JPH04282507A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH04282507A
JPH04282507A JP3070294A JP7029491A JPH04282507A JP H04282507 A JPH04282507 A JP H04282507A JP 3070294 A JP3070294 A JP 3070294A JP 7029491 A JP7029491 A JP 7029491A JP H04282507 A JPH04282507 A JP H04282507A
Authority
JP
Japan
Prior art keywords
dielectric
quality factor
tio2
porcelain composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3070294A
Other languages
Japanese (ja)
Inventor
Toichi Takagi
東一 高城
Masaaki Watanabe
雅昭 渡辺
Hiroshi Inomata
猪又 浩
Kouhei Ametani
飴谷 公兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP3070294A priority Critical patent/JPH04282507A/en
Publication of JPH04282507A publication Critical patent/JPH04282507A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a dielectric porcelain composition which has a high dielectric constant, a large quality coefficient Q and a region of-0 temperature coefficient tauf on a resonance frequency, and suitability for a microwave region. CONSTITUTION:A dielectric porcelain composition of titanium, barium, praseodymium, gadolinium system expressed by a composition formula of a.BaO.b TiO2.c{x.Pr2O11/3, (1-x).Gd2O3} (where a, b, c are mole ratio and a+b+c=1, 0.1<a<0.2, 0.6<b<0.8, 0.1>c>0.2, 0.1<x<0.8).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、誘電体共振器等の材料
として好適な誘電体磁器組成物に関する。本発明の誘電
体磁器組成物は、誘電体共振器材料の他に、例えばマイ
クロ波IC用誘電体基板、誘電体調整棒、有機物との複
合材料の原料などにも適用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition suitable as a material for dielectric resonators and the like. The dielectric ceramic composition of the present invention is applicable not only to dielectric resonator materials but also, for example, to dielectric substrates for microwave ICs, dielectric adjustment rods, raw materials for composite materials with organic substances, and the like.

【0002】0002

【従来の技術】最近、MHz 帯からGHz 帯のマイ
クロ波帯域の電波を利用した自動車電話、コードレス電
話等の移動無線機に、電体共振器が多く用いられるよう
になった。このような誘電体共振器に使用される誘電体
磁器組成物には、比誘電率εr が大きいこと、また、
共振周波数の温度係数τfが小さく、品質係数Q(無負
荷Q0 )が大きいこと等の特性が要求させている。
2. Description of the Related Art Recently, electric resonators have come into widespread use in mobile radio equipment such as car telephones and cordless telephones that utilize radio waves in the microwave band from the MHz band to the GHz band. The dielectric ceramic composition used for such a dielectric resonator has a large relative dielectric constant εr, and
Characteristics such as a small temperature coefficient τf of the resonance frequency and a large quality factor Q (no-load Q0) are required.

【0003】従来、このような誘電体磁器組成物として
  TiO2、MgO−CaO−TiO2、ZrO2−
TiO2−SnO2、BaO−TiO2、等を主成分と
するものが知られているが、温度係数が大きかったり、
マイクロ波帯域での品質係数Qが  小さかったりして
実用化するには困難な面がある。
Conventionally, such dielectric ceramic compositions include TiO2, MgO-CaO-TiO2, ZrO2-
Products whose main components are TiO2-SnO2, BaO-TiO2, etc. are known, but they have large temperature coefficients,
It is difficult to put it into practical use because the quality factor Q in the microwave band is small.

【0004】また、BaO−TiO2−Nd2O3系の
誘電体磁器組成物についての提案{Ber. Dt. 
Keram. Ges. 55 (1978) No.
 7 ;  特開昭60−35406号公報等}もある
が、品質係数Qが小さく、比誘電率εr についても十
分とは言えない。
[0004] Also, a proposal regarding a BaO-TiO2-Nd2O3-based dielectric ceramic composition {Ber. Dt.
Keram. Ges. 55 (1978) No.
7; Japanese Unexamined Patent Publication No. 60-35406, etc.), but the quality factor Q is small and the relative permittivity εr is not sufficient.

【0004】また、Ba(Mg1/3,Ta2/3)O
3 やBa(Zn1/3,Ta2/3)O3 Ba(Z
n1/3,Nb2/3)O3 系等のペロブスカイト型
構造を有する誘電体磁器組成物が提案されているが、比
誘電率が小さい(比誘電率εr =25〜40程度)た
めに、例えば0.1 〜4GHz帯で使用される共振器
としたときに、共振器を十分に小型化することができな
い難点がある。
[0004] Also, Ba(Mg1/3, Ta2/3)O
3 and Ba(Zn1/3, Ta2/3)O3 Ba(Z
Dielectric ceramic compositions having a perovskite structure such as those based on n1/3, Nb2/3)O3 have been proposed; .1 When used as a resonator in the 4 GHz band, there is a drawback that the resonator cannot be sufficiently miniaturized.

【0005】この問題点を解決するものとして、特開昭
 62−72558 号公報には、BaO−TiO2−
Nd2O3−BiO2/3 系の誘電体磁器組成物が提
案されている。その特性は、比誘電率εr が80〜8
3、品質係数Qが1900〜2650で、τf が3 
〜10とかなり改善されているものの、まだ不十分であ
り、さらに優れた特性を有する誘電体磁器組成物の開発
が望まれている。
[0005] To solve this problem, Japanese Patent Application Laid-Open No. 62-72558 discloses BaO-TiO2-
A dielectric ceramic composition based on Nd2O3-BiO2/3 has been proposed. Its characteristics include a relative dielectric constant εr of 80 to 8
3. Quality factor Q is 1900-2650 and τf is 3
-10, which is a considerable improvement, but it is still insufficient, and there is a desire to develop a dielectric ceramic composition with even better properties.

【0006】[0006]

【発明が解決しようとする課題】以上説明したように、
従来の誘電体磁器組成物では、いずれをとっても近年要
求されている誘電体共振器材料として具備すべき特性、
すなわち、比誘電率εr、品質係数Qがさらに高く、τ
f が小さいことを兼ね備えた材料がないという問題が
ある。本発明はこれらの問題点に鑑みなされたものであ
って、その目的は、比誘電率εr 、品質係数Qがさら
に高く、τf が小さいことを兼ね備えた誘電体磁器組
成物を提供することにある。
[Problem to be solved by the invention] As explained above,
Conventional dielectric ceramic compositions all have the characteristics that are required as dielectric resonator materials in recent years.
That is, the relative permittivity εr and the quality factor Q are higher, and τ
There is a problem that there is no material that has a small f. The present invention was made in view of these problems, and its purpose is to provide a dielectric ceramic composition that has higher relative dielectric constant εr, higher quality factor Q, and lower τf. .

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
め、誘電体磁器の組成に関し鋭意検討した結果、プラセ
オジムとガドリニウムを用いることにより優れた誘電体
が得られることを見い出し本発明を完成するに至った。 すなわち、本発明は組成式a ・ BaO ・ b ・
 TiO2・ c {x ・ Pr2O11/3, (
1−x)・ Gd2O3}(式中、a, b, c は
モル比率で、a+b+c=1 、0.1<a<0.2 
、0.6<b<0.8 、0.1<c<0.2 、  
0.1<x<0.8 )で表わされるチタン、バリウム
、プラセオジウム、ガドリニウム系誘電体磁器組成物で
ある。
[Means for Solving the Problems] In order to solve the above problems, as a result of intensive study on the composition of dielectric ceramics, it was discovered that an excellent dielectric material could be obtained by using praseodymium and gadolinium, and the present invention was completed. reached. That is, the present invention has the compositional formula a.BaO.b.
TiO2・c {x・Pr2O11/3, (
1-x)・Gd2O3} (where a, b, c are molar ratios, a+b+c=1, 0.1<a<0.2
, 0.6<b<0.8, 0.1<c<0.2,
It is a titanium, barium, praseodymium, and gadolinium-based dielectric ceramic composition expressed by 0.1<x<0.8).

【0008】以下、本発明についてさらに詳しく説明す
る。本発明の特徴はバリウムとチタンとプラセオジウム
とガドリニウムを用いることとその組成比にあるが特に
プラセオジウムとガドリニウムに特徴がある。すなわち
、Pr2O11/3とGd2O3 の合計モル比 c 
 は、0.1<c<0.2 であり、  Pr2O11
/3とGd2O3 の比率を示す x  は、0.1<
x<0.8 で示される組成にあることによって品質係
数Q〜5050、比誘電率εr 〜83、共振周波数の
温度係数τf が〜0 のマイクロ波帯域に好適の優れ
た誘電体材料が得られるのである。
The present invention will be explained in more detail below. The present invention is characterized by the use of barium, titanium, praseodymium, and gadolinium, and their composition ratio, and is particularly characterized by praseodymium and gadolinium. That is, the total molar ratio of Pr2O11/3 and Gd2O3 c
is 0.1<c<0.2, and Pr2O11
x, which indicates the ratio of /3 and Gd2O3, is 0.1<
By having a composition represented by x<0.8, an excellent dielectric material suitable for the microwave band with a quality factor Q ~ 5050, a relative dielectric constant εr ~ 83, and a temperature coefficient τf of the resonance frequency ~ 0 can be obtained. It is.

【0009】組成範囲の限定理由は次の通りである。a
は、BaO が0.1 以下では比誘電率εr が小さ
く、 0.2以上では品質係数Qが低くなり好ましくな
い。したがって、a は、0.1<a<0.2 の範囲
が好適であり、さらに好ましくは、0.12<a<0.
18 がよい。bは、TiO2が0.6 以下では焼結
性が低下し、0.8 以上では共振周波数の温度係数τ
f が大きくなり好ましくない。したがって、b は、
0.6<b<0.8の範囲が好適であり、さらに好まし
くは、0.64<b<0.76 がよい。cは、0.1
 以下では比誘電率εr が小さく、0.2 以上では
比誘電率εr及び品質係数Qが共に小さくなり好ましく
ない。したがって、c は、0.1<b<0.2 の範
囲が好適であり、さらに好ましくは、0.12<c<0
.18 がよい。xは、0.1 以下あるいは0.8 
以上では、共振周波数の温度係数τf が大きくなり好
ましくない。したがって、xは、0.1<x<0.8の
範囲が好適であり、さらに好ましくは、0.2<x<0
.6がよい。
The reason for limiting the composition range is as follows. a
When BaO is less than 0.1, the relative permittivity εr is small, and when it is more than 0.2, the quality factor Q is undesirable. Therefore, a is preferably in the range of 0.1<a<0.2, more preferably 0.12<a<0.
18 is good. When TiO2 is less than 0.6, the sinterability decreases, and when it is more than 0.8, the temperature coefficient of resonance frequency τ
f becomes large, which is not preferable. Therefore, b is
The range of 0.6<b<0.8 is preferable, and the range of 0.64<b<0.76 is more preferable. c is 0.1
If the dielectric constant εr is less than 0.2, the dielectric constant εr is small, and if it is 0.2 or more, the dielectric constant εr and the quality factor Q are both small, which is not preferable. Therefore, c is preferably in the range 0.1<b<0.2, more preferably 0.12<c<0.
.. 18 is good. x is 0.1 or less or 0.8
In the above case, the temperature coefficient τf of the resonance frequency becomes large, which is not preferable. Therefore, the range of x is preferably 0.1<x<0.8, more preferably 0.2<x<0.
.. 6 is good.

【0010】本発明による誘電体磁器組成物は、最終的
に酸化物磁器組成物になればよく、通常行われるように
、バリウム(Ba)、チタン(Ti)、プラセオジウム
(Pr)、ガドリニウム(Gd)等の酸化物あるいは、
炭酸塩、塩基性炭酸塩、硝酸塩、水酸化物、有機酸塩等
の熱分解により酸化物となる出発原料を混合して焼成す
る方法等で製造することができる。出発原料を混合して
仮焼した後、得られた仮焼粉末をそのままの形態で有機
材料などと複合することにより実用に供される場合もあ
る。
[0010] The dielectric ceramic composition according to the present invention may ultimately be an oxide ceramic composition, and as is usually done, barium (Ba), titanium (Ti), praseodymium (Pr), gadolinium (Gd) can be used. ) or other oxides,
It can be produced by mixing and firing starting materials that become oxides by thermal decomposition such as carbonates, basic carbonates, nitrates, hydroxides, and organic acid salts. After mixing and calcining the starting materials, the resulting calcined powder may be put to practical use in its original form by compounding it with an organic material or the like.

【0011】次に、出発原料を混合して仮焼した後、成
形、焼結する方法(共振器などの応用で適用されている
方法)について説明する。まず、出発原料を所定の量ず
つ混合する。混合する際には、水、アルコール、その他
の有機溶媒等と共に湿式混合する方法など混合性の高い
方法が好ましい。湿式混合を行った場合は、溶媒を除去
した後、得られた混合物を仮焼する。仮焼は、空気雰囲
気などの酸素ガス含有雰囲気下に、温度900〜130
0℃程度で行なうことが好ましい。仮焼温度が900 
℃より低いと仮焼による固相反応が促進されず、また、
仮焼温度が1300℃を越えると仮焼粉末が凝集して粉
末特性が低下するので好ましくない。
Next, a method of mixing and calcining starting materials, then shaping and sintering (a method used in applications such as resonators) will be explained. First, starting materials are mixed in predetermined amounts. When mixing, a method with high miscibility such as wet mixing with water, alcohol, other organic solvents, etc. is preferred. When wet mixing is performed, the resulting mixture is calcined after removing the solvent. Calcination is performed at a temperature of 900 to 130°C in an oxygen gas-containing atmosphere such as an air atmosphere.
It is preferable to carry out the reaction at about 0°C. Calcining temperature is 900
If the temperature is lower than ℃, the solid phase reaction due to calcination will not be promoted, and
If the calcination temperature exceeds 1300°C, the calcination powder will aggregate and the powder properties will deteriorate, which is not preferable.

【0012】得られた仮焼物を粉砕した後、成形する。 成形方法としては、一般のセラミックス粉体の成形方法
である加圧成形、押し出し成形、シート成形、射出成形
などが適用される。この際、ポリビニルアルコールなど
の通常の有機バインダー類、可塑剤、分散剤などの添加
成分を必要に応じて添加する。得られた成形体を焼結す
る。焼結は、空気雰囲気などの酸素ガス含有雰囲気下に
、温度1300〜1500℃程度で行なうことが好まし
い。
[0012] The obtained calcined product is pulverized and then molded. As the molding method, general ceramic powder molding methods such as pressure molding, extrusion molding, sheet molding, injection molding, etc. are applied. At this time, additive components such as ordinary organic binders such as polyvinyl alcohol, plasticizers, and dispersants are added as necessary. The obtained molded body is sintered. Sintering is preferably performed at a temperature of about 1300 to 1500°C in an oxygen gas-containing atmosphere such as an air atmosphere.

【0013】こうして得られた誘電体磁器組成物の焼結
体は、そのまま、又は必要に応じて適当な形状及びサイ
ズに加工することで、誘電体共振器、マイクロ波IC用
誘電体基板、誘電体調整棒等の材料として利用すること
ができ、特に0.1 〜4GHz帯で使用される誘電体
共振器とした時に優れた効果を奏する。
The sintered body of the dielectric ceramic composition obtained in this way can be used as it is or by processing it into an appropriate shape and size as necessary to produce a dielectric resonator, a dielectric substrate for microwave IC, a dielectric It can be used as a material for body adjustment rods, etc., and has particularly excellent effects when used as a dielectric resonator used in the 0.1 to 4 GHz band.

【0014】[0014]

【実施例1〜20及び比較例1〜4】以下、さらに実施
例・比較例を挙げて本発明を詳細に説明する。出発原料
に高純度の BaCO3,TiO2,Pr6O11,G
d2O3粉末を用いて所定の組成比になるように秤量し
た後、ボールミルを用いて20時間湿式混合した。この
スラリーを加熱乾燥した後、空気中において温度105
0℃で2 時間仮焼し、得られた仮焼物を再びボールミ
ルを用いて20時間湿式粉砕した。得られたスラリーを
加熱乾燥した後、ポリビニルアルコールを適当量加えて
混練を行ない、32メッシュのふるいで造粒した。造粒
粉を成形圧力800kg/cm2 で加圧成形し、空気
中において温度1350℃〜1500℃で5 時間焼成
した。
[Examples 1 to 20 and Comparative Examples 1 to 4] The present invention will be explained in detail below with further examples and comparative examples. High purity BaCO3, TiO2, Pr6O11, G as starting materials
After weighing the d2O3 powder to a predetermined composition ratio, wet mixing was performed using a ball mill for 20 hours. After heating and drying this slurry, it was placed in air at a temperature of 105
The calcined product was calcined at 0° C. for 2 hours, and the calcined product was wet-milled again for 20 hours using a ball mill. After the obtained slurry was heated and dried, an appropriate amount of polyvinyl alcohol was added, kneaded, and granulated through a 32-mesh sieve. The granulated powder was pressure molded at a molding pressure of 800 kg/cm 2 and fired in air at a temperature of 1350° C. to 1500° C. for 5 hours.

【0015】得られた焼結体を直径約10 mm 、高
さ約4 mmの円筒状に加工した。この焼結体の共振周
波数fo、品質係数Q及び比誘電率εr は、空洞型共
振器を用いた透過法によるGHz 帯でのεr 、品質
係数Q、τf の測定を行なった。測定には、横河ヒュ
ーレット・パッカード社製ネットワークアナライザー(
型番:YHP 8510)及び測定治具としては、村田
製作所社製(型番:DRG 8553)を用いて行なっ
た。また、共振モードは、TE01δモードを用いた。 試料の共振周波数は、3 〜4 GHz であった。 なお、一般にGHz 帯での誘電特性の測定においては
、測定法により測定値が異なる場合が多く、測定値の比
較にあたっては、その測定方法にも十分な配慮をする必
要がある。特に、品質係数Qの測定においては、注意が
必要である。共振周波数foの温度依存性については、
−30 ℃から+80 ℃の範囲で測定し、温度係数τ
f を求めた。それらの実験結果を表1に示す。なお、
表1中の品質係数Qの値は、共振周波数foと品質係数
Qとの間の関係式fo×Q=一定の関係を用いて1 G
Hz での値に換算して示した。
The obtained sintered body was processed into a cylindrical shape with a diameter of about 10 mm and a height of about 4 mm. The resonant frequency fo, quality factor Q, and dielectric constant εr of this sintered body were determined by measuring εr, quality factor Q, and τf in the GHz band by a transmission method using a cavity type resonator. For measurements, a Yokogawa Hewlett-Packard network analyzer (
The measurement was carried out using Murata Manufacturing Co., Ltd. (model number: DRG 8553) as a measuring jig. Furthermore, the TE01δ mode was used as the resonance mode. The resonant frequency of the sample was 3-4 GHz. In general, when measuring dielectric properties in the GHz band, the measured values often differ depending on the measuring method, and when comparing the measured values, it is necessary to give sufficient consideration to the measuring method. In particular, care must be taken when measuring the quality factor Q. Regarding the temperature dependence of the resonant frequency fo,
Measured in the range of -30 °C to +80 °C, temperature coefficient τ
I found f. The experimental results are shown in Table 1. In addition,
The value of the quality factor Q in Table 1 is calculated using the relational expression fo x Q = constant between the resonance frequency fo and the quality factor Q.
The values are shown converted to Hz.

【0016】[0016]

【表1】[Table 1]

【0017】[0017]

【発明の効果】本発明の誘電体磁器組成物は、バリウム
、チタンの他にプラセオジウムとガドリニウムを主要成
分として用いることにより、誘電率が高く、品質係数Q
が大きく、τf の安定性が良好であり、0.1 〜4
 GHz 帯で使用される誘電体材料として特に好適で
あり優れた効果を奏する。
Effects of the Invention The dielectric ceramic composition of the present invention uses praseodymium and gadolinium as main components in addition to barium and titanium, so it has a high dielectric constant and a quality factor of Q.
is large, the stability of τf is good, and 0.1 to 4
It is particularly suitable as a dielectric material used in the GHz band and exhibits excellent effects.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成式a ・ BaO ・ b ・ 
TiO2・ c {x ・ Pr2O11/3, (1
−x)・ Gd2O3}(式中、a, b, c はモ
ル比率で、a+b+c=1 、0.1<a<0.2 、
0.6<b<0.8 、0.1<c<0.2 、 0.
1<x<0.8)で表わされるチタン、バリウム、プラ
セオジウム、ガドリニウム系誘電体磁器組成物。
[Claim 1] Compositional formula a・BaO・b・
TiO2・c{x・Pr2O11/3, (1
-x)・Gd2O3} (where a, b, c are molar ratios, a+b+c=1, 0.1<a<0.2,
0.6<b<0.8, 0.1<c<0.2, 0.
A titanium-, barium-, praseodymium-, and gadolinium-based dielectric ceramic composition represented by 1<x<0.8).
JP3070294A 1991-03-12 1991-03-12 Dielectric porcelain composition Pending JPH04282507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070294A JPH04282507A (en) 1991-03-12 1991-03-12 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070294A JPH04282507A (en) 1991-03-12 1991-03-12 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH04282507A true JPH04282507A (en) 1992-10-07

Family

ID=13427305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070294A Pending JPH04282507A (en) 1991-03-12 1991-03-12 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH04282507A (en)

Similar Documents

Publication Publication Date Title
EP0625491B1 (en) Dielectric ceramic composition for use in high frequency
JP3117271B2 (en) Method for producing dielectric ceramic composition for high frequency
JPH04282506A (en) Dielectric porcelain composition
JP2501649B2 (en) Microwave dielectric ceramics
JPH04282507A (en) Dielectric porcelain composition
JPH04306503A (en) Dielectric porcelain composite
JPH04312705A (en) Dielectric porcelain composition
JPH04312706A (en) Dielectric porcelain composition
JPH04329210A (en) Dielectric porcelain composition
JP3696947B2 (en) Dielectric porcelain composition
JP2872438B2 (en) Dielectric porcelain composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JPH06275126A (en) Dielectric ceramic composition
JP2001302331A (en) Dielectric ceramic composition
JP4362938B2 (en) Dielectric porcelain composition
JP2005179110A (en) Dielectric ceramic composition
JP3318396B2 (en) High frequency dielectric ceramic composition
JPH0612916A (en) Dielectric porcelain composition
JP2887244B2 (en) High frequency dielectric ceramic composition
JPH0612914A (en) Dielectric porcelain composition
JPH05298922A (en) Dielectric ceramic for microwave
JPH0628917A (en) Dielectric porcelain composition
JP2835253B2 (en) High frequency dielectric ceramic composition and dielectric material
JPH0737423A (en) Dielectric ceramic composition for high-frequency
JPH0628919A (en) Dielectric porcelain composition