JPH03228860A - Production of magnesia-chrome firebrick - Google Patents

Production of magnesia-chrome firebrick

Info

Publication number
JPH03228860A
JPH03228860A JP2021247A JP2124790A JPH03228860A JP H03228860 A JPH03228860 A JP H03228860A JP 2021247 A JP2021247 A JP 2021247A JP 2124790 A JP2124790 A JP 2124790A JP H03228860 A JPH03228860 A JP H03228860A
Authority
JP
Japan
Prior art keywords
firing
furnace
surface area
brick
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021247A
Other languages
Japanese (ja)
Inventor
Keisuke Asano
敬輔 浅野
Kiyoshi Goto
潔 後藤
Takeyuki Tamaki
健之 玉木
Kazuo Sasaki
和男 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP2021247A priority Critical patent/JPH03228860A/en
Publication of JPH03228860A publication Critical patent/JPH03228860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain high quality bricks free from an unfired part and uniform in shape and dimensions by exposing brick body contg. a metal (alloy) such as Al, Cr or Ti to a firing atmosphere by a prescribed specific surface area and firing the brick body at a prescribed temp. for a prescribed time. CONSTITUTION:Brick body contg. one or more among Al, Cr, Ti, Fe, Mg, Si and Mn or an alloy of such metals added by 0.1-7% is prepd. and put on a conveyor so that it is exposed to the atmosphere in a firing furnace by >=0.2cm<2>/cm<3> specific surface area. In the furnace, the brick body is fired at >=1,750 deg.C by keeping at the max. temp. for >=7hr.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属を添加したマグクロ質耐火れんがの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing metal-added maguro refractory bricks.

(従来の技術) マグクロ質耐火れんが素地に金属Fe、 Mg、Si八
、Q、 Cr、 Ti、 Mn、あるいは混合物、合金
を副原料として添加する目的は、耐火れんがを得るため
の焼成過程において個々の金属、合金をれんが素地内部
で溶解、拡散し粒子間に存在する気孔を潰しミクロ的組
織の緻密化と共に金属から酸化物への易反応による2次
スピネルの割合を増進し得られた耐火れんがのスラグに
対する耐食性、耐浸潤性を向上することにある。従って
その効果を十分に発揮させる為には金属、合金を焼成過
程において、れんが内部に十分に拡散し、かつ十分に酸
化させることが必要となる。
(Prior art) The purpose of adding metals Fe, Mg, Si, Q, Cr, Ti, Mn, or mixtures or alloys to the base material of maguro refractory bricks is to add them individually during the firing process to obtain refractory bricks. Refractory bricks are made by melting and diffusing the metals and alloys inside the brick matrix, crushing the pores existing between the particles, making the microstructure denser, and increasing the proportion of secondary spinel due to the easy reaction of metals to oxides. The objective is to improve corrosion resistance and infiltration resistance against slag. Therefore, in order to fully exhibit this effect, it is necessary to sufficiently diffuse the metal or alloy into the brick during the firing process and to oxidize it sufficiently.

しかし従来の技術では、金属、合金の酸化か十分ではな
くれんが内部に未焼成部分が発生すると共に酸化物へ反
応する際の不均一な体積膨張によるれんが形状寸法の異
常不良が発生し、ひどい時にはれんが表面に亀裂が発生
し、良品を得ることが困難であった。このことはれんか
形状に最も左右され、特に大型形状になればなる程未焼
成部分の発生が一層顕著になることは否めなかった。
However, with conventional technology, due to insufficient oxidation of metals and alloys, unfired parts occur inside the bricks, and irregular volumetric expansion occurs when the bricks react to oxides, resulting in irregularities in the shape and dimensions of the bricks, and in severe cases. Cracks appeared on the surface of the bricks, making it difficult to obtain good quality products. This is most influenced by the shape of the brick, and it cannot be denied that the larger the shape, the more noticeable the occurrence of unfired parts.

(発明が解決しようとする課題) 本発明は金属、合金等を添加して焼成によって得られる
マグクロ質耐火れんかにおける上記課題を解決するため
になされたものである。れんが内部に生じる未焼成部分
の発生経路として以下のことが考えられる。
(Problems to be Solved by the Invention) The present invention has been made in order to solve the above-mentioned problems in maguro refractory bricks obtained by adding metals, alloys, etc. and firing them. The following may be considered as the path of occurrence of unfired parts inside the brick.

第1にマグクロ質耐火れんが素地中に前述したような金
属あるいは合金等の還元剤を含有する場合で、れんが素
地中に例えばクロム鉱を配合している場合のクロム鉱中
に含まれるFe2O2等が焼成段階において、還元剤が
酸化するよりも早い段階で還元された場合、スピネルあ
るいは固溶物を十分に生成し得すに、未焼成部分が残存
する。
First, when the maguro refractory brick matrix contains reducing agents such as metals or alloys as mentioned above, when the brick matrix contains, for example, chromite, Fe2O2 etc. contained in the chromite are mixed. If the reducing agent is reduced earlier than it is oxidized in the firing step, an unfired portion will remain, although sufficient spinel or solid solution can be produced.

第2にそれら還元剤としての金属が焼成段階で溶融し、
その液相が気孔中を移動する速度(物質移動速度)ある
いは移動後、移動途中において酸化反応する速度よりも
、焼成速度が早すぎる場合、該金属又はクロム鉱中の1
価、2価の鉄分を十分に酸化する為の酸素濃度が不足し
、物質収支かつりあいがとれていない時に未焼成部分が
れんが内部に残存する形となると考えられる。
Second, these metals as reducing agents are melted during the firing stage,
If the firing rate is too fast than the rate at which the liquid phase moves through the pores (mass transfer rate) or the rate at which the oxidation reaction occurs during the transfer, the
It is thought that when the oxygen concentration to sufficiently oxidize the valent and divalent iron is insufficient and the material balance is not balanced, the unfired portion remains inside the brick.

従って上記マグクロ質耐火れんがの未焼成部分を無くす
為には、焼成段階における物質移動速度、酸化反応速度
、と酸素濃度等を最適化することが解決の手口ではある
が、現在の技術では焼成段階におけるれんが中の金属の
挙動を数値的に把握することは困難を極める。
Therefore, in order to eliminate the unfired parts of the above-mentioned maguro refractory bricks, the solution is to optimize the mass transfer rate, oxidation reaction rate, oxygen concentration, etc. in the firing stage, but the current technology It is extremely difficult to numerically understand the behavior of metals in bricks.

そこで木発明者等は、焼成温度、焼成時間(最高温度キ
ープ時間)、比表面積等をれんがの形状に応じて最適化
することによって、未焼成部分が残存せず、又形状寸法
の均一な高品質のマグクロ質耐火れんがを製造する方法
を提供するものである。
Therefore, the wood inventors optimized the firing temperature, firing time (maximum temperature keeping time), specific surface area, etc. according to the shape of the brick, so that no unfired parts remained and the shape and dimensions were uniform. The present invention provides a method for producing quality maguro refractory bricks.

(課題を解決するための手段) 本発明は、アルミニウム、クロム、チタニウム、鉄、マ
グネシウム、シリコン、マンガンの種又は二種以上若し
くはこれらの合金を0.1〜7%添加したれんが素地の
炉内雰囲気に接する比表面積が0.2 cm2/cm3
以上になるよう焼成炉移送台に積載し、焼成温度175
0℃以上、最高温度キープ7時間以上・にて焼成するこ
とを特徴とするマグクロ質耐火レンガの製造方法である
(Means for Solving the Problems) The present invention provides a furnace of a brick base to which 0.1 to 7% of aluminum, chromium, titanium, iron, magnesium, silicon, manganese seeds, two or more, or alloys thereof are added. Specific surface area in contact with atmosphere is 0.2 cm2/cm3
Load it on the baking furnace transfer stand so that the baking temperature is 175.
This is a method for producing maguro refractory bricks, which is characterized by firing at a temperature of 0° C. or higher and maintaining the maximum temperature for 7 hours or more.

本発明で使用する金属としてはAQ、 Cr、 Tt。The metals used in the present invention include AQ, Cr, and Tt.

Fe、 Mg、 Si、 Mn等で、その他の金属は酸
化物になった時点で耐火性が劣ること、又コスト高にな
ること等の点があり上述の金属類が適している。これら
の金属の一種又は二種以上混合若しくは合金化したもの
を使用する。
The above-mentioned metals, such as Fe, Mg, Si, and Mn, are suitable because other metals have poor fire resistance when converted into oxides and are expensive. One or more of these metals may be mixed or alloyed.

金属あるいはこれら金属の混合粉末又は合金粉末は焼成
課程において酸化するがこの際体積膨張を伴う。それゆ
えに気孔は充填され、組織が緻密化するが、7重量%を
超えた場合過剰な体積膨張のため亀裂が発生する。また
添加量が0.1重量%未満の場合、微添加であるため、
均一に分散させることが困難であり、又添加効果も無い
、従って、添加量は0.1〜7%が好適である。
Metals or mixed powders or alloy powders of these metals are oxidized during the firing process, but this is accompanied by volumetric expansion. Therefore, the pores are filled and the structure becomes dense, but if it exceeds 7% by weight, cracks will occur due to excessive volume expansion. Also, if the amount added is less than 0.1% by weight, it is a slight addition, so
It is difficult to uniformly disperse it, and there is no effect of adding it. Therefore, the amount of addition is preferably 0.1 to 7%.

焼成する際の個々のれんがの積載方法においてれんがの
炉内雰囲気に接する比表面積が0.2(cm2/cm3
)を下延る場合、炉内雰囲気に接する面が少なすぎて炉
内雰囲気との接触が不充分で焼成のための熱条件にかた
よりが生じ、焼成効率も低下するため不焼成部分が残存
する形となる。従って、炉内雰囲気に接する比表面積を
、0 、2 (am2/cm3)以上となる様に焼成炉
の移送台に積載することにより、かたよりの無い均一な
焼成効果を得ることができる。
In the loading method of individual bricks during firing, the specific surface area of the bricks in contact with the furnace atmosphere is 0.2 (cm2/cm3
), the surface in contact with the furnace atmosphere is too small and the contact with the furnace atmosphere is insufficient, resulting in uneven heating conditions for firing and decreasing firing efficiency, so unfired parts remain. It will take the form of Therefore, by loading the materials on the transfer table of the firing furnace so that the specific surface area in contact with the furnace atmosphere is 0.2 (am2/cm3) or more, a uniform firing effect without bias can be obtained.

[実 施 例] 以下に本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

原料組成比がマグネシア70;クロム鉱30のマグクロ
ダイレクトボンドれんがでクロム;鉄の比が75:25
の合金を4重量%添加して混練し、以下の条件をもって
プレス成形し、焼成した。
The raw material composition ratio is magnesia 70; chrome ore 30, and the magcro direct bond brick has a chromium: iron ratio of 75:25.
4% by weight of the alloy was added, kneaded, press-formed and fired under the following conditions.

■焼成a)焼成温度1700℃ 1750℃ 1800℃ b)焼成時間       7H (最高温度キープ時間)  8H 0H 2H 以上のプレス成形された■(1)〜(6)の寸法(形状
)のれんが素地を炉内雰囲気に接するれんが素地の比表
面積(cm2/cm3)が0.2cm2/cm’以上と
なる様に移送台(この例では台車)に積載し、■a) 
、b)に示す種々の条件をもって焼成した。個々のれん
がを冷却後、へ寸法(長て方向)XBI/B2の面と平
行に二等分し、中心部の未焼成部分の有無を目視にて確
認した。
■ Firing a) Firing temperature 1700℃ 1750℃ 1800℃ b) Firing time 7H (maximum temperature keeping time) 8H 0H 2H Press-formed bricks with dimensions (shape) of (1) to (6) above are baked in a furnace. Load the brick material onto a transfer platform (in this example, a trolley) so that the specific surface area (cm2/cm3) of the brick material in contact with the internal atmosphere is 0.2 cm2/cm' or more, and ■a)
, b). After each brick was cooled, it was divided into two equal parts parallel to the plane of dimension (longitudinal direction) XBI/B2, and the presence or absence of an unfired part in the center was visually confirmed.

目視確認後のテスト結果を表1に示す。Table 1 shows the test results after visual confirmation.

表1においてOは未焼成部分が完全に無いもの、△は未
焼成部分がわずかに認められるもの、×は明らかに未焼
成部分が認められるものである。又、形状因子について
は地形状への応用性を増やす為に寸法ではなく、れんが
の総表面積との比表面積を表わしている。
In Table 1, O indicates that there is no unfired portion completely, Δ indicates that a slight unfired portion is observed, and × indicates that an unfired portion is clearly observed. Furthermore, in order to increase applicability to terrain, the shape factor is expressed not in terms of dimensions but in terms of specific surface area relative to the total surface area of bricks.

表1の通り、れんが内部の未焼成部分の有無は、形状的
因子に大きく影響され、その傾向が明確に出ている。
As shown in Table 1, the presence or absence of unfired parts inside the brick is greatly influenced by shape factors, and this tendency is clearly evident.

この表から見ればれんが比表面積が0.2cm2/cm
3以上であるならば、1750℃以上の温度で焼成する
ことにより、高品質のものを得ることが可能である。
From this table, the specific surface area of the brick is 0.2cm2/cm
If it is 3 or more, it is possible to obtain a high quality product by firing at a temperature of 1750° C. or higher.

但しマグクロ質耐火れんがの焼成においてはクロム鉄鉱
中に含まれるFed、 Fe2O3,Cr2O3゜Mg
Oによって生成されるスピネルが炉内酸素濃度の大小に
よって大きく支配される。
However, when firing maguro refractory bricks, Fed, Fe2O3, Cr2O3゜Mg contained in chromite
The spinel produced by O is largely controlled by the oxygen concentration in the furnace.

従って、ただ単に形状が大きくなったからといって炉内
酸素濃度を高くすることは未焼成部分の解消は出来たと
しても品質面への影響が懸念される。こういった場合に
ついては、酸素濃度を上げるよりもむしろ、焼成キープ
時間を長くすることが無難である。
Therefore, there is a concern that increasing the oxygen concentration in the furnace simply because the shape becomes larger may affect quality, even if the unfired portion can be eliminated. In such cases, rather than increasing the oxygen concentration, it is safe to lengthen the firing time.

表2に示す様に同一形状、同一焼成、同一焼成時間で炉
内酸素濃度を5.0.15.0.18.0%と変化させ
た結果、炉内酸素濃度を18.0%としたものは未焼成
部分が認められないものの、品質がA、Bよりも1割程
度劣る結果となったことからも、焼成キープ時間に重点
をおくことは大切であり、表2に示す15%以上の炉内
酸素量とすることはあまり意味のないことである。
As shown in Table 2, the oxygen concentration in the furnace was changed to 5.0.15.0.18.0% with the same shape, the same firing, and the same firing time, and the oxygen concentration in the furnace was 18.0%. Although no unfired parts were observed, the quality was about 10% inferior to A and B, so it is important to focus on the firing keeping time, and it is important to keep firing by 15% or more as shown in Table 2. It is meaningless to set the amount of oxygen in the furnace to .

従って表1に示す7H以上の焼成キープ時間により品質
を低下させること無く、又、未焼成部分の無い高品質の
ものを得ることができる様になった。
Therefore, by keeping the firing time longer than 7 hours as shown in Table 1, it is possible to obtain high quality products without degrading the quality and without any unfired parts.

表 2 (注)○・未焼成部分が完全に無いもの浸食試験条件 方法  銹導炉による内張浸食試験 ン晶度1650℃ 時間  4時間 7囲気 真空 スラグ c/5−3CaF2−20%m加400g X
  2回viIJSIJS30410kg 浸食試験後、各試料の最犬溶損部の減寸量を測定し、符
合1の試料の減寸量を10(lとして基準化し、溶損指
数とした。溶損指数か小さいほど高耐食性である。
Table 2 (Note) ○: Completely free of unfired parts Erosion test conditions Method Lining erosion test using a rusting furnace Crystallinity 1650℃ Time 4 hours 7 atmospheres Vacuum slag c/5-3 CaF2-20% m addition 400g X
After the two times viIJSIJS30410kg erosion test, the amount of reduction in size of the innermost erosion part of each sample was measured, and the amount of reduction in size of the sample with a code of 1 was standardized as 10 (l) and was used as the erosion index.The erosion index was smaller. The higher the corrosion resistance, the higher the corrosion resistance.

かかる共訳れんかA、B、Cは、原料組成比がマグネシ
ア70.クロム鉱30のマグクロダイレクトホントれん
がでクロム;鉄の比か7525の合金を4重量%添加し
て混練し、650 x 160/115 x 100の
形状にプレス成形、焼成したものである。
The raw material composition ratio of these co-translated materials A, B, and C is magnesia 70. Maguro Direct Honto bricks made of chromite 30 are kneaded with the addition of 4% by weight of a chromium/iron alloy of 7525, press-formed into a shape of 650 x 160/115 x 100, and fired.

以上の様に、各種金属、合金を使用することによって従
来を凌ぐ性能を有する耐火物ではあるが製造技術面にお
いて、いままで形状的にもかなり制約されたものであっ
た。しかし今回の発明により、その形状にマツチした焼
成条件を与えることでその制約は解消され、製鋼窯炉用
耐火物に対して、1コ広く用途か広かり、炉寿命は延長
され、多大なる効果がもたらされる。
As described above, refractories have superior performance to conventional refractories by using various metals and alloys, but up until now they have been quite limited in terms of manufacturing technology and shape. However, with this invention, this restriction has been resolved by providing firing conditions that match the shape of the refractory, making it widely applicable to refractories for steelmaking furnaces, extending the life of the furnace, and having great effects. is brought about.

[発明の効果] 本発明GJ、金属、金属合金、あるいは混合物を適量含
有させたマグネシア系耐火物の焼成方法であり、不焼成
部分の無い高品質のものを得す ることに対し、 形状的に制約されず、 定品質 のものを得ることがてきる。
[Effects of the Invention] The present invention is a method for firing magnesia-based refractories containing appropriate amounts of GJ, metals, metal alloys, or mixtures, and it is difficult to obtain high-quality products without unfired parts due to shape constraints. It is possible to obtain a product of constant quality.

他4名4 others

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウム、クロム、チタニウム、鉄、マグネシ
ウム、シリコン、マンガンの一種又は二種以上若しくは
これらの合金を0.1〜7%添加したれんが素地の炉内
雰囲気に接する比表面積が0.2cm^2/cm^3以
上になるよう焼成炉移送台に積載し、焼成温度1750
℃以上、最高温度キープ7時間以上にて焼成することを
特徴とするマグクロ質耐火れんがの製造方法。
1 The specific surface area in contact with the furnace atmosphere of a brick base containing 0.1 to 7% of one or more of aluminum, chromium, titanium, iron, magnesium, silicon, manganese, or an alloy thereof is 0.2 cm^2/ Load it on the firing furnace transfer table so that it is at least cm^3, and set the firing temperature to 1750.
A method for producing maguro refractory bricks, characterized in that firing is carried out at a temperature of ℃ or higher and a maximum temperature maintained for 7 hours or more.
JP2021247A 1990-01-31 1990-01-31 Production of magnesia-chrome firebrick Pending JPH03228860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021247A JPH03228860A (en) 1990-01-31 1990-01-31 Production of magnesia-chrome firebrick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021247A JPH03228860A (en) 1990-01-31 1990-01-31 Production of magnesia-chrome firebrick

Publications (1)

Publication Number Publication Date
JPH03228860A true JPH03228860A (en) 1991-10-09

Family

ID=12049729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021247A Pending JPH03228860A (en) 1990-01-31 1990-01-31 Production of magnesia-chrome firebrick

Country Status (1)

Country Link
JP (1) JPH03228860A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128556A2 (en) * 2005-05-30 2006-12-07 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic product
WO2008109222A2 (en) * 2007-03-07 2008-09-12 General Electric Company Treated refractory material and methods of making
CN108623316A (en) * 2018-05-22 2018-10-09 武汉科技大学 Iron based on aluminium chromium slag smelts intermediate frequency furnace ramming mass and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128556A2 (en) * 2005-05-30 2006-12-07 Refractory Intellectual Property Gmbh & Co. Kg Refractory ceramic product
WO2006128556A3 (en) * 2005-05-30 2007-07-19 Refractory Intellectual Prop Refractory ceramic product
EA011907B1 (en) * 2005-05-30 2009-06-30 Рифректори Интеллектуал Проперти Гмбх & Ко.Кг Refractory ceramic product
WO2008109222A2 (en) * 2007-03-07 2008-09-12 General Electric Company Treated refractory material and methods of making
WO2008109222A3 (en) * 2007-03-07 2008-10-30 Gen Electric Treated refractory material and methods of making
US8105683B2 (en) 2007-03-07 2012-01-31 General Electric Company Treated refractory material and methods of making
CN108623316A (en) * 2018-05-22 2018-10-09 武汉科技大学 Iron based on aluminium chromium slag smelts intermediate frequency furnace ramming mass and preparation method thereof

Similar Documents

Publication Publication Date Title
CN110172648B (en) Zirconium-containing electrothermal alloy and preparation method of zirconium-containing alloy
JPS602269B2 (en) Method for manufacturing carbon-containing unfired refractories
CN113943145A (en) Unburned magnesia carbon brick and preparation method and application thereof
JPH06172916A (en) Manufacturing of stainless steel
JPH03228860A (en) Production of magnesia-chrome firebrick
JP4328053B2 (en) Magnesia-spinel brick
JP2868810B2 (en) Method for producing ferritic stainless steel with excellent oxidation resistance at high temperatures
Zheng et al. Effect of reduction parameters on the size and morphology of the metallic particles in carbothermally reduced stainless steel dust
JPH0733513A (en) Magnesia-carbon brick and its production
JP2540214B2 (en) Refractory material
JP2968542B2 (en) Refractory
JP2518559B2 (en) Refractory materials and their preparation method
JP2951432B2 (en) Unfired refractory containing magnesia
JP3312043B2 (en) Lime crucible and method for producing the same
SU872512A1 (en) Refractory mass
JP2022056100A (en) Method for producing magnesia-chrome brick
JP3176836B2 (en) Irregular refractories
JPH0543306A (en) Burnt refractory of magnesia-chromia
KR100328085B1 (en) Preparation method of calcia clinker with good hydration resistance
JPS59207871A (en) Magnesia carbon brick
JPS6054272B2 (en) Refractory manufacturing method
JPH03228866A (en) Basic refractory material
JP2000119061A (en) Nonburnt high-alumina-based brick for high-alloy metal ingotting use
JPH0380154A (en) Carbon brick
JPS6041016B2 (en) refractory