JP6057413B2 - Intelligent fuse - Google Patents

Intelligent fuse Download PDF

Info

Publication number
JP6057413B2
JP6057413B2 JP2012196047A JP2012196047A JP6057413B2 JP 6057413 B2 JP6057413 B2 JP 6057413B2 JP 2012196047 A JP2012196047 A JP 2012196047A JP 2012196047 A JP2012196047 A JP 2012196047A JP 6057413 B2 JP6057413 B2 JP 6057413B2
Authority
JP
Japan
Prior art keywords
point
current path
points
interruption
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196047A
Other languages
Japanese (ja)
Other versions
JP2014053131A (en
Inventor
康 山納
康 山納
恒雄 海老澤
恒雄 海老澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Saitama University NUC
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd, Saitama University NUC filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2012196047A priority Critical patent/JP6057413B2/en
Publication of JP2014053131A publication Critical patent/JP2014053131A/en
Application granted granted Critical
Publication of JP6057413B2 publication Critical patent/JP6057413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は、抵抗値の等しい少なくとも2つの平行な第1の電流路及び第2の電流路を形成し、第1の電流路及び第2の電流路にアーク維持特性の異なる第1の遮断点及び第2の遮断点を連結部を介して交互に且つ第1の電流路及び第2の電流路で互いに対向しないように配置したインテリジェントヒューズに関する。   The present invention forms at least two parallel first and second current paths having the same resistance value, and the first and second current paths have first arcing points having different arc maintenance characteristics. And an intelligent fuse in which the second breaking points are alternately arranged via the connecting portions and arranged so as not to face each other in the first current path and the second current path.

車両用や他の産業用のインバータ装置には、定格電流及び定格電圧の高い半導体スイッチングデバイスが使用され、この半導体スイッチングデバイスとして絶縁ゲートバイポーラトランジスタやパワー電界効果トランジスタ等の電圧制御型半導体素子が使用されている。
このような半導体スイッチングデバイスでは電圧制御型半導体素子を保護するために保護ヒューズが使用されている。
Inverter devices for vehicles and other industries use semiconductor switching devices with high rated current and high voltage, and voltage-controlled semiconductor elements such as insulated gate bipolar transistors and power field effect transistors are used as the semiconductor switching devices. Has been.
In such a semiconductor switching device, a protective fuse is used to protect the voltage-controlled semiconductor element.

この保護ヒューズとして、従来は、事故電流によって可溶体のヒューズエレメントを全路あるいは部分的に溶断させるようにしているが、その電流路は通常時も事故電流遮断時も変化しない。
これに対し、特許文献1に記載されているように、通常時と事故電流遮断時とで電流路を変化させるようにしたインテリジェントヒューズが提案されている。
Conventionally, the fuse element of the fusible body is blown entirely or partially by the fault current as the protective fuse, but the current path does not change during normal or when the fault current is interrupted.
On the other hand, as described in Patent Document 1, an intelligent fuse is proposed in which the current path is changed between a normal time and an accident current interruption.

このインテリジェントヒューズは、ほぼ同一形状で同時に発弧する溶断部および遮断部からなる複数の直列遮断点と、この直列遮断点と溶断時間が等しいか又はやや長い複数の橋絡遮断点と、各直列遮断点によって直列接続され各橋絡遮断点によって並列接続される溶断部及び遮断部よりも膜圧の厚い複数の放熱部とを備え、遮断部は、並列する各直列遮断点間で異なるアーク維持電圧特性を有する構成としている。   This intelligent fuse is composed of a plurality of series break points consisting of fusing parts and cut-off parts that are simultaneously ignited in substantially the same shape, and a plurality of bridge break points that have the same or slightly longer fusing time. It has a melted part connected in series by a breakpoint and connected in parallel by each bridge breakpoint and a plurality of heat dissipating parts whose film pressure is thicker than the breaker, and the breaker maintains different arcs between the series breakpoints in parallel. The configuration has voltage characteristics.

特開平9−330644号公報JP-A-9-330644

ところで、上記特許文献1に記載された従来例にあっては、遮断部のアーク維持電圧特性が異なる形状に形成されているので、アーク維持電圧の高い遮断点に生じるアークは溶断部を溶かしてそのアーク柱を速やかに伸ばすが、直ぐに厚い放熱部に達してその伸長を止める。ところが、アーク維持電圧の低い遮断点に生じているアークは、溶断部を溶かしてもアーク柱が十分に伸びきらず、厚い放熱部に達しても放電を継続する。したがって、事故電流は、アーク電圧の上昇と共により低いアーク電圧で発弧し続ける直列遮断点の側に確実に流れを移し、各橋絡遮断点を確実に通って蛇行し、アーク電圧がより高められて事故電流は速やかに抑制される。   By the way, in the conventional example described in Patent Document 1, since the arc maintaining voltage characteristics of the interrupting portion are formed in different shapes, the arc generated at the interrupting point having a high arc maintaining voltage melts the fusing portion. The arc column is quickly extended, but immediately reaches a thick heat dissipation portion and stops its extension. However, the arc generated at the break point where the arc maintenance voltage is low does not sufficiently extend the arc column even if the fusing part is melted, and continues to discharge even if it reaches a thick heat radiation part. Therefore, the fault current surely moves to the side of the series breakpoint that continues to fire at a lower arc voltage as the arc voltage rises, and the meandering through each bridging breakpoint surely increases the arc voltage. The accident current is quickly suppressed.

しかしながら、上記特許文献1に記載された従来例にあっては、遮断部の形状を異ならせてアーク維持電圧の異なる遮断点を形成することにより、事故電流の経路を蛇行させるようにしているが、遮断部の形状を異ならせてアーク維持電圧の異なる遮断点を形成しても事故電流が橋絡遮断部を通る電流路を形成することができないという未解決の課題がある。
そこで、本発明は、上述した従来例の未解決の課題に着目してなされたものであり、通常時と事故電流遮断時とで確実に異なる電流通路を形成することができるインテリジェントヒューズを提供することを目的としている。
However, in the conventional example described in Patent Document 1, the path of the fault current is meandered by forming the interrupting points having different arc maintenance voltages by changing the shape of the interrupting part. However, there is an unsolved problem that even if the interrupting points have different shapes and the interrupting points having different arc maintenance voltages are formed, the fault current cannot form a current path through the bridging interrupting unit.
Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and provides an intelligent fuse capable of reliably forming different current paths at the normal time and when an accident current is interrupted. The purpose is that.

上記目的を達成するために、本発明に係るインテリジェントヒューズの第1の態様は、抵抗値の等しい少なくとも2つの平行な電流路を形成する第1の電流路及び第2の電流路を有する。これら2つの電流路のうち、第1の電流路に、溶断部と該溶断部を挟んで対向する第1のアーク維持時間を有する遮断部とで構成される第1の遮断点と、溶断部と該溶断部を挟んで対向する第1のアーク維持時間より長い第2のアーク維持時間を有する遮断部とで構成される第2の遮断点とを連結部を介して交互に配置し、第2の電流路に、第1の遮断点と対向する位置に第2の遮断点を配置し、第2の遮断点と対向する位置に第1の遮断点を配置する。さらに、第1の電流路の連結部と第2の電流路の連結部との間に橋絡遮断点を配置し、前記第1の遮断点を直列配置される複数の分割遮断点に分割している。   In order to achieve the above object, a first aspect of an intelligent fuse according to the present invention includes a first current path and a second current path that form at least two parallel current paths having equal resistance values. Of these two current paths, the first current path includes a first cut-off point configured by a fusing part and a cut-off part having a first arc maintaining time across the fusing part, and the fusing part And second interruption points composed of interruption parts having a second arc maintenance time longer than the first arc maintenance time opposite to each other with the fusing part interposed therebetween, are arranged alternately via the connection parts, In the second current path, a second cutoff point is arranged at a position facing the first cutoff point, and a first cutoff point is arranged at a position facing the second cutoff point. Further, a bridging break point is disposed between the first current path connecting portion and the second current path connecting portion, and the first break point is divided into a plurality of divided break points arranged in series. ing.

また、本発明に係るインテリジェントヒューズの第2の態様は、前記第2の遮断点を直列配置される複数の分割遮断点に分割し、前記第1の遮断点の分割遮断点数が前記第2の遮断点の分割数より多く設定している。
また、本発明に係るインテリジェントヒューズの第3の態様は、第1の遮断点及び前記の遮断点の溶断部が、平行な複数の狭小部を有し、第1の遮断点の狭小部数が第の遮断点の狭小部数より多く設定されている。
According to a second aspect of the intelligent fuse of the present invention, the second breaking point is divided into a plurality of divided breaking points arranged in series, and the number of divided breaking points of the first breaking point is the second number. It is set more than the number of breakpoint divisions.
In the third aspect of the intelligent fuse according to the present invention, the first breaking point and the fusing portion of the breaking point have a plurality of parallel narrow portions, and the number of narrow portions of the first break point is the first. It is set to be larger than the number of narrow portions of the two cutoff points.

また、本発明に係るインテリジェントヒューズの第4の態様は、第1の遮断点の溶断部における狭小部形成領域の幅は、第2の遮断点の溶断部における狭小部形成領域の幅と橋絡遮断点の狭小部形成領域の幅とを加算した幅より大きく設定されている
また、本発明に係るインテリジェントヒューズの第5の態様は、第1の遮断点及び第2の遮断点の溶断部の狭小部において最小断面積位置の電流密度を等しく設定している。
また、本発明に係るインテリジェントヒューズの第6の態様は、前記第1の電流路及び前記第2の電流路は、絶縁基板上に形成された導電性薄膜パターンで形成され、前記第1の遮断、前記第2の遮断及び前記橋絡遮断の厚みが前記連部の厚みより薄く設定されている。
Moreover, the 4th aspect of the intelligent fuse which concerns on this invention WHEREIN: The width | variety of the narrow part formation area in the fusing part of the 1st interruption | blocking point is the bridge | crosslinking with the width | variety of the narrow part formation area in the fusing part of the 2nd interruption | blocking point. It is set larger than the width obtained by adding the width of the narrow portion forming region of the breaking point. Further, the fifth aspect of the intelligent fuse according to the present invention is the fusing part of the first breaking point and the second breaking point . The current density at the minimum cross-sectional area position is set equal in the narrow portion .
According to a sixth aspect of the intelligent fuse of the present invention, the first current path and the second current path are formed of a conductive thin film pattern formed on an insulating substrate, point, the thickness of the second shut-off point and the bridging cutoff point is set smaller than the thickness of the consolidated portion.

本発明によれば、第1の遮断点を複数の分割遮断点に分割したので、分割した分割遮断点で個別にアーク放電が発生し、第1の電流路のコンダクタンスを低下させることで、第1の電流路における第1の遮断点のアーク維持時間より第2の遮断点のアーク維持時間を長く設定でき、アークを第1の遮断点からアーク電圧の低い第2の遮断点に確実に移すことができる。この結果、橋絡遮断点を通る事故電流流路を確実に形成することができ、事故電流を速やかに抑制することができる。   According to the present invention, since the first break point is divided into a plurality of divided break points, arc discharge is generated individually at the divided break points, and the conductance of the first current path is reduced, The arc maintenance time of the second break point can be set longer than the arc maintenance time of the first break point in one current path, and the arc is reliably transferred from the first break point to the second break point having a low arc voltage. be able to. As a result, it is possible to reliably form an accident current flow path that passes through the bridge interruption point, and to quickly suppress the accident current.

本発明のインテリジェントヒューズを示す概略構成図であって、(a)は平面図、(b)は(a)のA−A線状の断面図である。It is a schematic block diagram which shows the intelligent fuse of this invention, Comprising: (a) is a top view, (b) is AA sectional view taken on the line AA. 図1の電流変化を示す図であって、(a)はアーク発生状態を示す平面図、(b)は転流状態を示す平面図である。It is a figure which shows the electric current change of FIG. 1, Comprising: (a) is a top view which shows an arc generation state, (b) is a top view which shows a commutation state. 遮断試験回路を示す回路図である。It is a circuit diagram which shows the interruption | blocking test circuit. 従来例に対応するインテリジェントヒューズを示す図であり、(a)は模式的平面図、(b)アーク発生状況を示す模式的平面図、(c)は転流を生じた状態を示す模式的平面図である。It is a figure which shows the intelligent fuse corresponding to a prior art example, (a) is a schematic top view, (b) A schematic top view which shows the arc generation condition, (c) is a schematic plane which shows the state which produced the commutation. FIG. 本発明及び従来例の試験結果を示す図である。It is a figure which shows the test result of this invention and a prior art example. 本発明のインテリジェントヒューズの遮断試験結果の電流波形及び電圧波形を示す特性線図である。It is a characteristic diagram which shows the current waveform and voltage waveform of the interruption | blocking test result of the intelligent fuse of this invention. 従来例の遮断試験結果の電流波形及び電圧波形を示す特性線図である。It is a characteristic diagram which shows the current waveform and voltage waveform of the interruption | blocking test result of a prior art example.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明のインテリジェントヒューズを示す概略構成図であって、(a)は平面図、(b)は(a)のA−A線上の断面図である。
図中、1は、インテリジェントヒューズであって、このインテリジェントヒューズ1は、セラミック等で構成される絶縁基板2上に銅、銀やアルミニウム等の導電性薄膜を形成し、この導電性薄膜をエッチングして導電性薄膜パターン4が形成されている。絶縁基板2は、縦40mm、横10mmで厚さが1mmの長方形状に形成されている。導電性薄膜バターン4は、先ず、例えば60μm程度の銅を蒸着等によって形成して薄膜部5を形成し、この薄膜部をエッチングによってパターニングした後に、マスクを使用したパターニング部を除く位置に再度60μm程度の銅を積層して厚膜部6を形成している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A and 1B are schematic configuration diagrams showing an intelligent fuse of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA in FIG.
In the figure, 1 is an intelligent fuse. This intelligent fuse 1 is formed by forming a conductive thin film such as copper, silver or aluminum on an insulating substrate 2 made of ceramic or the like, and etching this conductive thin film. Thus, the conductive thin film pattern 4 is formed. The insulating substrate 2 is formed in a rectangular shape having a length of 40 mm, a width of 10 mm, and a thickness of 1 mm. The conductive thin film pattern 4 is formed by first forming, for example, about 60 μm of copper by vapor deposition or the like to form the thin film portion 5, patterning the thin film portion by etching, and then again 60 μm at a position excluding the patterning portion using the mask. The thick film portion 6 is formed by laminating a certain amount of copper.

ここで、導電性薄膜パターン4は、左側が第1の電流路11として形成され、右側が第2の電流路12として形成され、両電流路11及び12が互いに平行で同じ抵抗値となるように形成されている。
第1の電流路11は、薄膜部5で構成される第1のアーク維持時間を有する第1の遮断点A1と、同様に薄膜部5で構成される第1のアーク維持時間より長い第2のアーク維持時間を有する第2の遮断点B2とがその順に厚膜部6で構成される連結部Cを介して直列に形成されている。また、第1の遮断点A1の外側及び第2の遮断点B2の外側にも厚膜部6で構成される連結部Cが形成されている。
Here, in the conductive thin film pattern 4, the left side is formed as the first current path 11, the right side is formed as the second current path 12, and both the current paths 11 and 12 are parallel to each other and have the same resistance value. Is formed.
The first current path 11 has a first breaking point A1 having a first arc maintenance time constituted by the thin film portion 5, and a second longer than the first arc maintenance time similarly constituted by the thin film portion 5. Are formed in series via a connecting portion C constituted by the thick film portion 6 in that order. In addition, a connecting portion C composed of the thick film portion 6 is also formed outside the first blocking point A1 and outside the second blocking point B2.

第2の電流路12は、薄膜部5で構成される第2のアーク維持時間を有する第2の遮断点B1と、同様に薄膜部5で構成される第1のアーク維持時間を有する第1の遮断点A2とがその順に厚膜部6で構成される連結部Cを介して直接に接続されている。また、第2の遮断点B1の外側及び第1の遮断点A2の外側にも厚膜部6で構成される連結部Cが形成されている。   The second current path 12 has a second break point B1 having a second arc maintenance time constituted by the thin film portion 5 and a first arc having a first arc maintenance time similarly constituted by the thin film portion 5. Are connected directly to each other through a connecting part C constituted by the thick film part 6 in that order. In addition, a connecting portion C composed of the thick film portion 6 is also formed outside the second blocking point B1 and outside the first blocking point A2.

ここで、第1の遮断点A1及びA2のそれぞれは、図1に示すように、二つに分割された分割遮断点a1及びa2で構成され、これら分割遮断点a1及びa2間に厚膜部6で構成される連結部cが形成されている。そして、各分割遮断点a1及びa2のそれぞれは、円形孔を所定間隔で形成して例えば4つの狭小部を形成した溶断部a3と、この溶断部a3を挟んで対向する帯状の一対の遮断部a4とで構成されている。   Here, as shown in FIG. 1, each of the first cut-off points A1 and A2 is composed of divided cut-off points a1 and a2 divided into two, and a thick film portion is formed between the divided cut-off points a1 and a2. 6 is formed. And each division | segmentation interruption | blocking point a1 and a2 each has a pair of strip | belt-shaped interruption | blocking parts which opposes on both sides of this fusing part a3 which formed the circular hole at predetermined intervals, for example, formed four narrow parts, and this fusing part a3 a4.

第2の遮断点B1及びB2のそれぞれは、図1に示すように、円形孔を形成して例えば2つの狭小部を形成した溶断部b1と、この溶断部b1を挟んで対向する帯状の一対の遮断部b2とで構成されている。
さらに、第1の電流路11の第1の遮断点A1及び第2の遮断点B2で挟まれる連結部C1と第2の電流路12の第2の遮断点B1及び第1の遮断点A2で挟まれる連結部C2との間に橋絡遮断点Dが形成されている。この橋絡遮断点Dは、図1に示すように、半円孔を形成して例えば1つの狭小部を有する溶断部d1と、この溶断部d1を挟んで対向する帯状の一対の遮断部d2とで構成されている。
As shown in FIG. 1, each of the second blocking points B1 and B2 includes a fusing part b1 in which a circular hole is formed to form, for example, two narrow parts, and a pair of belt-like members facing each other across the fusing part b1. It is comprised with the interruption | blocking part b2.
Furthermore, at the connection part C1 sandwiched between the first cutoff point A1 and the second cutoff point B2 of the first current path 11, and at the second cutoff point B1 and the first cutoff point A2 of the second current path 12. A bridge blocking point D is formed between the connecting portion C2 to be sandwiched. As shown in FIG. 1, the bridging cut-off point D includes a fusing part d1 having a semicircular hole and having, for example, one narrow part, and a pair of band-like cut-off parts d2 facing each other across the fusing part d1. It consists of and.

ここで、第1の遮断点A1,A2の2つの溶断部a3と第2の遮断点B1,B2の溶断部b1との抵抗値すなわち狭小部の抵抗が等しく設定されている。このため、第1の遮断点A1,A2の分割遮断点a1及びa2の溶断部a3の抵抗値が第2の遮断点B1PB2の溶断部b1の抵抗値の半分に設定されている。
そして、第1の遮断点A1,A2の2つの分割溶断点a1及びa2の幅Laは、第2の遮断点B1,B2の溶断部b1の幅Lbと橋絡遮断点Dの溶断部d1の幅Ldとを加算した値より大きくなるように設定されている(La>Lb+Ld)。
Here, the resistance values of the two blown portions a3 at the first cut-off points A1 and A2 and the blown portions b1 at the second cut-off points B1 and B2, that is, the resistances of the narrow portions are set to be equal. For this reason, the resistance value of the fusing part a3 of the divided interruption points a1 and a2 of the first interruption points A1 and A2 is set to half the resistance value of the fusing part b1 of the second interruption point B1PB2.
The width La of the two divided fusing points a1 and a2 of the first cut-off points A1 and A2 is equal to the width Lb of the fusing part b1 of the second cut-off points B1 and B2 and the fusing part d1 of the bridging cut-off point D. It is set to be larger than the value obtained by adding the width Ld (La> Lb + Ld).

また、第1の遮断点A1,A2と第2の遮断点B1,B2の遮断点数が2:1となっているので、各遮断点A1,A2及びB1,B2の溶断部a1、a2及びb1の狭小部において最小断面積位置の電流密度を等しく設定している。第2の遮断点B1,B2の溶断部b1における狭小部1つあたりに流れる電流の大きさは第1の遮断点A1,A2の分割遮断点a1,a2の2倍であるので、第2の遮断点B1,B2の溶断部b1における狭小部の最小断面積を第1の遮断点A1,A2の分割遮断点a1,a2の2倍に設定した。このとき、第2の遮断点B1,B2の狭小部の曲率半径を大きくすることで、第1の遮断点A1,A2と第2の遮断点B1,B2の抵抗値を等しくしている。   Further, since the number of cutoff points of the first cutoff points A1, A2 and the second cutoff points B1, B2 is 2: 1, the fusing parts a1, a2, and b1 of the respective cutoff points A1, A2 and B1, B2 The current density at the position of the minimum cross-sectional area is set to be equal in the narrow portion. Since the magnitude of the current flowing per narrow portion in the fusing part b1 of the second breaking points B1 and B2 is twice that of the divided breaking points a1 and a2 of the first breaking points A1 and A2, the second The minimum cross-sectional area of the narrow portion in the fusing part b1 of the interruption points B1 and B2 was set to be twice the divided interruption points a1 and a2 of the first interruption points A1 and A2. At this time, by increasing the radius of curvature of the narrow portion of the second cutoff points B1 and B2, the resistance values of the first cutoff points A1 and A2 and the second cutoff points B1 and B2 are made equal.

次に、上記実施形態の動作を説明する。
今、インテリジェントヒューズ1の後端側1aを例えば120Vで300Aの電源に接続し、前部側1bを保護対象となる絶縁ゲートバイポーラトランジスタ、パワー電界効果トランジスタとの電圧制御型半導体素子を含む半導体スイッチングデバイス等の負荷に接続する。
この状態で、電源をオン状態としてインテリジェントヒューズ1を介して負荷に通常電流を供給すると、第1の電流路11及び第2の電流路12が同一抵抗値に設定されているので、両電流路11及び12に、図1(a)に示すように、等しい電流が流れる。
Next, the operation of the above embodiment will be described.
Now, semiconductor switching including a voltage-controlled semiconductor element including the rear end side 1a of the intelligent fuse 1 connected to a power source of 300A at 120V and the front side 1b with an insulated gate bipolar transistor and a power field effect transistor to be protected Connect to a device load.
In this state, when the power source is turned on and normal current is supplied to the load via the intelligent fuse 1, the first current path 11 and the second current path 12 are set to the same resistance value. 11 and 12, an equal current flows as shown in FIG.

この状態で、負荷側に地絡,短絡等が生じてインテリジェントヒューズ1に例えば3000A程度の事故電流が流れると、事故電流が流れ始めた状態では、図2(a)に示すように、第1電流路11及び第2の電流路12に等しく事故電流が流れ、この事故電流によって、第1の遮断点A1,A2の分割遮断点a1,a2でアークが発生すると共に、第2の遮断点B1,B2でもアークが発生する。これらアークによって各遮断点A1,A2及びB1,B2の溶断部a3及びb1が溶断するが、アークを通じて事故電流は第1の電流路11及び第2の電流路12を流れ続ける。   In this state, when a ground fault, a short circuit, or the like occurs on the load side and an accident current of about 3000 A, for example, flows through the intelligent fuse 1, in the state where the accident current starts to flow, as shown in FIG. A fault current flows equally in the current path 11 and the second current path 12, and this fault current causes an arc at the split break points a1 and a2 of the first break points A1 and A2, and the second break point B1. , B2 also generates an arc. Although the melted portions a3 and b1 of the break points A1, A2 and B1, B2 are melted by these arcs, the fault current continues to flow through the first current path 11 and the second current path 12 through the arcs.

このとき、第1の遮断点A1,A2では、分割された2つの分割遮断点a1及びa2を有するので、これら2つの分割遮断点a1及びa2では遮断部a4間の距離が短く発生したアークが直ぐに厚みの厚い連結点c及びC1に達すると共に、分割遮断点a1及びa2のそれぞれでアーク放電が発生するので、第1の遮断点のコンダクタンスが低下し、アーク維持時間が短くなり図2(b)に示すように消弧される。   At this time, since the first cut-off points A1 and A2 have two divided cut-off points a1 and a2, an arc having a short distance between the cut-off portions a4 is generated at the two divided cut-off points a1 and a2. As soon as the thick connection points c and C1 are reached and arc discharge occurs at each of the divided interruption points a1 and a2, the conductance at the first interruption point is lowered, and the arc maintenance time is shortened. The arc is extinguished as shown in FIG.

一方、第2の遮断点B1及びB2では、遮断部b2間にアークは、溶断部b1を溶かしてもアーク柱が伸びきらず、厚い連結部C又はcに達しても放電を継続する。このとき、橋絡遮断点Dではアークが発生していないので、溶断部d1が溶断していないことから、事故電流は図2(b)に示すように、第2の遮断点B1、連結部C、橋絡遮断点D、連結部C、第2の遮断点B2、連結部Cを通じて通常時とは異なって蛇行して流れる転流状態となる。このため、橋絡遮断点Dでもアークが発生し、溶断部d1が溶断し、全体のアーク電圧がより高くなって事故電流が速やかに抑制される。   On the other hand, at the second break points B1 and B2, the arc between the break portions b2 does not extend even if the melted portion b1 is melted, and continues to discharge even when reaching the thick connection portion C or c. At this time, since no arc is generated at the bridging break point D, the fusing part d1 is not blown. Therefore, as shown in FIG. 2 (b), the fault current is the second breaking point B1, the connecting part. Unlike the normal state, a commutation state flows in a meandering manner through C, the bridge interruption point D, the connection part C, the second interruption point B2, and the connection part C. For this reason, an arc also occurs at the bridging break point D, the melted part d1 is melted, the overall arc voltage becomes higher, and the accident current is quickly suppressed.

このように、本発明の効果を実証するために、図3に示す遮断試験回路を使用して遮断試験を行った。このとき、比較対象として、図4に示す従来例と同一構成を有するインテリジェントヒューズ100を作成し、これについても遮断試験を行った。ここで、従来のインテリジェントヒューズ100は、図4(a)に示すように、前後方向の幅が長くアーク維持電圧の高い遮断点A11,A12と、前後方向の幅が短くアーク維持電圧の低い遮断点B11及びB12を上述した本実施形態と同様に連結部Cを介して第1の電流路101及び第2の電流路102に配置し、第1の電流路101及び第2の電流路102の連結部C間に橋絡遮断点D11を配置した。   Thus, in order to demonstrate the effect of this invention, the interruption | blocking test was done using the interruption | blocking test circuit shown in FIG. At this time, an intelligent fuse 100 having the same configuration as that of the conventional example shown in FIG. Here, as shown in FIG. 4A, the conventional intelligent fuse 100 has breaking points A11 and A12 having a long width in the front-rear direction and a high arc maintenance voltage, and a breaking point having a short width in the front-rear direction and a low arc maintenance voltage. The points B11 and B12 are arranged in the first current path 101 and the second current path 102 via the connecting portion C as in the above-described embodiment, and the first current path 101 and the second current path 102 are A bridge cutoff point D11 is disposed between the connecting portions C.

この従来のインテリジェントヒューズ100でも事故電流が流れたときに、図4(b)に示すように、各遮断点A11,A12及びB11,B12でアークが発生し、遮断点A11,A12のアーク維持電圧が高いので、図4(c)に示すように、先にアークが消弧して事故電流が遮断点B11、橋絡遮断点D11、遮断点12を通って蛇行する。   In this conventional intelligent fuse 100, when an accident current flows, as shown in FIG. 4B, an arc is generated at each of the breaking points A11, A12 and B11, B12, and the arc maintaining voltage at the breaking points A11, A12. Therefore, as shown in FIG. 4C, the arc is extinguished first, and the fault current meanders through the break point B11, the bridge break point D11, and the break point 12.

一方、遮断試験装置は、図3に示すように、商用交流電源20に可変単巻き変圧器21を接続し、この可変単巻き変圧器21の出力側に変圧器22を接続する。この変圧器22の出力側にダイオード23、抵抗Rc及びコンデンサCの直列回路を接続し、コンデンサCと並列に抵抗Rd及びプランジャによって開操作される常開スイッチ24を接続する。
また、コンデンサCの放電路に投入器25、ヒューズボックス26及び抵抗Rshの直列回路を接続する。ヒューズボックス26内には本発明のインテリジェントヒューズ1及び従来例のインテリジェントヒューズ100を配置し、消弧砂を充填し、加圧ポンプでケースの負荷に圧力3MPaかけながら遮断試験を行った。
On the other hand, as shown in FIG. 3, the interruption test apparatus connects a variable single-turn transformer 21 to a commercial AC power supply 20 and connects a transformer 22 to the output side of the variable single-turn transformer 21. A series circuit of a diode 23, a resistor Rc, and a capacitor C is connected to the output side of the transformer 22, and a normally open switch 24 that is opened by a resistor Rd and a plunger is connected in parallel with the capacitor C.
In addition, a series circuit of a charging device 25, a fuse box 26 and a resistor Rsh is connected to the discharge path of the capacitor C. In the fuse box 26, the intelligent fuse 1 of the present invention and the intelligent fuse 100 of the conventional example were arranged, filled with arc-extinguishing sand, and the interruption test was performed while applying a pressure of 3 MPa to the load of the case with a pressure pump.

すなわち、遮断試験は、まず、常開スイッチ24を開いた状態で、コンデンサCを充電する。コンデンサCの充電が完了したら、投入器25を動作させてコンデンサCに充電された電流を短絡電流としてヒューズボックス26内のインテリジェントヒューズ1又は100に事故電流に相当する1900〜3000Aの電流を供給する。
このときのインテリジェントヒューズ1(又は100)の第1の電流路11(又は101)及び第2の電流路12(又は102)の両端電圧V及びVとヒューズボックス26の両端の電圧V(=V+V)とを測定した。
That is, in the interruption test, first, the capacitor C is charged with the normally open switch 24 opened. When the charging of the capacitor C is completed, the input device 25 is operated to supply a current of 1900 to 3000 A corresponding to the accident current to the intelligent fuse 1 or 100 in the fuse box 26 using the current charged in the capacitor C as a short-circuit current. .
The first current path 11 of the intelligent fuse 1 (or 100) of this time (or 101) and the voltage V F across the second current path 12 across the voltage V L and V R and the fuse box 26 (or 102) (= V L + V R ) was measured.

この遮断試験を終了したインテリジェントヒューズ1及び100の外観は、図5(a)及び(b)に示すようになった。本発明のインテリジェントヒューズ1では、図5(a)に示すように、第1の遮断点A1,A2、第2の遮断点B1,B2及び橋絡遮断点Dの全てで消弧砂が冷えてできたフルグライトと呼ばれる固まりが確認できた。この結果、第1の遮断点A1,A2、第2の遮断点B1,B2及び橋絡遮断点Dの全てで溶断がしており、橋絡遮断点Dを通じる蛇行が生じて転流状態が起こっているものと判断することができる。   The external appearances of the intelligent fuses 1 and 100 that have completed this interruption test are as shown in FIGS. 5 (a) and 5 (b). In the intelligent fuse 1 of the present invention, as shown in FIG. 5A, the arc-extinguishing sand is cooled at all of the first breaking points A1, A2, the second breaking points B1, B2, and the bridge breaking point D. A mass called fulgrite was confirmed. As a result, the first breakpoints A1, A2, the second breakpoints B1, B2 and the bridge breakpoint D are all blown out, and meandering through the bridge breakpoint D occurs, resulting in a commutation state. It can be determined that this is happening.

これに対して、比較例である従来のインテリジェントヒューズ100では、図5(b)に示すように、第1の遮断点A11,A12及び第2の遮断点B11,B12についてはフルグライトが生じていたが、橋絡遮断点D11についてはフルグライトの発生が確認されず、橋絡遮断点D11は溶断していない可能性があることを確認された。
また、本発明のインテリジェントヒューズ1と従来例のインテリジェントヒューズ100との転流が発生したか否かは、遮断時の電流波形と第1の電流路及び第2の電流路の電圧波形とからも判断することができる。
On the other hand, in the conventional intelligent fuse 100 as a comparative example, as shown in FIG. 5B, fulgurite was generated at the first cutoff points A11 and A12 and the second cutoff points B11 and B12. However, the occurrence of fulgurite was not confirmed for the bridging break point D11, and it was confirmed that the bridging break point D11 may not be melted.
Whether or not the commutation between the intelligent fuse 1 of the present invention and the intelligent fuse 100 of the conventional example has occurred is determined from the current waveform at the time of interruption and the voltage waveforms of the first current path and the second current path. Judgment can be made.

本発明のインテリジェントヒューズ1では、コンデンサCに120Vを充電したときの電流波形及び電圧波形は、図6(a)及び(b)示すように、電流がピーク電流(1900A)に達した時刻38.9μSから限流を開始したときに、第1の電流路11の電圧V及び第2の電流路12の電圧Vが共に同じように上昇してから一旦電圧の上昇が止まって略一定電圧(120V程度)を維持し、その後48.9μS後に第1の電流路11の電圧Vが低下し、第2の電流路12の電圧Vは増加し、両者間に電圧差が生じ、その後同一の電圧変化で減少していることが確認された。 In the intelligent fuse 1 of the present invention, the current waveform and voltage waveform when the capacitor C is charged with 120V are as shown in FIGS. 6 (a) and 6 (b), when the current reaches the peak current (1900A). when you start limiting from 9 .mu.s, substantially constant voltage once voltage increase stops from the voltage V L and the voltage V R of the second current path 12 of the first current path 11 is increased both in the same way maintaining (about 120V), then the voltage V L of the first current path 11 is decreased after 48.9Myuesu, voltage V R of the second current path 12 is increased, the voltage difference between them occurs, then It was confirmed that the voltage decreased with the same voltage change.

この電圧V及びVの変化から、38.9μSで電圧V、V及びVで立ち上がっており、第1の遮断点A1,A2及び第2の遮断点B1,B2で同時にアークが発生していると判断できる。このため、第1の電流路11及び第2の電流路12で並列な電流路が形成されていると考えられる。このとき、電流路のコンダクタンスの差によって第1の遮断点A1,A2のアーク電流が減少して第2の遮断点B1,B2に転流し、橋絡遮断点Dに電流が流れ始めたと判断することができる。その後、48.9μSの時点で、橋絡遮断点Dの溶断部d1が溶断し、そのときのアーク電圧V及びVの電圧差として現れていると判断することができる。 From the change of the voltage V L and V R, the voltage V F at 38.9Myuesu, which rises in the V L and V R, at the same time the arc in the first cut-off point A1, A2 and the second cut-off point B1, B2 are It can be judged that it has occurred. For this reason, it is considered that a parallel current path is formed by the first current path 11 and the second current path 12. At this time, it is determined that the arc current at the first break points A1 and A2 is reduced due to the difference in conductance of the current path and commutates to the second break points B1 and B2, and current starts to flow to the bridge break point D. be able to. Then, at the time of 48.9Myuesu, blown is blown part d1 of the bridge cutoff point D, it can be determined that appear as a voltage difference between the arc voltage V L and V R at that time.

これに対して、従来例のインテリジェントヒューズ100では、コンデンサCを160Vに充電したときの電流及び電圧は、図7(a)及び(b)に示すように、81.8μSでピーク電流(3000A)に達して限流を開始したときに、電圧V、V及びVが共に立ち上がっていることから第1の遮断点A11,A12及び第2の遮断点B11,B12でアークが発生したと判断できる。その後も第1の電流路101及び第2の電流路102の電圧V及びVの電圧差は最大でも数ボルト程度であるため橋絡遮断点D11にはアークが発生しなかったと判断することができ、前述した図5(b)の結果と一致する。 On the other hand, in the intelligent fuse 100 of the conventional example, the current and voltage when the capacitor C is charged to 160V are 81.8 μS and the peak current (3000 A) as shown in FIGS. reached by the time you start the current limiting, voltage V F, the arc V L and V R are both stand up since that first cutoff point A11, A12 and the second cutoff points B11, B12 occurs I can judge. Thereafter it is determined that the arc is not generated in the first current path 101 and the second current path 102 voltage V L and V the voltage difference bridge cutoff point for about several volts at the maximum of R D11 of This is consistent with the result shown in FIG.

このように、本実施形態によると、第1の遮断点A1,A2を2つの分割遮断点a1及びa2に分割することにより、これら分割遮断点a1及びa2の抵抗値を第2の遮断点B1,B2の抵抗値と一致させるために遮断部a4間の間隔が短くなり、アーク電流が増加するとともに、分割遮断点a1及びa2の極降下電圧によりアーク電圧が増加し、アーク維持時間が第2の遮断点B1,B2よりも短くなる。このため、分割遮断点a1及びa2で消弧が生じ、第2の遮断点B1,B2に事故電流の転流を確実に発生させることができる。 Thus, according to the present embodiment, the first interrupting points A1 and A2 are divided into two divided interrupting points a1 and a2, so that the resistance values of these divided interrupting points a1 and a2 are set to the second interrupting point B1. the spacing between cutoff portion a4 to match the resistance of B2 is shortened, with arc current increases, the arc voltage increases with pole voltage drop divided blocking points a1 and a2, the arc maintenance time It becomes shorter than 2nd interruption | blocking point B1, B2. For this reason, arc-extinguishing arises at the division | segmentation interruption | blocking points a1 and a2, and the commutation of an accident electric current can be reliably generated in 2nd interruption | blocking point B1, B2.

また、第1の遮断点A1及びA2と第2の遮断点B1,B2の最小断面積位置の電流密度を等しくしているので、第1の遮断点A1,A2の分割遮断点a1,a2と第2の遮断点B1,B2とでアークを発生する発弧タイミングを一致させることができる。
なお、上記実施形態においては、インテリジェントヒューズ1の電流路が2つである場合について説明したが、これに限定されるものではなく、3つ以上の電流路を形成することもできる。また、第1の遮断点A及び第2の遮断点Bの個数を1個に限定されるものではなく、2以上形成することもでき、これに応じて橋絡遮断点も2以上形成すればよい。
Further, since the current density at the minimum cross-sectional area position of the first cutoff points A1 and A2 and the second cutoff points B1 and B2 is made equal, the split cutoff points a1 and a2 of the first cutoff points A1 and A2 The arc generation timing for generating an arc can be matched with the second cutoff points B1 and B2.
In the above embodiment, the case where there are two current paths of the intelligent fuse 1 has been described. However, the present invention is not limited to this, and three or more current paths may be formed. Further, the number of the first interception points A and the second interception points B is not limited to one, but two or more can be formed, and if there are two or more bridging breakpoints accordingly, Good.

さらに、上記実施形態では、第1の遮断点A1,A2と第2の遮断点B1,B2の直列遮断点数比を2:1に設定した場合について説明したが、これに限定されるものではなく、直列遮断点数比を3:2とすることもでき、要は第1の遮断点A1,A2の遮断点数を第2の遮断点B1,B2の遮断点数より大きく設定して電流路のコンダクタンスに差を生じさせればよいものである。   Furthermore, although the said embodiment demonstrated the case where the serial interruption point ratio of 1st interruption | blocking point A1, A2 and 2nd interruption | blocking point B1, B2 was set to 2: 1, it is not limited to this. The ratio of the number of series breaking points can be set to 3: 2. In short, the number of breaking points of the first breaking points A1 and A2 is set larger than the number of breaking points of the second breaking points B1 and B2, and the conductance of the current path is set. It is only necessary to make a difference.

1…インテリジェントヒューズ、2…絶縁基板、4…導電性薄膜バターン、11…第1の電流路、12…第2の電流路、A1,A2…第1の遮断点、a1,a2…分割遮断点、a3…溶断部、a4…遮断部、B1,B2…第2の遮断点、b1…溶断部、b2…遮断部、C…連結部、D…橋絡遮断点、d1…溶断部、d2…遮断部   DESCRIPTION OF SYMBOLS 1 ... Intelligent fuse, 2 ... Insulating substrate, 4 ... Conductive thin film pattern, 11 ... 1st electric current path, 12 ... 2nd electric current path, A1, A2 ... 1st interruption | blocking point, a1, a2 ... division | segmentation interruption | blocking point , A3 ... fusing part, a4 ... blocking part, B1, B2 ... second blocking point, b1 ... fusing part, b2 ... blocking part, C ... connecting part, D ... bridging blocking point, d1 ... fusing part, d2 ... Interceptor

Claims (6)

抵抗値の等しい少なくとも2つの平行な電流路を形成する第1の電流路及び第2の電流路を有し、
前記第1の電流路に、溶断部と該溶断部を挟んで対向する第1のアーク維持時間を有する遮断部とで構成される第1の遮断点と、溶断部と該溶断部を挟んで対向する前記第1のアーク維持時間より長い第2のアーク維持時間を有する遮断部とで構成される第2の遮断点とを連結部を介して交互に配置し、
前記第2の電流路に、前記第1の遮断点と対向する位置に前記第2の遮断点を配置し、前記第2の遮断点と対向する位置に第1の遮断点を配置し、
前記第1の電流路の連結部と前記第2の電流路の連結部との間に橋絡遮断点を配置し、
前記第1の遮断点を直列配置される複数の分割遮断点に分割した
ことを特徴とするインテリジェントヒューズ。
A first current path and a second current path forming at least two parallel current paths having equal resistance values;
The first current path includes a first cut-off point configured by a fusing part and a cut-off part having a first arc maintaining time opposed to the fusing part, and the fusing part and the fusing part. Second interruption points constituted by interruption parts having a second arc maintenance time longer than the opposing first arc maintenance time are alternately arranged via connecting parts,
In the second current path, the second cutoff point is arranged at a position facing the first cutoff point, the first cutoff point is arranged at a position facing the second cutoff point,
A bridging break point is disposed between the connecting portion of the first current path and the connecting portion of the second current path;
The intelligent fuse characterized in that the first breaking point is divided into a plurality of divided breaking points arranged in series.
前記第2の遮断点を直列配置される複数の分割遮断点に分割し、前記第1の遮断点の分割遮断点数が前記第2の遮断点の分割数より多く設定したことを特徴とする請求項1に記載のインテリジェントヒューズ。   The second blocking point is divided into a plurality of divided blocking points arranged in series, and the number of divided blocking points of the first blocking point is set larger than the number of divisions of the second blocking point. Item 4. The intelligent fuse according to item 1. 前記第1の遮断点及び前記第2の遮断点の溶断部は、平行な複数の狭小部を有し、前記第1の遮断点の狭小部数が前記第の遮断点の狭小部数より多く設定されていることを特徴とする請求項1又は2に記載のインテリジェントヒューズ。 The fusing part of the first interruption point and the second interruption point has a plurality of parallel narrow parts, and the number of narrow parts of the first interruption point is set larger than the number of narrow parts of the second interruption point. The intelligent fuse according to claim 1, wherein the intelligent fuse is provided. 前記第1の遮断点の溶断部における狭小部形成領域の幅は、前記第2の遮断点の溶断部における狭小部形成領域の幅と前記橋絡遮断点の狭小部形成領域の幅とを加算した幅より大きく設定されていることを特徴とする請求項3に記載のインテリジェントヒューズ。   The width of the narrow portion formation region at the fusing portion at the first interception point is the sum of the width of the narrow portion formation region at the fusing portion at the second interception point and the width of the narrow portion formation region at the bridge interception point. The intelligent fuse according to claim 3, wherein the intelligent fuse is set to be larger than a predetermined width. 前記第1の遮断点及び前記第2の遮断点の溶断部の狭小部において最小断面積位置の電流密度を等しく設定したことを特徴とする請求項3又は4に記載のインテリジェントヒューズ。 5. The intelligent fuse according to claim 3, wherein the current density at the position of the minimum cross-sectional area is set to be equal in a narrow portion of the fusing portion of the first breaking point and the second breaking point. 前記第1の電流路及び前記第2の電流路は、絶縁基板上に形成された導電性薄膜パターンで形成され、前記第1の遮断、前記第2の遮断及び前記橋絡遮断の厚みが前記連部の厚みより薄く設定されていることを特徴とする請求項1乃至5の何れか1項に記載のインテリジェントヒューズ。 The first current path and the second current path are formed of a conductive thin film pattern formed on an insulating substrate, and the first cutoff point , the second cutoff point, and the bridging cutoff point . intelligent fuse according to any one of claims 1 to 5, characterized in that the thickness is set smaller than the thickness of the consolidated portion.
JP2012196047A 2012-09-06 2012-09-06 Intelligent fuse Active JP6057413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196047A JP6057413B2 (en) 2012-09-06 2012-09-06 Intelligent fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196047A JP6057413B2 (en) 2012-09-06 2012-09-06 Intelligent fuse

Publications (2)

Publication Number Publication Date
JP2014053131A JP2014053131A (en) 2014-03-20
JP6057413B2 true JP6057413B2 (en) 2017-01-11

Family

ID=50611455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196047A Active JP6057413B2 (en) 2012-09-06 2012-09-06 Intelligent fuse

Country Status (1)

Country Link
JP (1) JP6057413B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282527A (en) * 1991-03-08 1992-10-07 Youden Eng:Kk Network fuse element
JP3919257B2 (en) * 1996-06-10 2007-05-23 健吾 廣瀬 Intelligent mesh fuse

Also Published As

Publication number Publication date
JP2014053131A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US7529072B2 (en) Protection apparatus
US9449778B2 (en) Combined surge protection device with integrated spark gap
TWI609384B (en) Protection device
US2263752A (en) Electric circuit interupter
US20170236674A1 (en) Fuse for a device to be protected
JP2012210009A (en) Surge protection device
JP2014007134A (en) High breaking capacity fuse
KR20140017043A (en) Current breaking device and battery pack having the same
US9088155B2 (en) Surge protection device
US3813627A (en) Current limiting fuse having improved low current interrupting capability
JP6905356B2 (en) Power semiconductor module
JP5189892B2 (en) Surge protection device
JP2010207078A (en) Systems and methods for protecting series capacitor bank
JP6057413B2 (en) Intelligent fuse
JP4513030B2 (en) Fuse element
CN104246953A (en) Passive resonance dc circuit breaker
US3835431A (en) Electrical fuse
CN104658724B (en) Multiconductor element and varistor for varistor
US3138682A (en) High voltage arc extinguishing electric fuses
JP3919257B2 (en) Intelligent mesh fuse
WO2016091318A1 (en) A switching device
JP6754941B2 (en) Circuit protection element and its manufacturing method
JP7154090B2 (en) protective element
US3733572A (en) Current limiting fuse
US20160189904A1 (en) Protection Device Comprising a Plurality of Vacuum Fuses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161202

R150 Certificate of patent or registration of utility model

Ref document number: 6057413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250