JPH04282527A - Network fuse element - Google Patents

Network fuse element

Info

Publication number
JPH04282527A
JPH04282527A JP6763591A JP6763591A JPH04282527A JP H04282527 A JPH04282527 A JP H04282527A JP 6763591 A JP6763591 A JP 6763591A JP 6763591 A JP6763591 A JP 6763591A JP H04282527 A JPH04282527 A JP H04282527A
Authority
JP
Japan
Prior art keywords
series
breaking
points
fuse element
breaking points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6763591A
Other languages
Japanese (ja)
Inventor
Kengo Hirose
広瀬 健吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOUDEN ENG KK
Original Assignee
YOUDEN ENG KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOUDEN ENG KK filed Critical YOUDEN ENG KK
Priority to JP6763591A priority Critical patent/JPH04282527A/en
Publication of JPH04282527A publication Critical patent/JPH04282527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Abstract

PURPOSE:To enlarge breaking performance with a wattage loss left small by decreasing breaking points connected in series at continuous electrification time, and increasing the breaking points connected in series by changing a current flow at breaking time. CONSTITUTION:At continuous electrification time, the same current flows in a series circuit of four series breaking points A1-B2-A3-B4 and in a series circuit of four series breaking points B1-A2-B3-A4. Here, no current flows in bridge breaking points C1, C2, C3. At breaking time, by designing A type breaking points A1 to A4 so as to fuse earlier than the breaking points B1 to B4, the A type series breaking points A1 to A4 are all fused with only the B type series breaking points left at breaking final time, so that the current flows to pass in series the seven breaking points B1-C1-B2-C2-B3-C3-B4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電力用ヒューズ、特に遮
断性能を向上し且つ連続通電時のワット損を少なくした
ヒューズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power fuse, and more particularly to a fuse with improved interrupting performance and reduced power dissipation during continuous energization.

【0002】0002

【従来の技術】従来のヒューズエレメントは、複数(S
)個の遮断点を直列にした回路を複数(P)個並列にし
て、各種の定格電圧と定格電流とに対し与えられた各種
性能を満足させるように構成していた。P個の並列にさ
れた遮断点の直列回路はその電気的特性が正確に等しい
必要があるが、特開昭62−51128号公報にも開示
されているように、熱伝導性で且つ電気絶縁性の高い、
例えばセラミック製の基板上に導電性の金属皮膜を作製
し、写真法によりヒューズパターンを作製する等の方法
によって、高精度のヒューズエレメントが作製できる。
[Prior Art] A conventional fuse element has a plurality of (S
A plurality (P) of circuits each having ( ) breaking points connected in series were arranged in parallel to satisfy various performances given for various rated voltages and rated currents. A series circuit of P parallel interrupting points must have exactly the same electrical characteristics, but as disclosed in Japanese Patent Application Laid-Open No. 62-51128, it must be thermally conductive and electrically insulating. highly sexual,
For example, a highly accurate fuse element can be manufactured by a method such as forming a conductive metal film on a ceramic substrate and forming a fuse pattern using a photographic method.

【0003】図5に前記のヒューズエレメントのヒュー
ズパターンの一例を示す。このヒューズは660V,6
0A 用の一例であり、6個の遮断点A0が直列にされ
た回路が、5個並列にされている。各々の遮断点の電気
的特性を等しくして、定格電流が増加するほど並列回路
数を増加し、定格電圧が増加するほど遮断点の直列個数
を増加するものである。
FIG. 5 shows an example of a fuse pattern of the above-mentioned fuse element. This fuse is 660V, 6
This is an example for 0A, in which six cutoff points A0 are connected in series, and five circuits are connected in parallel. The electrical characteristics of each breaking point are made equal, and as the rated current increases, the number of parallel circuits increases, and as the rated voltage increases, the number of series-connected breaking points increases.

【0004】すなわち、図5に示したような従来のヒュ
ーズエレメントでは、該ヒューズにおける電流の流れ方
は定格電流付近の電流が流れる時も、遮断時のような大
電流が流れる時にも同一であるから、ヒューズエレメン
トの遮断性能を大きくするためには、直列になる遮断点
を多くしなければならない。しかしながら、直列になる
遮断点数を多くすると定格電流通電時のワット損が大き
くなる。
That is, in the conventional fuse element shown in FIG. 5, the flow of current in the fuse is the same both when a current near the rated current flows and when a large current flows such as when the fuse is cut off. Therefore, in order to increase the breaking performance of the fuse element, it is necessary to increase the number of breaking points in series. However, when the number of interrupting points connected in series is increased, the power dissipation when the rated current is applied increases.

【0005】[0005]

【発明が解決しようとする課題】前述のように、従来の
高性能ヒューズエレメントでは、ヒューズの遮断性能を
大きくすることと、ワット損を大きくすることとは比例
関係にあった。本発明はワット損は小さいままで遮断性
能を大きくしたヒューズエレメントを提供しようとする
ものである。
As described above, in conventional high-performance fuse elements, there is a proportional relationship between increasing the breaking performance of the fuse and increasing the power dissipation. The present invention aims to provide a fuse element with increased breaking performance while maintaining low power dissipation.

【0006】[0006]

【課題を解決するための手段】本発明によるネットワー
クヒューズエレメントは、通電時は直列に接続される遮
断点を少なくしてヒューズのワット損を小とし、遮断時
には電流の流れを変えて直列に接続される遮断点の数を
増加せしめ遮断性能を大きくすることを特徴とするもの
である。
[Means for Solving the Problems] The network fuse element according to the present invention reduces the power dissipation of the fuse by reducing the number of interrupting points connected in series when energized, and changes the current flow when energized and connects in series. This feature is characterized by increasing the number of cut-off points and increasing the cut-off performance.

【0007】前記のネットワークヒューズエレメントは
、ワット損の等しい直列遮断点をS個直列に有する回路
をP個並列にしたヒューズエレメントであって、隣接す
る直列遮断点間の接合点を相互に橋絡遮断点で結合して
遮断点のネットワーク構造とし、隣接するP個の直列遮
断点の溶断特性を異ならしめて、このネットワークヒュ
ーズエレメントの遮断途中にP個並列な直列遮断点の内
の一個のみが最後に残るようにし、前記橋絡遮断点に電
流が流れるように構成したことを特徴とする。
The network fuse element described above is a fuse element in which P circuits having S series interrupting points having equal power dissipation are arranged in parallel, and the junctions between adjacent series interrupting points are bridged together. They are connected at the breaking point to form a network structure of breaking points, and the fusing characteristics of the adjacent P series breaking points are made to be different, so that only one of the P parallel series breaking points is connected at the last point during the breaking of this network fuse element. The present invention is characterized in that it is configured such that the current remains at the bridge breaking point, and the current flows through the bridge breaking point.

【0008】また、前記のネットワークヒューズエレメ
ントは、前記ネットワークヒューズエレメントの遮断途
中にP個並列な直列遮断点の内の最後に残る一個が、P
個の直列回路の両端のいずれか一方にあって順次に交互
に残るように構成したことを特徴とする。
[0008] Further, in the network fuse element, the last one of the P parallel series interrupting points during the interrupting of the network fuse element is P.
It is characterized in that it is configured such that it remains alternately in sequence at either end of the series circuit.

【0009】更にまた、本発明によるネットワークヒュ
ーズエレメントは、前記直列遮断点及び橋絡遮断点を含
むループ回路の電気的時定数(L/R)を大きくして、
電流突進率の大きい事故電流の場合にも転流を確実に行
わしめることを特徴とする。
Furthermore, the network fuse element according to the present invention increases the electrical time constant (L/R) of the loop circuit including the series breaking point and the bridge breaking point,
It is characterized in that commutation is reliably carried out even in the case of a fault current with a large current rush rate.

【0010】更に、本発明によるネットワークヒューズ
エレメントは、転流をはかるべき並列関係にある各直列
遮断点間に静電容量(C)を持たせて、突進率の大きい
事故電流の場合にも転流を確実に行わしめることを特徴
とする。
Furthermore, the network fuse element according to the present invention has a capacitance (C) between each series breaking point in a parallel relationship at which commutation is to be carried out, so that commutation can be carried out even in the case of a fault current with a large rush rate. It is characterized by ensuring that the flow is carried out reliably.

【0011】[0011]

【作用】これにより連続通電時の直列に接続された遮断
点の数と、遮断終期に直列に接続される遮断点の数とを
変化させ、遮断性能の向上と連続通電時のヒューズエレ
メントのワット損の低下とを同時に実現することができ
る。即ち、連続通電時は直列遮断点の電気的特性が全て
等しいので、橋絡遮断点には電流は流れないため直列に
接続される遮断点の数はS個であるが、このネットワー
クヒューズエレメントの遮断途中にP個並列な直列遮断
点の内の一個のみが最後に残るようにし、前記橋絡遮断
点に電流が流れるように構成してあるので、最終遮断時
には直列に接続される遮断点の数が増加している。
[Function] This changes the number of interrupting points connected in series during continuous energization and the number of interrupting points connected in series at the end of interrupting, improving the interrupting performance and the wattage of the fuse element during continuous energization. It is possible to reduce losses at the same time. In other words, during continuous energization, the electrical characteristics of the series interrupting points are all the same, so no current flows through the bridge interrupting point, so the number of interrupting points connected in series is S, but the number of interrupting points connected in series is S. During the interruption, only one of the P parallel series interruption points remains at the end, and current flows through the bridge interruption point, so that at the final interruption, the number of interruption points connected in series remains The number is increasing.

【0012】特に、P個並列な直列遮断点の内の最後に
残る一個が、P個の直列回路の両端のいずれか一方にあ
って順次に交互に残るように構成した場合には、最終遮
断時における直列に接続される遮断点の数はS+(P−
1)(S−1)個となる。かくして先に図5に示した6
60V,60A 用のヒューズエレメントでは直列に接
続された遮断点の数Sが6で並列数Pは5であったが、
本発明によるネットワークヒューズエレメントにこれを
完全に置き換えるとすると、S=2、P=5とすること
ができ、遮断時の遮断点の直列数は6となり、連続通電
時の遮断点の直列数は2となるので、ワット損を1/3
に減少させることができる。実際には低圧ヒューズにお
いてはエレメント幅をあまり大きくできないので、並列
回路数には制限があって、P=2〜3程度が適当である
。しかしながら、高電圧用又は特別高電圧用ヒューズに
おいては幅寸法の制限が緩和されるので、長さ方向寸法
を短くするために並列数Pの数は多いほどよくなるが、
電流の確実な転流が難しくなり種々の工夫が必要となる
In particular, when the last remaining one of the P parallel series cutoff points is located at either end of the P series circuits and is configured to remain alternately in sequence, the final cutoff point is The number of interrupting points connected in series at time is S+(P-
1) (S-1) pieces. Thus, 6 shown in FIG.
In the fuse element for 60V, 60A, the number S of interrupting points connected in series was 6 and the number P in parallel was 5.
If this is completely replaced with the network fuse element according to the present invention, S = 2, P = 5, the number of series cut-off points during cutoff is 6, and the number of series cut-off points during continuous energization is 6. 2, so the power loss is reduced to 1/3
can be reduced to Actually, in a low voltage fuse, the element width cannot be made very large, so there is a limit to the number of parallel circuits, and P=2 to 3 is appropriate. However, in high-voltage or special high-voltage fuses, restrictions on the width dimension are relaxed, so the larger the number of parallels P in order to shorten the length dimension, the better.
Reliable commutation of current becomes difficult, and various measures are required.

【0013】なお、異常電流の増加速度が急激過ぎる場
合には、溶断特性を変えてあっても並列状態の直列遮断
点が極めて近接して溶断することがあるので、これら転
流のためのループ回路の時定数(L/R)を大きくして
、転流をより確実にするための補助的方法も考えられる
。また、セラミック基板の片面だけをヒューズとする場
合は、裏面に金属皮膜を作り並列関係にある各直列遮断
点間に静電容量(C)を持たせることによっても、前記
同様に転流をより確実にする補助的手段とすることがで
きる。
Note that if the rate of increase of the abnormal current is too rapid, the series breaking points in the parallel state may fuse very close to each other even if the fusing characteristics are changed, so the loop for these commutations may An auxiliary method is also conceivable to increase the time constant (L/R) of the circuit to make commutation more reliable. In addition, if only one side of the ceramic substrate is used as a fuse, commutation can be improved as described above by creating a metal film on the back side and providing capacitance (C) between each series interrupting point in a parallel relationship. It can be used as an auxiliary means to ensure that

【0014】[0014]

【実施例】以下、実施例を図面を参照しつつ説明する。 図1は直列遮断点の数Sが4の回路を並列数Pを2とし
た場合、即ち4S−2Pの場合のヒューズパターンの一
実施例を示す図である。図示のパターンが同一の皮膜厚
さの金属でセラミック上に構成されている。ここでA1
〜A4及びB1〜B4はいずれも直列遮断点であり、そ
れらの電気抵抗は全て等しく設計されているが、遮断時
にはA1〜A4のA型がB1〜B4のB型よりも早く溶
断するように設計されている。そのため電気抵抗は同じ
になるようにして、A型は細くて短く、B型は太くて長
い設計とするよう工夫されている。これにより、熱特性
の差から溶断時間がB型の方が長くなる。このヒューズ
パターンでは、一方はA1−B2−A3−B4の4個の
直列遮断点の直列回路であり、他方はB1−A2−B3
−A4の4個の直列遮断点の直列回路である二つの回路
が並列にされている。このように、熱特性の異なった直
列遮断点が並列回路に同数ずつあることによって、溶断
の直前まで並列2回路の電流のバランスがよく、且つ橋
絡遮断点に横流が流れぬように考慮した。
[Embodiment] Hereinafter, an embodiment will be explained with reference to the drawings. FIG. 1 is a diagram showing an example of a fuse pattern when the number S of series interrupting points is 4 and the number P of parallel circuits is 2, that is, 4S-2P. The patterns shown are constructed on ceramic with metal of the same coating thickness. Here A1
~A4 and B1 to B4 are all series breaking points, and their electrical resistances are all designed to be equal, but when breaking, the A type of A1 to A4 melts earlier than the B type of B1 to B4. Designed. For this reason, the electrical resistance is the same, and the design is such that type A is thin and short, and type B is thick and long. As a result, type B has a longer fusing time due to the difference in thermal characteristics. In this fuse pattern, one is a series circuit of four series breaking points A1-B2-A3-B4, and the other is a series circuit of four series breaking points A1-B2-A3-B4.
- Two circuits, which are series circuits of four series breaking points of A4, are placed in parallel. In this way, by having the same number of series breaking points with different thermal characteristics in the parallel circuits, we ensured that the currents in the two parallel circuits were well balanced until just before fusing, and that no cross current flowed to the bridging breaking points. .

【0015】このヒューズパターンをネットワーク構造
とするために接続部である橋絡遮断点C1, C2, 
C3が設けられており、橋絡遮断点C1がA1−B2間
の接合点とB1−A2間の接合点とを接続し、橋絡遮断
点C2がB2−A3間の接合点とA2−B3間の接合点
とを接続し、橋絡遮断点C3がA3−B4間の接合点と
B3−A4間の接合点とを接続している。これらの橋絡
遮断点C1,C2, C3もやはり遮断の最終時には遮
断点として寄与するが、先のA型及びB型の遮断点より
やや後れて溶断するように考慮してある。
In order to make this fuse pattern into a network structure, there are bridge breaking points C1, C2, which are connection parts.
C3 is provided, the bridge breaking point C1 connects the junction point between A1-B2 and the junction point between B1-A2, and the bridge breaking point C2 connects the junction point between B2-A3 and A2-B3. The bridge breaking point C3 connects the junction point between A3 and B4 and the junction point between B3 and A4. These bridging breaking points C1, C2, and C3 also serve as breaking points at the final moment of breaking, but they are designed so that they fuse a little later than the breaking points of the A-type and B-type.

【0016】図2は図1のネットワークヒューズエレメ
ントの電流分布を示す図で、(a)は連続通電時の電流
分布、(b)は遮断最終時の電流分布を示している。A
型直列遮断点もB型直列遮断点も電気抵抗は同じに設計
してあるので、連続通電時にはA1−B2−A3−B4
の4個の直列遮断点の直列回路とB1−A2−B3−A
4の4個の直列遮断点の直列回路とには、図2(a)に
二つの矢印で示すように同一の電流が流れる。勿論この
とき橋絡遮断点C1, C2, C3には電流は流れな
い。
FIG. 2 is a diagram showing the current distribution of the network fuse element shown in FIG. 1, in which (a) shows the current distribution during continuous energization, and (b) shows the current distribution at the final time of interruption. A
The electrical resistance of both the type series breaking point and the type B series breaking point are designed to be the same, so when continuous current is applied, A1-B2-A3-B4
A series circuit of four series breaking points and B1-A2-B3-A
The same current flows through the series circuit of four series breaking points of 4, as shown by two arrows in FIG. 2(a). Of course, at this time, no current flows through the bridge breaking points C1, C2, and C3.

【0017】前述のように、遮断時にはA1〜A4のA
型の遮断点がB1〜B4のB型の遮断点よりも早く溶断
するように設計されているので、遮断最終時には図2(
b)に示すようにA型の直列遮断点A1〜A4は全て溶
断しておりB型の直列遮断点のみが残っていて、電流は
矢印で示したようにB1−C1−B2−C2−B3−C
3−B4の7個の遮断点を直列に通って流れることにな
る。即ち、橋絡遮断点のない場合には4個の直列遮断点
で最終遮断を行っていたが、本実施例の4S−2Pネッ
トワークヒューズエレメントにおいては、その1.75
倍の7個の直列遮断点数で最終的に遮断することになり
遮断性能がそれだけ向上する。
As mentioned above, when shutting off, A1 to A4 are
The cutoff point of the mold is designed to melt earlier than the cutoff points of B type B1 to B4, so at the final cutoff, the
As shown in b), all of the series breaking points A1 to A4 of type A are fused, and only the series breaking point of type B remains, and the current flows as shown by the arrows B1-C1-B2-C2-B3. -C
3-B4 will flow in series through the seven cutoff points. In other words, when there is no bridging breaking point, final breaking is performed using four series breaking points, but in the 4S-2P network fuse element of this embodiment, 1.75
In the end, the number of series interrupting points is doubled to 7, and the interrupting performance is improved accordingly.

【0018】橋絡遮断点のない従来のヒューズエレメン
トでこの実施例の遮断性能に匹敵するものを得るために
、7S−2Pのものを用いた場合には一つの直列遮断点
の抵抗をR0とすると、そのヒューズエレメントの連続
通電中の抵抗はR0×7/2であるのに対して、本実施
例の4S−2Pネットワークヒューズエレメントの場合
の連続通電中の抵抗はR0×4/2となり、連続通電中
の電力損失は4/7に減少する。
In order to obtain a breaking performance comparable to that of this embodiment using a conventional fuse element without a bridge breaking point, when a 7S-2P fuse element is used, the resistance of one series breaking point is set to R0. Then, the resistance of the fuse element during continuous energization is R0 x 7/2, while the resistance of the 4S-2P network fuse element of this embodiment during continuous energization is R0 x 4/2, Power loss during continuous energization is reduced by 4/7.

【0019】図3は同様に直列数Sを4とし、並列数P
を3とした場合の本発明のネットワークヒューズエレメ
ントの一実施例のヒューズパターンを示す図であり、A
1〜A4とA1′〜A4′及びB1〜B4はいずれも直
列遮断点であって、それらの電気抵抗は全て等しく設計
されているが、遮断時にはA1〜A4のA型とA1′〜
A4′のA′型及びB1〜B4のB型の溶断時間がそれ
ぞれ異なるように設計されている。
Similarly, in FIG. 3, the series number S is 4, and the parallel number P
It is a figure showing the fuse pattern of one example of the network fuse element of the present invention when A is set to 3;
1 to A4, A1' to A4', and B1 to B4 are all series breaking points, and their electrical resistances are all designed to be equal.
The A' type of A4' and the B type of B1 to B4 are designed to have different fusing times.

【0020】直列遮断点A1−B2−A3−B4の直列
回路と直列遮断点A1′−A2′−A3′−A4′の直
列回路、及び直列遮断点B1−A2−B3−A4の直列
回路の三つの回路が並列にされている。このヒューズパ
ターンをネットワーク構造とするために接続部である橋
絡遮断点C1〜C3とC1′〜C3′が設けられており
、橋絡遮断点C1がA1−B2間の接合点とA1′−A
2′間の接合点とを接続し、橋絡遮断点C2がB2−A
3間の接合点とA2′−A3′間の接合点とを接続し、
橋絡遮断点C3がA3−B4間の接合点とA3′−A4
′間の接合点とを接続している。更に橋絡遮断点C1′
がA1′−A2′間の接合点とB1−A2間の接合点と
を接続し、橋絡遮断点C2′がA2′−A3′間の接合
点とA2′−A3′A2−B3間の接合点とを接続し、
橋絡遮断点C3′がA3′−A4′間の接合点とB3−
A4間の接合点とを接続している。
A series circuit of series breaking points A1-B2-A3-B4, a series circuit of series breaking points A1'-A2'-A3'-A4', and a series circuit of series breaking points B1-A2-B3-A4. Three circuits are connected in parallel. In order to make this fuse pattern into a network structure, bridge breaking points C1 to C3 and C1' to C3', which are connection parts, are provided, and the bridge breaking point C1 connects to the junction point between A1 and B2 and A1' to A
2', and the bridge breaking point C2 is B2-A.
Connect the junction between 3 and the junction between A2' and A3',
Bridge breaking point C3 is the junction point between A3-B4 and A3'-A4
′ is connected to the junction between Furthermore, the bridge breaking point C1'
connects the junction point between A1'-A2' and the junction point between B1-A2, and the bridge breaking point C2' connects the junction point between A2'-A3' and A2'-A3' between A2-B3. Connect the junction point,
The bridge breaking point C3' is the junction point between A3'-A4' and B3-
It connects the junction between A4 and A4.

【0021】これらの橋絡遮断点C1〜C3及びC1′
〜C3′もやはり遮断の最終時には遮断点として寄与す
るが、これらC型の遮断点と先のA型とA型′及びB型
の遮断点の溶断時間はA型<A′型<B型<C型のよう
に設計されており、A型の遮断点が一番早く、C型の遮
断点が一番遅く溶断するようになっている。
These bridge breaking points C1 to C3 and C1'
~C3' also contributes as a cutoff point at the final time of cutoff, but the fusing time of these C type cutoff points and the previous A type, A type' and B type cutoff points is A type <A' type < B type. <It is designed like a C-type, with the A-type cutoff point being the earliest and the C-type cutoff point being the slowest.

【0022】図4は図3のネットワークヒューズエレメ
ントの電流分布を示す図で、(a)は連続通電時の電流
分布、(b)は遮断最終時の電流分布を示している。A
型とA′型及びB型直列遮断点の全ての直列遮断点の電
気抵抗は同じに設計してあるので、連続通電時にはA1
−B2−A3−B4の4個の直列遮断点の直列回路と、
A1′−A2′−A3′−A4′の4個の直列遮断点の
直列回路、及びB1−A2−B3−A4の4個の直列遮
断点の直列回路との三つの回路には、図4(a)に三つ
の矢印で示すように同一の電流が流れる。勿論このとき
橋絡遮断点C1〜C3及びC1′〜C3′には電流は流
れない。
FIG. 4 is a diagram showing the current distribution of the network fuse element of FIG. 3, in which (a) shows the current distribution during continuous energization, and (b) shows the current distribution at the final time of interruption. A
Since the electrical resistance of all the series breaking points of type A' and type B are designed to be the same, when continuous current is applied, A1
- a series circuit of four series breaking points, B2-A3-B4;
The three circuits, a series circuit of four series breaking points A1'-A2'-A3'-A4' and a series circuit of four series breaking points B1-A2-B3-A4, are shown in FIG. The same current flows as shown by the three arrows in (a). Of course, at this time, no current flows through the bridge breaking points C1 to C3 and C1' to C3'.

【0023】このヒューズエレメントに流れる電流が定
格電流を超えた場合には、先ずA型の遮断点A1〜A4
が溶断し、次にA′型の遮断点A1′〜A4′が溶断す
るので、遮断の最終時には図4(a)に示すように遮断
点B1−C1′−C1−B2−C2−C2′−B3−C
3′−C3−B4の10個の遮断点を直列に電流が流れ
ることになる。即ち、橋絡遮断点のない場合に比べて2
.5 倍の数の直列遮断点により最終遮断を行うので、
遮断性能はそれだけ向上する。
[0023] When the current flowing through this fuse element exceeds the rated current, first the A-type breaking points A1 to A4 are
is fused, and then A' type cutoff points A1' to A4' are fused, so that at the end of the cutoff, the cutoff points B1-C1'-C1-B2-C2-C2' are cut as shown in Fig. 4(a). -B3-C
Current will flow in series through the 10 breaking points 3'-C3-B4. That is, compared to the case without a bridge breaking point,
.. The final cutoff is performed using five times as many series cutoff points, so
The interrupting performance is improved accordingly.

【0024】この実施例のネットワークヒューズエレメ
ントに匹敵する遮断性能を有する従来の10S−3Pの
ヒューズエレメントを使用した場合には、直列遮断点1
個の抵抗をR0とするとこのヒューズエレメントの抵抗
はR0×10/3であるのに対し、本実施例の場合のネ
ットワークヒューズエレメントの抵抗はR0×4/3で
あって、連続通電時のワット損は4/10即ち2.5 
分の一に減少する。
When a conventional 10S-3P fuse element having a breaking performance comparable to the network fuse element of this embodiment is used, the series breaking point 1
The resistance of this fuse element is R0 x 10/3, while the resistance of the network fuse element in this example is R0 x 4/3, and the resistance of the network fuse element is R0 x 4/3, and the wattage when continuously energized is R0. The loss is 4/10 or 2.5
reduced to one-fold.

【0025】以上の説明では、A型、A′型、B型及び
C型の各遮断点は、異なる幅と長さを有する単一の導体
で構成されるごとくであるが、図6に示すように、それ
ぞれ複数の導体で構成してもよい。即ち図6は図1に示
したと同様の4S−2Pのネットワークヒューズパター
ンのもう一つの実施例であるが、A型の遮断点は細くて
短い二つの導体で構成されており、B型の遮断点は長く
て太い二つの導体で構成されている。なお、C型の橋絡
遮断点は一層太くて長い一つの導体で構成されているが
、これにより転流ループ回路の電気的時定数を大きくす
るのに役立ち、A型あるいはA′型の直列遮断点が溶断
した時、その電流がB型遮断点へ移行する時間を遅らせ
ることによって、急激な電流増大時にも確実にA型の遮
断点よりもB型の遮断点のほうが後れて溶断するように
なる。更にC型橋絡遮断点の長さは大きいので遮断性能
は一層良くなり、小電流で電磁エネルギーの大きい回路
、特に直流回路遮断には良好な性能を発揮させることが
できる。
In the above explanation, each of the A type, A' type, B type, and C type breaking points seems to be composed of a single conductor having different widths and lengths, but as shown in FIG. Each conductor may be composed of a plurality of conductors, as shown in FIG. That is, FIG. 6 is another example of a 4S-2P network fuse pattern similar to that shown in FIG. The point consists of two long, thick conductors. Note that the C-type bridging break point consists of a thicker and longer single conductor, which helps increase the electrical time constant of the commutation loop circuit, and is useful for increasing the electrical time constant of the commutation loop circuit. By delaying the time it takes for the current to move to the B-type cutoff point when the cutoff point melts, it is ensured that the B-type cutoff point will blow later than the A-type cutoff point even when the current increases rapidly. It becomes like this. Further, since the length of the C-type bridge breaking point is large, the breaking performance is further improved, and good performance can be exhibited in circuits with small current and large electromagnetic energy, especially DC circuit breaking.

【0026】[0026]

【発明の効果】以上、詳細に説明したように、本発明に
よるネットワークヒューズエレメントによれば、連続通
電時のワット損を少なくしながら遮断性能を向上したヒ
ューズを提供することができる。例えば、図4に示した
従来の660V,60A 用の6S−5P遮断点のヒュ
ーズエレメントを用いて、6600V, 60A用のヒ
ューズを構成するためには10個を直列に接続した構成
にする必要があるので、ヒューズの全長は最低400m
m を要するが、本発明の例えば図1の実施例による4
S構成のネットワークヒューズエレメントによって図5
のヒューズエレメントと同等の遮断性能を得ることがで
きるので、10個直列に構成しても300mm 以内の
全長で製造することが可能になり、寸法的にも小さく製
造することができ、連続通電中の遮断点の直列個数は4
0個でよいので、従来のものの場合の直列個数60個に
対して連続通電中のワット損を、2/3に減少すること
が可能である。
As described above in detail, according to the network fuse element of the present invention, it is possible to provide a fuse with improved breaking performance while reducing power dissipation during continuous energization. For example, in order to construct a 6600V, 60A fuse using the conventional 660V, 60A 6S-5P cutoff point fuse element shown in Figure 4, it is necessary to connect 10 elements in series. Therefore, the total length of the fuse is at least 400m.
4 according to the embodiment of the invention, e.g. of FIG.
Figure 5 by network fuse element in S configuration
It is possible to obtain interrupting performance equivalent to that of fuse elements, so even if 10 pieces are arranged in series, the total length can be less than 300 mm, and the dimensions can be made smaller, allowing continuous energization. The number of interrupting points in series is 4
Since only 0 pieces are required, it is possible to reduce the power dissipation during continuous energization to 2/3 compared to 60 pieces connected in series in the conventional case.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明によるネットワークヒューズエレ
メントの、直列遮断点の数Sが4の回路を並列数Pを2
とした場合のヒューズパターンの一実施例を示す図であ
る。
[Fig. 1] Fig. 1 shows a network fuse element according to the present invention in which the number S of series breaking points is 4, and the number P in parallel is 2.
FIG. 3 is a diagram showing an example of a fuse pattern in the case of the following.

【図2】図2は図1のネットワークヒューズエレメント
の電流分布を示す図で、(a)は連続通電時の電流分布
、(b)は遮断最終時の電流分布を示している。
FIG. 2 is a diagram showing the current distribution of the network fuse element of FIG. 1, in which (a) shows the current distribution during continuous energization, and (b) shows the current distribution at the final time of energization.

【図3】図3は本発明によるネットワークヒューズエレ
メントの、直列遮断点の数Sを4とし、回路の並列数P
を3とした場合の本発明のネットワークヒューズエレメ
ントの一実施例のヒューズパターンを示す図である。
FIG. 3 shows a network fuse element according to the present invention in which the number S of series breaking points is 4 and the number P of parallel circuits.
FIG. 3 is a diagram showing a fuse pattern of an embodiment of the network fuse element of the present invention when 3 is set.

【図4】図4は図3のネットワークヒューズエレメント
の電流分布を示す図で、(a)は連続通電時の電流分布
、(b)は遮断最終時の電流分布を示している。
FIG. 4 is a diagram showing the current distribution of the network fuse element of FIG. 3, in which (a) shows the current distribution during continuous energization, and (b) shows the current distribution at the final time of energization.

【図5】図5に従来のヒューズエレメントのヒューズパ
ターンの一例を示す。
FIG. 5 shows an example of a fuse pattern of a conventional fuse element.

【図6】図6は図1に示したと同様の本発明による4S
−2Pのネットワークヒューズパターンのもう一つの実
施例を示す図である。
FIG. 6 shows a 4S according to the invention similar to that shown in FIG.
FIG. 6 is a diagram illustrating another example of a -2P network fuse pattern.

【符号の説明】[Explanation of symbols]

A0  遮断点 A,A1〜A4  A型の直列遮断点 B,B1〜B4  B型の直列遮断点 A1′〜A4′A′型の直列遮断点 A0 Cutoff point A, A1~A4 A type series breaking point B, B1~B4 B type series breaking point A1'~A4'A' type series breaking point

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  連続通電時は直列に接続される遮断点
を少なくしてヒューズのワット損を小とし、遮断時には
電流の流れを変えて直列に接続される遮断点を増加せし
め遮断性能を大きくすることを特徴とするネットワーク
ヒューズエレメント。
[Claim 1] During continuous energization, the number of series-connected breaking points is reduced to reduce the power dissipation of the fuse, and when the current is cut off, the current flow is changed to increase the number of series-connected breaking points to increase the breaking performance. A network fuse element characterized by:
【請求項2】  ワット損の等しい直列遮断点をS個直
列に有する回路をP個並列にしたヒューズエレメントで
あって、隣接する直列遮断点間の接合点を相互に橋絡遮
断点で結合して遮断点のネットワーク構造とし、隣接す
るP個の直列遮断点の溶断特性を異ならしめて、このネ
ットワークヒューズエレメントの遮断途中にP個並列な
直列遮断点の内の一個のみが最後に残るようにし、前記
橋絡遮断点に電流が流れるように構成したことを特徴と
する請求項1記載のネットワークヒューズエレメント。
2. A fuse element in which P circuits having S series interrupting points having equal power dissipation are connected in parallel, wherein the junctions between adjacent series interrupting points are connected to each other by a bridging interrupting point. to form a network structure of breaking points, and make the fusing characteristics of adjacent P series breaking points different, so that only one of the P parallel series breaking points remains at the end during the breaking of this network fuse element, The network fuse element according to claim 1, characterized in that a current is configured to flow through the bridge breaking point.
【請求項3】  前記ネットワークヒューズエレメント
の遮断途中にP個並列な直列遮断点の内の最後に残る一
個が、P個の直列回路の両端のいずれか一方にあって順
次に交互に残るように構成したことを特徴とする請求項
2記載のネットワークヒューズエレメント。
3. In the middle of breaking the network fuse element, the last one of the P parallel series breaking points is located at either end of the P series circuits and remains alternately in sequence. The network fuse element according to claim 2, characterized in that it comprises:
【請求項4】  前記のごとく直列遮断点の溶断特性を
異ならしめて橋絡遮断点に電流を流す方法の補助的手段
として、これらの直列遮断点及び橋絡遮断点を含むルー
プ回路の電気的時定数(L/R)を大きくして、電流突
進率の大きい事故電流の場合にも転流を確実に行わしめ
ることを特徴とする請求項3記載のネットワークヒュー
ズ。
4. As an auxiliary means to the above-mentioned method of making the fusing characteristics of the series breaking points different and causing current to flow through the bridge breaking point, the electrical timing of the loop circuit including the series breaking points and the bridge breaking point is 4. The network fuse according to claim 3, wherein the constant (L/R) is increased to ensure commutation even in the case of a fault current with a large current rush rate.
【請求項5】  転流をはかるべき並列関係にある各直
列遮断点間に静電容量(C)を持たせて、突進率の大き
い事故電流の場合にも転流を確実に行わしめることを特
徴とする請求項3記載のネットワークヒューズ。
[Claim 5] A capacitance (C) is provided between each series breaking point in a parallel relationship at which commutation is to be carried out to ensure commutation even in the case of a fault current with a large rush rate. The network fuse according to claim 3, characterized in that:
JP6763591A 1991-03-08 1991-03-08 Network fuse element Pending JPH04282527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6763591A JPH04282527A (en) 1991-03-08 1991-03-08 Network fuse element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6763591A JPH04282527A (en) 1991-03-08 1991-03-08 Network fuse element

Publications (1)

Publication Number Publication Date
JPH04282527A true JPH04282527A (en) 1992-10-07

Family

ID=13350649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6763591A Pending JPH04282527A (en) 1991-03-08 1991-03-08 Network fuse element

Country Status (1)

Country Link
JP (1) JPH04282527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203468A (en) * 2001-01-04 2002-07-19 Kengo Hirose Fuse link
JP2006237008A (en) * 2005-02-24 2006-09-07 Cooper Technol Co Low-resistance fuse and method for manufacturing low-resistance fuse
WO2008111614A1 (en) * 2007-03-13 2008-09-18 National University Corporation Saitama University Fuse link and fuse
JP2014053131A (en) * 2012-09-06 2014-03-20 Fuji Electric Fa Components & Systems Co Ltd Intelligent fuse

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203468A (en) * 2001-01-04 2002-07-19 Kengo Hirose Fuse link
JP2006237008A (en) * 2005-02-24 2006-09-07 Cooper Technol Co Low-resistance fuse and method for manufacturing low-resistance fuse
WO2008111614A1 (en) * 2007-03-13 2008-09-18 National University Corporation Saitama University Fuse link and fuse
JP2014053131A (en) * 2012-09-06 2014-03-20 Fuji Electric Fa Components & Systems Co Ltd Intelligent fuse

Similar Documents

Publication Publication Date Title
JP2004214032A (en) Protection element
JPH04282527A (en) Network fuse element
EP0116748A1 (en) On-load tap changer
US8866256B2 (en) Unbalanced parallel circuit protection fuse device
TW201805984A (en) Protection element
US4714974A (en) Current limiter
KR940000445B1 (en) Network fuse element
US6674619B2 (en) Method for interrupting an electrical circuit
US6665157B2 (en) Apparatus for interrupting an electrical circuit
US6335851B1 (en) Current-limiting device
JP3919257B2 (en) Intelligent mesh fuse
JP2020505731A (en) Relay mechanism with improved heat dissipation and converter with such a relay mechanism
JP7018959B2 (en) DC cutoff device
JPH04207923A (en) Current limiting method and current limiter
JPH1031924A (en) Compound switching device
JP4493858B2 (en) Fuse link
JP3851467B2 (en) Superconducting device
JP2947275B1 (en) Current limiting device
US6661628B2 (en) Method for interrupting a current-carrying path
CN1212636C (en) Combined relay
EP3742467A1 (en) A fuse assembly and method of making
JP6057413B2 (en) Intelligent fuse
JPH0515055A (en) Current limiter
JPH03192759A (en) Semiconductor device
JPH09283000A (en) Fuse structure and connecting socket