, CaF2 = 20 (each % by weight), the total pressure in the vacuum container was 5 torr or less, and the experiment time was 4 hours. After the erosion test was completed, the sample was taken out and cut, the remaining thickness of the maximum eroded portion was measured, and the amount of eroded loss was determined by subtracting this from the original thickness. Table 1 shows the measurement results of the amount of erosion, organized in terms of the relationship between the amount of ferrochrome added and the amount of chromium oxide added.

【0022】また、参考のためにフェロクロムのかわり
にクロム(純度90重量%以上)を使用した結果につい
ても示した。
[0022] For reference, the results obtained by using chromium (purity of 90% by weight or more) in place of ferrochrome are also shown.

【0023】[0023]

【表1】[Table 1]

【0024】表1で、酸化クロム添加量0重量%でフェ
ロクロム添加量を変化させた場合、溶損量はあまり変化
せず、酸化クロムを添加せずにフェロクロムを添加して
も、耐食性は向上しないことがわかる。これに対して、
2重量%以上に酸化クロムとともにフェロクロムを添加
した場合は、添加によって溶損量が減少することが判る
。ただし、フェロクロムを2重量%添加しないとこの効
果は現れない。フェロクロム添加量の上限および酸化ク
ロム添加量の上限は共に10重量%である。これを超え
るとれんが組織中の亀裂発生や、組織劣化に伴う耐食性
低下等の問題が生じ、実用にならない。従って、酸化ク
ロム、フェロクロムともに適正添加量は2〜10重量%
である。
[0024] In Table 1, when the amount of ferrochrome added is changed with the amount of chromium oxide added being 0% by weight, the amount of corrosion loss does not change much, and even if ferrochrome is added without adding chromium oxide, the corrosion resistance is improved. I know it won't. On the contrary,
It can be seen that when ferrochrome is added together with chromium oxide in an amount of 2% by weight or more, the amount of melting loss is reduced by the addition. However, this effect does not appear unless 2% by weight of ferrochrome is added. The upper limit of the amount of ferrochrome added and the upper limit of the amount of chromium oxide added are both 10% by weight. If it exceeds this range, problems such as cracking in the brick structure and a decrease in corrosion resistance due to deterioration of the structure will occur, making it impractical. Therefore, the appropriate amount of addition for both chromium oxide and ferrochrome is 2 to 10% by weight.
It is.

【0025】また、クロムを添加した場合については、
同じ4重量%を添加した場合でも、溶損量はフェロクロ
ムを使用した場合よりも大きく、クロムの添加は耐食性
向上に効果がないことがわかる。
[0025] Furthermore, in the case of adding chromium,
Even when the same 4% by weight is added, the amount of corrosion loss is greater than when ferrochrome is used, indicating that the addition of chromium has no effect on improving corrosion resistance.

【0026】本発明の耐火物素材に使用する耐火骨材で
あるマグネシア、クロム鉄鉱、電融マグクロの品質は、
通常の場合と同様で差し支えない。すなわち、マグネシ
アとして純度90重量%程度以上のもの、クロム鉄鉱は
MgO成分とCr2 O3 成分の和が45重量%程度
以上のもの、電融マグクロはMgO成分とCr2 O3
 成分の和が70重量%程度以上のものである。
[0026] The quality of the refractory aggregates used in the refractory material of the present invention, such as magnesia, chromite, and fused maguro, is as follows:
There is no problem in the same way as in normal cases. That is, magnesia has a purity of about 90% by weight or more, chromite has a sum of MgO components and Cr2 O3 components of about 45% by weight or more, and fused maguro has a purity of about 45% by weight or more.
The sum of the components is approximately 70% by weight or more.

【0027】以上、焼成マグネシア・クロム質耐火物の
場合に主眼をおいて説明したが、本発明による素材は不
焼成耐火物、あるいは、不定形耐火物にも応用できる。 つまり使用中に金属クロムが酸化し、組織の緻密化を図
ることもできる。不焼成耐火物は焼成れんがの焼成工程
を省略することで得られ、不定形耐火物は本素材に適当
なバインダー等を加えることで得られる。
Although the above explanation has focused on the case of fired magnesia-chromium refractories, the material according to the present invention can also be applied to unfired refractories or monolithic refractories. In other words, metal chromium is oxidized during use, and the structure can be made denser. Unfired refractories can be obtained by omitting the firing process of fired bricks, and monolithic refractories can be obtained by adding a suitable binder or the like to this material.

【0028】実施例2 本発明の耐火物製造用素材からダイレクトボンドれんが
を作成し、真空溶解炉に適用した。
Example 2 Direct bond bricks were made from the material for producing refractories of the present invention and applied to a vacuum melting furnace.

【0029】純度95%の焼結マグネシアクリンカーと
MgO成分とCr2O3 成分の和が60重量%程度の
クロム鉄鉱を重量比7:3で使用し、これに粒径44μ
m以下でクロム含有量64重量%のフェロクロム4重量
%と、粒径50μm以下で純度90重量%以上の酸化ク
ロム5重量%と、少量の多糖類を配合した混練体をフリ
クションプレスで成形、乾燥、1850℃で焼成し、ダ
イレクトボンドれんがを製造した。なお、フェロクロム
、酸化クロム、0.1mm以下のマグネシア、0.1m
mのクロム鉄鉱については予備混練を実施した。これを
真空溶解炉のスラグライン部内張りとして使用し、その
溶損速度を従来品と比較した。本発明による素材を使用
したれんがと従来品の品質、および溶損速度を表2にま
とめて示した。
[0029] Sintered magnesia clinker with a purity of 95% and chromite with a sum of MgO and Cr2O3 components of about 60% by weight are used in a weight ratio of 7:3, and a particle size of 44μ is used.
A kneaded body containing 4% by weight of ferrochrome with a particle size of 50 μm or less and a chromium content of 64% by weight, 5% by weight of chromium oxide with a particle size of 50 μm or less and a purity of 90% by weight or more, and a small amount of polysaccharide is molded using a friction press and dried. , and baked at 1850°C to produce direct bond bricks. In addition, ferrochrome, chromium oxide, magnesia of 0.1 mm or less, 0.1 m
Preliminary kneading was carried out for the chromite of m. This was used as a slag line lining in a vacuum melting furnace, and its erosion rate was compared with that of a conventional product. Table 2 summarizes the quality and erosion rate of bricks made from the material of the present invention and conventional bricks.

【0030】[0030]

【表2】[Table 2]

【0031】本発明による素材を使用したれんがは従来
品と比較して溶損速度が25%小さく、高耐食性を示し
た。
Bricks made of the material according to the present invention had a 25% lower erosion rate than conventional bricks and exhibited high corrosion resistance.

【0032】実施例3 本発明の耐火物製造用素材からセミリボンドれんがを作
成し、DH脱ガス炉に適用した。
Example 3 Semi-ribonded bricks were made from the material for producing refractories of the present invention and applied to a DH degassing furnace.

【0033】純度95%の焼結マグネシアクリンカー、
MgO成分とCr2O3 成分の和が60重量%程度の
クロム鉄鉱、MgO成分とCr2 O3 成分の和が9
0重量%程度の電融マグクロを使用し、これに粒径44
μm以下でクロム含有量64重量%のフェロクロム3重
量%と、粒径50μm以下で純度90重量%以上の酸化
クロム5重量%と、少量の多糖類を混練し、フリクショ
ンプレスで成形、乾燥、1850℃で焼成し、セミリボ
ンドれんがを製造した。なお、フェロクロム、酸化クロ
ム、0.1mm以下のマグネシア、0.1mmのクロム
鉄鉱については予備混練を実施した。これをDH脱ガス
炉の槽底に部分張りし、従来品の場合と溶損速度を比較
した。本発明による素材を使用したれんがと従来品の品
質、および溶損速度を表3にまとめて示した。
[0033] Sintered magnesia clinker with a purity of 95%,
Chromite with a total of MgO and Cr2O3 components of about 60% by weight, and a total of MgO and Cr2O3 components of 9% by weight.
Approximately 0% by weight of electrofused maguro is used, and a particle size of 44
3% by weight of ferrochrome with a particle size of 50 μm or less and a chromium content of 64% by weight, 5% by weight of chromium oxide with a particle size of 50 μm or less and a purity of 90% by weight or more, and a small amount of polysaccharide, molded with a friction press, dried, 1850 Semi-ribboned bricks were produced by firing at ℃. Note that preliminary kneading was performed for ferrochrome, chromium oxide, magnesia of 0.1 mm or less, and chromite of 0.1 mm. This was partially applied to the bottom of a DH degassing furnace, and the erosion rate was compared with that of a conventional product. Table 3 summarizes the quality and erosion rate of bricks made of the material according to the present invention and conventional bricks.

【0034】[0034]

【表3】[Table 3]

【0035】本発明による素材を使用したれんがは、従
来品と比較して溶損速度が21%小さく、高耐食性を示
した。
Bricks made of the material according to the present invention had a 21% lower erosion rate than conventional bricks, and exhibited high corrosion resistance.

【0036】[0036]

【発明の効果】本発明の耐火物素材は、比較的安価なフ
ェロクロムと酸化クロムを組合わせて添加することで、
製造工程等の大きな変更なしに、低気孔率で緻密な高耐
食性のマグネシア・クロム質耐火物を安定的に製造し得
るものである。本発明により、従来よりも20%以上高
耐食性の耐火物が製造可能で、これにより鉄鋼の安定製
造と製造コストの削減が可能となる。
[Effects of the Invention] The refractory material of the present invention is made by adding a combination of relatively inexpensive ferrochrome and chromium oxide.
It is possible to stably produce a magnesia-chromium refractory with low porosity, high density, and high corrosion resistance without major changes in the manufacturing process. According to the present invention, it is possible to manufacture a refractory with corrosion resistance 20% higher than that of conventional refractories, thereby making it possible to stably manufacture steel and reduce manufacturing costs.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  マグネシアまたはクロム鉄鉱もしくは
その両者を含む耐火材に、粒径100μm以下でCrを
50〜85重量%含有するフェロクロム粉末を2〜10
重量%と、粒径100μm以下で純度90重量%以上の
酸化クロム粉末2〜10重量%とを混合してなる耐火材
Claim 1: A refractory material containing magnesia or chromite or both is mixed with 2 to 10 ferrochrome powders having a particle size of 100 μm or less and containing 50 to 85% by weight of Cr.
% by weight and 2 to 10% by weight of chromium oxide powder having a particle size of 100 μm or less and a purity of 90% by weight or more.
【請求項2】  マグネシアあるいはクロム鉄鉱もしく
はその両者を含む耐火材に、フェロクロム粉末および酸
化クロム粉末と粒径1mm未満のマグネシアあるいはク
ロム鉄鉱もしくはその両者との予備混合物とを混合する
耐火材の調製方法。
2. A method for preparing a refractory material, which comprises mixing a refractory material containing magnesia or chromite or both with a premixture of ferrochrome powder and chromium oxide powder and magnesia or chromite or both having a particle size of less than 1 mm. .
JP3048191A 1991-03-13 1991-03-13 Refractory materials and their preparation method Expired - Lifetime JP2518559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3048191A JP2518559B2 (en) 1991-03-13 1991-03-13 Refractory materials and their preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3048191A JP2518559B2 (en) 1991-03-13 1991-03-13 Refractory materials and their preparation method

Publications (2)

Publication Number Publication Date
JPH04285059A true JPH04285059A (en) 1992-10-09
JP2518559B2 JP2518559B2 (en) 1996-07-24

Family

ID=12796498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3048191A Expired - Lifetime JP2518559B2 (en) 1991-03-13 1991-03-13 Refractory materials and their preparation method

Country Status (1)

Country Link
JP (1) JP2518559B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128556A2 (en) * 2005-05-30 2006-12-07 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414062B2 (en) * 2010-03-25 2014-02-12 黒崎播磨株式会社 Magnesia-chromic brick

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128556A2 (en) * 2005-05-30 2006-12-07 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic product
WO2006128556A3 (en) * 2005-05-30 2007-07-19 Refractory Intellectual Prop Refractory ceramic product
EA011907B1 (en) * 2005-05-30 2009-06-30 Рифректори Интеллектуал Проперти Гмбх & Ко.Кг Refractory ceramic product

Also Published As

Publication number Publication date
JP2518559B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US4125407A (en) Refractories which have dense-structure as well as spalling resistance and method for fabricating same
US4513089A (en) Superrefractory dry ramming material based on zirconium oxide for the lining of induction-type crucible furnaces
EP0020022B1 (en) Plastic refractories with fused alumina-chrome grog
US4435514A (en) Chromia magnesia refractory
JPH04285059A (en) Refractory material and its preparing method
JP2540214B2 (en) Refractory material
JPH07291716A (en) Basic refractory
JP3031192B2 (en) Sliding nozzle plate refractories
JP2604820B2 (en) Refractory material
JP3833800B2 (en) Standard refractory
JPH0952755A (en) Magnesia-chrome refractory
JPH0543306A (en) Burnt refractory of magnesia-chromia
JPH11147758A (en) Production of refractory material
JP2968542B2 (en) Refractory
KR970008705B1 (en) Refractories brick
JPH0672761A (en) Base material for producing refractory
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JP2000191364A (en) Shaped magnesia-chrome refractory
JP3176836B2 (en) Irregular refractories
KR970008699B1 (en) Refractories brick
GB1564927A (en) Bonds for refractory materials
JP3143666B2 (en) Refractory materials for steelmaking furnaces
JPH06172020A (en) Magnesia component-containing refractory material
JPH107455A (en) Shaped refractory of magnesia-chromium
JPH06227856A (en) Production of burnt magnesia-spinel brick having high durability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960308

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 15

EXPY Cancellation because of completion of term