JPH04281788A - Isoenzyme and its mixture of gamma-glutamyltranspeptidase - Google Patents

Isoenzyme and its mixture of gamma-glutamyltranspeptidase

Info

Publication number
JPH04281788A
JPH04281788A JP3746091A JP3746091A JPH04281788A JP H04281788 A JPH04281788 A JP H04281788A JP 3746091 A JP3746091 A JP 3746091A JP 3746091 A JP3746091 A JP 3746091A JP H04281788 A JPH04281788 A JP H04281788A
Authority
JP
Japan
Prior art keywords
isoenzyme
glutamyl
gamma
activity
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3746091A
Other languages
Japanese (ja)
Other versions
JPH0695936B2 (en
Inventor
Yoshihiro Asada
浅田 芳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP3746091A priority Critical patent/JPH0695936B2/en
Publication of JPH04281788A publication Critical patent/JPH04281788A/en
Publication of JPH0695936B2 publication Critical patent/JPH0695936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To provide the title novel isoenzyme for e.g. medicines, produced by Bacillus cells, capable of hydrolyzing D-gamma-glutamyl-p-nitroanilide, thus having such activity as to convert gamma-glutamyl groups into amino acids such as D- glutamic acid. CONSTITUTION:Bacteria belonging to Bacillus (e.g. Bacillus licheniformis A35) is inoculated into a 1% glucose-meat extract medium and put to shaking culture at 30 deg.C for 22hr followed by centrifugation of the resultant culture solution to remove microbial cells followed by addition of acetone at -30 deg.C and collection the precipitate produced, which is, in turn, suspended in a buffer solution containing 20mM potassium phosphate (pH7.0). The suspension is then subjected to anion exchange column chromatography to effect purification, thus hydrolyzing D-gamma-glutamyl-p-nitroanilide and giving the objective gamma-glutamyltranspeptidase isoenzyme having the following characteristics: (1) activity: capable of converting the gamma-glutamyl groups in the D-gamma-glutamyl-p-nitroanilide into amino acids including D-glutamic acid or peptides; (2) optimal pH: 8.0; (3) optimal temperature for activity: 55-60 deg.C; (4) molecular weight (gel filtration technique):30000.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はバチルス属の細菌が生成
するγ−グルタミルトランスペプチターゼ(以下、γ−
GTPと言う)のイソ酵素混合物およびイソ酵素に関す
る。γ−GTPはグルタチオンなどγ−グルタミル化合
物を加水分解し、その生成物であるγ−グルタミル基を
ペプチドまたはアミノ酸に転移する反応を触媒する酵素
として知られている。このように、γ−GTPは種々の
γ−グルタミルアミノ酸あるいはペプチドの酵素合成が
可能であり、アミノ酸をγ−グルタミル化する事によっ
て、アミノ酸の溶解度を高め、また種々のアミノ酸分解
酵素からアミノ酸を保護することが出来るため、医薬品
としての利用が可能であるなど工業上の利用価値がある
[Industrial Application Field] The present invention relates to γ-glutamyl transpeptidase (hereinafter referred to as γ-glutamyl transpeptidase) produced by bacteria of the genus Bacillus.
GTP) isoenzyme mixtures and isoenzymes. γ-GTP is known as an enzyme that catalyzes a reaction that hydrolyzes γ-glutamyl compounds such as glutathione and transfers the resulting γ-glutamyl group to a peptide or amino acid. In this way, γ-GTP is capable of enzymatic synthesis of various γ-glutamyl amino acids or peptides, and by γ-glutamylation of amino acids, it increases the solubility of amino acids and protects them from various amino acid degrading enzymes. Therefore, it has industrial utility value, such as being able to be used as a medicine.

【0002】0002

【従来の技術】γ−GTPは広く動物、植物及び微生物
に存在する。たとえば人体にも存在し、血液中の含有量
が肝機能の指標の一つとしても用いられている。細菌の
γ−GTPは1952年にグラム陰性菌プロテウス・ブ
ルガリス(Proteus vulgaris)に存在
が確認されて以来、グラム陰性細菌に多くその存在が報
告されており、そのアミノ酸配列および遺伝子配列の判
明しているものもある。 しかし、従来知られている動植物細胞、微生物はいずれ
も生産性が低く、しかも、γ−GTPは主として細胞膜
に存在するため、その分離精製が困難であり、工業的生
産には不適当であった。
BACKGROUND OF THE INVENTION γ-GTP is widely present in animals, plants and microorganisms. For example, it exists in the human body, and its content in the blood is used as an indicator of liver function. Since the existence of bacterial γ-GTP was confirmed in the Gram-negative bacterium Proteus vulgaris in 1952, its presence has been reported in many Gram-negative bacteria, and its amino acid and gene sequences have not been determined. Some have. However, the productivity of conventionally known animal, plant, and microorganism cells is low, and since γ-GTP is mainly present in cell membranes, it is difficult to separate and purify it, making it unsuitable for industrial production. .

【0003】0003

【発明が解決しようとする課題】このような現状に対し
、本願発明者はγ−GTPを高濃度で生産することを目
的とした。その一環として、本発明者は、バチルス属の
細菌、特にバチルス・リヘニフォルミスA35(Bac
illus licheniformis A35、以
下に、BL−A35 と言う)がγ−GTPを細胞外に
分泌することを見いだし、さらにγ−GTPを精製し、
その性質を既に公表している(浅田等;日本農芸化学会
昭和63年度大会講演要旨集第226 頁(3Ea−7
) 、1988年) 。しかし、本発明者はγ−GTP
生産に関する研究を鋭意継続した結果、驚くべきことに
本細菌は前記公知のγ−GTP以外に2種類の同一機能
を保有する新規な酵素、すなわちイソ酵素(以下、イソ
酵素という)、を併産すること、しかも、これら新規な
イソ酵素は従来のγ−GTP(以下、同様にイソ酵素と
言う)よりも生産性が高いことを見いだした。そこで、
本発明者は、バチルス属の細菌、特にBL−A35 を
培養しγ−GTPのイソ酵素群を同時生産せしめ、これ
らイソ酵素を個別に分離して利用すること、あるいは混
合利用すべく、イソ酵素を分離精製する方法を確立し、
それぞれの理化学的性質を明らかにすることによって本
発明を完成した。
[Problems to be Solved by the Invention] In view of the current situation, the inventor of the present invention aimed to produce γ-GTP at a high concentration. As part of this, the present inventor has developed a method for developing bacteria of the genus Bacillus, particularly Bacillus licheniformis A35 (Bacillus licheniformis A35).
We discovered that S. illus licheniformis A35 (hereinafter referred to as BL-A35) secretes γ-GTP extracellularly, and further purified γ-GTP.
Its properties have already been published (Asada et al.; Japanese Society of Agricultural Chemistry, Abstracts of the 1986 Conference, p. 226 (3Ea-7).
), 1988). However, the inventor has discovered that γ-GTP
As a result of intensive research on production, it was surprisingly discovered that this bacterium co-produces two new enzymes that have the same functions, i.e., isoenzyme (hereinafter referred to as isoenzyme), in addition to the well-known γ-GTP. Moreover, it has been found that these new isoenzymes have higher productivity than conventional γ-GTP (hereinafter also referred to as isoenzymes). Therefore,
The present inventor cultivated bacteria of the genus Bacillus, particularly BL-A35, to simultaneously produce a group of isoenzymes of γ-GTP. established a method to separate and purify
The present invention was completed by clarifying the physical and chemical properties of each.

【0004】なお、前記バチルス・リヘニフォルミスA
35は工業技術院微生物工業技術研究所に微工研菌寄第
 12055号(FERM p−12055)として寄
託されている。従来、細菌がγ−GTPのイソ酵素を生
成することは知られていなかった。本発明の結果初めて
細菌、特にバチルス属の細菌、就中BL−A35 がγ
−GTPのイソ酵素を生成することが明らかにされたこ
とである。
[0004] Furthermore, the above-mentioned Bacillus licheniformis A
No. 35 has been deposited with the National Institute of Microbial Technology, Agency of Industrial Science and Technology as FERM p-12055. Conventionally, it was not known that bacteria produce γ-GTP isoenzyme. As a result of the present invention, for the first time, bacteria, especially bacteria of the genus Bacillus, especially BL-A35,
- It has been revealed that GTP isoenzymes are produced.

【0005】[0005]

【課題を解決するための手段】上述の状況において本発
明の酵素は、バチルス属の細菌が生成するγ−グルタミ
ルトランスペプチターゼであり、次の性質、(イ)基質
特異性;D−γ−グルタミル−p−ニトロアニリドを加
水分解し、該化合物中のγ−グルタミル基をD−グルタ
ミン酸を含むアミノ酸またはペプチドに転移する活性を
有する; (ロ)至適pH;γ−グルタミル基転移反応の至適pH
は8.8である; (ハ)作用適温;γ−グルタミル基転移反応の至適温度
は55−60℃である;及び (ニ)ゲルろ過法による分子量が3万である;を有する
γ−グルタミルトランスペプチターゼのイソ酵素〔A〕
、および同じバチルス属の細菌が生成し、前記理化学的
性質(イ),(ロ)および(ハ)を共有し、ゲルろ過法
による分子量が3.5万であるγ−グルタミルトランス
ペプチターゼのイソ酵素〔B〕である。
[Means for Solving the Problems] In the above-mentioned situation, the enzyme of the present invention is a γ-glutamyl transpeptidase produced by a bacterium of the genus Bacillus, and has the following properties: (a) substrate specificity; Has the activity of hydrolyzing glutamyl-p-nitroanilide and transferring the γ-glutamyl group in the compound to an amino acid or peptide containing D-glutamic acid; (b) Optimal pH; optimum pH for γ-glutamyl group transfer reaction; Appropriate pH
is 8.8; (c) the optimum temperature for action; the optimum temperature for the γ-glutamyl group transfer reaction is 55-60°C; and (d) the molecular weight as determined by gel filtration is 30,000; Glutamyl transpeptidase isoenzyme [A]
and γ-glutamyl transpeptidase isoproduced by the same bacterium of the genus Bacillus, sharing the above-mentioned physicochemical properties (a), (b), and (c), and having a molecular weight of 35,000 as determined by gel filtration. It is enzyme [B].

【0006】このような理化学的性質をもつイソ酵素を
生成する細菌は、バチルス属の細菌である必要がある。 前述のように、他の細菌、たとえばグラム陰性細菌では
このような性質をもつ酵素、特にイソ酵素を生成するこ
とが出来ない。さらに、バチルス属の細菌はBL−A3
5 であることが好ましい。新規なイソ酵素〔A〕およ
び〔B〕はそれぞれ単独に使用してもよく、両者を混合
して混合物として使用してもよい。あるいはまた、同じ
バチルス属の細菌が生成し、既に公開されている分子量
4万のγ−GTPのイソ酵素〔C〕をさらに混合して使
用してもよい。イソ酵素〔C〕は前述の物理化学的性質
(イ),(ロ)および(ハ)をイソ酵素〔A〕および〔
B〕と共有するが、分子量が4万と大きい酵素である。 イソ酵素の組合せは特に限定されることはなく、イソ酵
素〔A〕と同〔C〕との混合物、イソ酵素〔B〕と同〔
C〕との混合物、さらには、イソ酵素〔A〕、同〔B〕
および同〔C〕と三つのイソ酵素の混合物としてもよい
Bacteria that produce isoenzymes with such physical and chemical properties must belong to the genus Bacillus. As mentioned above, other bacteria, such as Gram-negative bacteria, are unable to produce enzymes with such properties, especially isoenzymes. Furthermore, bacteria of the genus Bacillus are BL-A3
5 is preferable. The novel isoenzymes [A] and [B] may be used individually, or they may be mixed and used as a mixture. Alternatively, a γ-GTP isoenzyme [C] with a molecular weight of 40,000, which is produced by the same bacterium of the genus Bacillus and has already been published, may be further mixed and used. Isoenzyme [C] has the above-mentioned physicochemical properties (a), (b), and (c) of isoenzyme [A] and [
B], but it is an enzyme with a large molecular weight of 40,000. The combination of isoenzymes is not particularly limited, and may include a mixture of isoenzyme [A] and isoenzyme [C], isoenzyme [B] and isoenzyme [B], and isoenzyme [B] and isoenzyme [C].
mixture with isoenzyme [A], isoenzyme [B]
It may also be a mixture of [C] and three isoenzymes.

【0007】これらイソ酵素混合物の混合割合は特に限
定しない。細菌が生成したままの割合でもよく、あるい
は各イソ酵素の分離後適当な割合で混合したものでもよ
い。また、イソ酵素混合物は、精製したイソ酵素の混合
物でもよく、あるいは未精製のままの混合物でもよい。 さらに、γ−GTP以外の酵素が混在しても差し支えな
い。
[0007] The mixing ratio of these isoenzyme mixtures is not particularly limited. The ratio may be the same as the bacteria are produced, or the isoenzyme may be separated and mixed at an appropriate ratio. Further, the isoenzyme mixture may be a mixture of purified isoenzymes or may be an unpurified mixture. Furthermore, enzymes other than γ-GTP may be present in the mixture.

【0008】これらのイソ酵素の基質特異性、至適pH
および作用適温はいずれも同じであるから、多くの場合
、混合物を利用できる。この場合、3つのイソ酵素を含
む混合物が酵素生産性が高く、経済的に有利に利用でき
る。しかし、それぞれのイソ酵素は熱安定性が少しずつ
違うため、その耐熱特性を利用して、イソ酵素〔A〕ま
たは同〔B〕を単独に使用して利用効果が上がる場合も
多い。たとえば、イソ酵素〔A〕は熱安定性が最も高く
、たとえば55℃にて1時間の熱安定性試験でなお活性
の90%を保持するため、高温で使用する場合に特に有
効に利用できる。またイソ酵素〔B〕は熱安定性が最も
低く、たとえば50%にて1時間で活性の50%を失う
ため、目的とする反応終了後に低温処理で容易に活性を
封ずることが出来る特徴がある。イソ酵素〔A〕と〔B
〕を含む混合物は、経済性とともに両者の特徴を兼ね備
えることができる。イソ酵素〔B〕と〔C〕を含む混合
物は、熱安定性と経済性を兼ね備えることができる。イ
ソ酵素〔B〕と〔C〕を含む混合物は、低温処理性と経
済性を兼ね備えることができる。
Substrate specificity and optimal pH of these isoenzymes
and the optimum temperature for action are the same, so in many cases a mixture can be used. In this case, a mixture containing three isoenzymes has high enzyme productivity and can be used economically. However, since each isoenzyme has a slightly different thermostability, it is often possible to use isoenzyme [A] or [B] alone to increase the effectiveness of the use, taking advantage of their heat resistance properties. For example, isoenzyme [A] has the highest thermal stability and retains 90% of its activity after a one-hour thermal stability test at 55° C., so it can be used particularly effectively when used at high temperatures. In addition, isoenzyme [B] has the lowest thermal stability, for example, it loses 50% of its activity in 1 hour at 50% concentration, so it has the characteristic that its activity can be easily sealed by low-temperature treatment after the desired reaction is completed. be. isoenzyme [A] and [B
] can have both characteristics as well as economy. A mixture containing isoenzymes [B] and [C] can have both thermal stability and economic efficiency. The mixture containing isoenzymes [B] and [C] can be processed at low temperatures and economically.

【0009】ここで言うイソ酵素は、同一の生物種に存
在し、同一の反応を触媒するが、酵素化学的には性質を
異にする一群の酵素のことを言う。上述の如く、γ−G
TPのイソ酵素は細菌に於ては従来その存在が知られて
おらず、本発明によりはじめて存在が知られたものであ
る。本発明に係るγ−GTPのイソ酵素の新規性に関し
ては、従来プロテウス(Proteusu)属あるいは
エシェリチア(Echerichia)属などのグラム
陰性細菌あるいは動物細胞で知られていたγ−GTPと
基質特異性が異なることから明かである。すなわち、本
発明に係るイソ酵素の何れもが、D−γ−グルタミル−
p−ニトロアニリド(以下にD−γ−GpNAと言う)
 またはL−γ−グルタミル−p−ニトロアニリド(以
下にL−γ−GpNAと言う) をγ−グルタミル基供
与体として、D−グルタミンおよびD−グルタミン酸に
対して転移する活性を有している。しかし、前述のグラ
ム陰性細菌あるいは動物細胞の生成するγ−GTPはD
−グルタミンおよびD−グルタミン酸のどちらに対して
も活性を示さない。また、D−γ−GpNAに対する活
性をもたず、D−γ−GpNAを供与体として転位反応
は行うことができない。
[0009] The term "isoenzyme" as used herein refers to a group of enzymes that exist in the same biological species and catalyze the same reaction, but have different enzymatic chemical properties. As mentioned above, γ-G
The existence of TP isoenzymes has not been previously known in bacteria, and their existence has been made known for the first time by the present invention. Regarding the novelty of the γ-GTP isoenzyme according to the present invention, it differs in substrate specificity from γ-GTP conventionally known for Gram-negative bacteria such as Proteus or Escherichia or animal cells. It is clear from this. That is, all of the isoenzymes according to the present invention are D-γ-glutamyl-
p-nitroanilide (hereinafter referred to as D-γ-GpNA)
Alternatively, it has an activity of transferring to D-glutamine and D-glutamic acid using L-γ-glutamyl-p-nitroanilide (hereinafter referred to as L-γ-GpNA) as a γ-glutamyl group donor. However, the γ-GTP produced by Gram-negative bacteria or animal cells mentioned above is D
- Shows no activity towards either glutamine or D-glutamic acid. Furthermore, it does not have any activity toward D-γ-GpNA, and cannot perform a rearrangement reaction using D-γ-GpNA as a donor.

【0010】本発明のイソ酵素混合物に含まれる公知の
イソ酵素〔C〕と新規なイソ酵素〔A〕および〔B〕と
の相違は、分子量に於て明確に区別される。前者の分子
量は4万であり、後2者の分子量はそれぞれ3万および
3.5万である。さらに、詳細には実施例の表1及び表
5に示したように、アミノ酸に対する相対転位活性およ
び耐熱特性が異なっている。(理化学的性質の測定方法
)本発明に係るγ−GTPのイソ酵素の理化学的性質は
次のようにして測定する。
The known isoenzyme [C] and the new isoenzymes [A] and [B] contained in the isoenzyme mixture of the present invention are clearly distinguished in molecular weight. The molecular weight of the former is 40,000, and the molecular weights of the latter two are 30,000 and 35,000, respectively. Furthermore, as shown in Table 1 and Table 5 of Examples, the relative rearrangement activity with respect to amino acids and heat resistance properties are different. (Method for measuring physicochemical properties) The physicochemical properties of the γ-GTP isoenzyme according to the present invention are measured as follows.

【0011】(イ)基質特異性 本イソ酵素はγ−グルタミル基をアミノ酸に転移する機
能を有し、作用基質として各種アミノ酸を選び、これら
に対する転移活性を、それぞれ相対値で表わしている。 すなわち、γ−グルタミル基供与体として、D−または
L−γ−GpNAを用い、作用基質の代表にグリシルグ
リシン(以下にGly−Glyと言う) を選び、これ
に対するγ−グルタミル基転移活性を100 で表わし
、他のアミノ酸に対する転移活性をこれとの相対値で示
す。
(a) Substrate specificity The present isoenzyme has the function of transferring a γ-glutamyl group to an amino acid, and various amino acids are selected as active substrates, and the transfer activity toward these is expressed as a relative value. That is, D- or L-γ-GpNA was used as the γ-glutamyl group donor, glycylglycine (hereinafter referred to as Gly-Gly) was selected as the representative active substrate, and the γ-glutamyl group transfer activity against this was determined. It is expressed as 100, and transfer activity toward other amino acids is expressed as a relative value.

【0012】具体的には、D−またはL−γ−GpNA
 lmM溶液0.2ml、Gly−Gly(または他の
アミノ酸) 20mM溶液0.3mlおよびTris−
塩酸緩衝液50mM(pH8.0)1.3mlからなる
混合液にγ−GTP 3−5μgを加え、37℃でγ−
グルタミル基を転移させる。所定時間の経過後、酢酸3
.5N水溶液1.0mlを加えて反応を停止し、反応液
の410nm の吸光度を測定して転移反応で遊離した
p−ニトロソアニリン(ε=8800) の量を求める
。p−ニトロソアニリンの生成量は、そのままで酵素の
転移活性を示しているが、活性単位で表わす場合、1分
間に1μmol のp−ニトロソアニリンを生成する場
合を1単位(U)とし、次の式で計算できる。
Specifically, D- or L-γ-GpNA
0.2 ml of 1 mM solution, 0.3 ml of 20 mM solution of Gly-Gly (or other amino acid) and Tris-
3-5 μg of γ-GTP was added to a mixture of 1.3 ml of 50 mM hydrochloric acid buffer (pH 8.0), and γ-GTP was incubated at 37°C.
Transfers glutamyl group. After a predetermined period of time, acetic acid 3
.. The reaction is stopped by adding 1.0 ml of a 5N aqueous solution, and the absorbance of the reaction solution at 410 nm is measured to determine the amount of p-nitrosoaniline (ε=8800) liberated by the rearrangement reaction. The amount of p-nitrosoaniline produced directly indicates the transfer activity of the enzyme, but when expressed in activity units, the production of 1 μmol of p-nitrosoaniline per minute is considered to be 1 unit (U), and the following It can be calculated using the formula.

【0013】U/ml=吸光度(410nm)* 0.
003 * 106/8800 * 0.2 * 20 (ロ)至適pH 上記Gly−Gly に対する転移活性が最大になるp
H値を言う。 (ハ)作用適温 同様にpH8.0でGly−Gly に対する転移活性
が最大になる温度を言う。
[0013] U/ml=absorbance (410 nm)*0.
003 * 106/8800 * 0.2 * 20 (b) Optimum pH The p at which the transfer activity for the above Gly-Gly is maximized
Say the H value. (c) Suitable temperature for action Similarly to pH 8.0, this refers to the temperature at which the transfer activity for Gly-Gly is maximized.

【0014】(ニ)平均分子量 Sephadex G−100を用いたゲルろ過法によ
り測定した値を示す。分子量標準には、アルブミン(B
ovine Serum)、アルコール脱水素酵素(Y
east) 、β−アミラーゼ(Sweet pota
to)、カルボン酸脱水素酵素(Bovine Ery
throcytes)、チトクロームC(Horse 
heast) などの標準タンパク質を用いる。(γ−
GTPイソ酵素の製造方法)
(d) Average molecular weight Values measured by gel filtration using Sephadex G-100 are shown. Molecular weight standards include albumin (B
ovine serum), alcohol dehydrogenase (Y
east), β-amylase (Sweet pota
to), carboxylic acid dehydrogenase (Bovine Ery
throcytes), cytochrome C (Horse
Use standard proteins such as (γ-
Method for producing GTP isoenzyme)

【0015】次に本発明の
γ−GTP群の製造方法について述べる。製造はバチル
ス属の細菌を培養し、発酵法による。バチルス属の細菌
はバチルス・リヘニフォルミスA35(Bacillu
s licheniformis A35) がγ−G
TP群の生産性が高く、三つのイソ酵素を併産し、しか
も菌体外に生成し、グルタミン酸を培地に添加する必要
がないなどの特徴を有するため特に好ましい。同細菌に
ついては C.Cheng, Y.Asada および
T.AidaがAgr ・Biol.Chem.誌第5
3巻2369頁(1989年)に記載している。培養方
法は特に限定するものではないが、たとえば滅菌したG
B培地にバチルス・リヘニフォルミスA35を接種し、
30−37℃で20−22時間振とう培養する。この培
養液を種菌とし、グルコース−ブイヨン培地(GB培地
)、ブイヨン培地(B培地)、グルコース−酵母抽出液
培地(GY培地)、カザミノ酸培地(CA培地)、ペプ
トン培地(P培地)、TSB培地、あるいはM培地など
の培地に0.1−10%接種し、30℃で数日間振とう
培養することでγ−GTP群が培地中に生成蓄積される
。この培地を10,000rpm で10分間遠心除菌
し、上澄に終濃度45容量%になるように−30℃のア
セトンを添加し、+5℃で1−2時間静置してタンパク
質を沈澱させる。10,000rpm で10−15分
間遠心分離し、タンパク質を採取し、20mM燐酸カリ
ウム緩衝液(pH7.0)に懸濁する。得られた沈澱に
は多くのタンパク質を含む故、次のように精製する。
Next, the method for producing the γ-GTP group of the present invention will be described. It is manufactured by culturing Bacillus bacteria and using a fermentation method. Bacteria of the genus Bacillus are Bacillus liheniformis A35 (Bacillus).
S licheniformis A35) is γ-G
It is particularly preferable because it has characteristics such as high productivity of the TP group, co-production of three isoenzymes, and production outside the bacterial cells, so there is no need to add glutamic acid to the culture medium. Regarding the same bacterium, C. Cheng, Y. Asada and T. Aida is Agr・Biol. Chem. Magazine No. 5
It is described in Volume 3, page 2369 (1989). The culture method is not particularly limited, but for example, sterilized G
Bacillus liheniformis A35 was inoculated into B medium,
Culture with shaking at 30-37°C for 20-22 hours. This culture was used as a seed culture, and glucose-bouillon medium (GB medium), bouillon medium (B medium), glucose-yeast extract medium (GY medium), casamino acid medium (CA medium), peptone medium (P medium), TSB By inoculating 0.1-10% into a medium or a medium such as M medium and culturing with shaking at 30°C for several days, γ-GTP group is produced and accumulated in the medium. This medium is centrifuged at 10,000 rpm for 10 minutes, acetone at -30°C is added to the supernatant to give a final concentration of 45% by volume, and the protein is precipitated by standing at +5°C for 1-2 hours. . The protein is collected by centrifugation at 10,000 rpm for 10-15 minutes and suspended in 20 mM potassium phosphate buffer (pH 7.0). Since the obtained precipitate contains many proteins, it is purified as follows.

【0016】(γ−GTPイソ酵素の精製方法)先ず、
陰イオンカラムクロマトグラフィーでタンパク質を予備
分割する。DEAE−Cellulofine A−5
00に上記アセトン沈澱懸濁液を供し、塩化ナトリウム
濃度勾配20mM燐酸カリウム緩衝液(pH7)で溶出
する。塩化ナトリウム濃度を0.15Mから0.3Mに
直線的に変えて溶出していくと塩化ナトリウム濃度0.
20−0.23Mの範囲に弱いなだらかなタンパク質の
溶出曲線が得られ(区分Aと言う)、その後0.24−
0.25Mの範囲に強いシャープな曲線で示される溶出
区分が得られる(区分Bと言う)。後者の区分Bが従来
のγ−GTP(すなわち公知のイソ酵素〔C〕)であり
、この区分よりγ−GTPが採取精製されていた。区分
Aは同分離カラムでは明瞭な溶出曲線が得られず、かつ
イソ酵素の存在が予想外であったため、従来は他のタン
パク質と考えられ放置されていた。
(Method for purifying γ-GTP isoenzyme) First,
Pre-resolve proteins by anion column chromatography. DEAE-Cellulofine A-5
The acetone precipitate suspension was applied to 0.00 and eluted with a sodium chloride concentration gradient of 20 mM potassium phosphate buffer (pH 7). When the sodium chloride concentration is changed linearly from 0.15M to 0.3M and elution is carried out, the sodium chloride concentration becomes 0.
A weak smooth protein elution curve was obtained in the range of 0.20-0.23M (referred to as section A), then 0.24-
An elution section is obtained which is represented by a strong sharp curve in the 0.25M range (referred to as section B). The latter category B is conventional γ-GTP (ie, known isoenzyme [C]), and γ-GTP has been collected and purified from this category. Category A did not provide a clear elution curve using the same separation column, and the presence of isoenzymes was unexpected, so it was thought to be another protein and was left alone.

【0017】本発明の結果、区分Aにイソ酵素〔A〕お
よび〔B〕が存在することが知られた。すなわち、区分
Aは分離が不十分で、ここからはイソ酵素〔A〕および
〔B〕を採取できないが、区分Aを次のヒドロキシアパ
タイトカラムで再分画すると明確な溶出分画が得られ、
しかもこのように精製した結果、イソ酵素の比活性が予
想に反して高くなる。具体的には、区分Aをヒドロキシ
アパタイトHTPカラムに供し、濃度勾配燐酸カリウム
緩衝液で溶出する。濃度を20mMから0.4Mに直線
的に変えて溶出を行うと、区分Aは50− 100mM
および 110− 150mMの範囲で二つのシャープ
な分画に分けることができる。前者の分画(区分A−1
と言う)がイソ酵素〔A〕、後者の分画(区分A−2と
言う)がイソ酵素〔B〕を含有する。
As a result of the present invention, it has been found that isoenzymes [A] and [B] exist in category A. In other words, separation is insufficient in section A, and isoenzymes [A] and [B] cannot be collected from it, but when section A is re-fractionated using the next hydroxyapatite column, a clear elution fraction is obtained.
Moreover, as a result of such purification, the specific activity of the isoenzyme is unexpectedly high. Specifically, Section A is applied to a hydroxyapatite HTP column and eluted with a concentration gradient potassium phosphate buffer. When elution is performed by linearly changing the concentration from 20mM to 0.4M, category A is 50-100mM.
and can be divided into two sharp fractions in the range 110-150mM. The former fraction (Category A-1
) contains isoenzyme [A], and the latter fraction (referred to as segment A-2) contains isoenzyme [B].

【0018】これらの分画をさらに精製する場合は、S
ephadex G−100カラムによるゲルクロマト
グラフィーによる。すなわち、カラムに各分画を別々に
供し、20mM燐酸カリウム緩衝液で溶出する。
For further purification of these fractions, S
By gel chromatography on an ephadex G-100 column. That is, each fraction is separately applied to the column and eluted with 20mM potassium phosphate buffer.

【0019】[0019]

【実施例】次に実施例を挙げて本発明をさらに詳しく説
明する。 実施例1.試験管に1%のグルコース−肉エキス培地(
GB培地)10mlを入れ、滅菌後、バチルス・リヘニ
フォルミスA35を1エーゼ接種し、30℃で22時間
振とう培養した。この培養液を種菌とし、下記グルコー
ス−酵母抽出液培地(GB培地) 酵母抽出液        1% グルコース        1% pH                7.0200m
l を入れた1リットルフラスコに6ml接種し、30
℃で3日間振とう培養し、その後、+5℃に冷却し、1
0,000rpm で10分間遠心して菌体を除去した
。菌体を除去した培地に終濃度45容量%になるように
−30℃のアセトンを添加し、+5℃で2時間静置後1
0,000rpm で15分間遠心分離してタンパク質
を採取し、20mM燐酸カリウム緩衝液(pH7.0)
400mlに懸濁した。前述のp−ニトロソアニリンの
生成量より求めたγ−GTP全イソ酵素混合物の生成量
は培地1ml当り2.03単位(U)であった。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. Example 1. 1% glucose-meat extract medium (
After sterilization, Bacillus liheniformis A35 was inoculated with 1ase and cultured with shaking at 30°C for 22 hours. This culture solution was used as a seed culture, and the following glucose-yeast extract medium (GB medium) was prepared: Yeast extract 1% Glucose 1% pH 7.0200m
Inoculate 6 ml into a 1 liter flask containing 30
℃ for 3 days with shaking, then cooled to +5℃,
The cells were removed by centrifugation at 0,000 rpm for 10 minutes. Add -30°C acetone to the medium from which bacterial cells have been removed to a final concentration of 45% by volume, and leave it at +5°C for 2 hours.
Proteins were collected by centrifugation at 0,000 rpm for 15 minutes and added to 20 mM potassium phosphate buffer (pH 7.0).
It was suspended in 400ml. The production amount of the γ-GTP total isoenzyme mixture determined from the production amount of p-nitrosoaniline described above was 2.03 units (U) per ml of the medium.

【0020】実施例2.直径3.6 cmのクロマト管
にDEAE−Cellulofine A−500を2
0cm充填しクロマト分離カラムを作成した。このカラ
ムを、0.25塩酸400 ml、脱イオン水800 
ml、0.25N酸化ナトリウム水溶液、脱イオン水8
00 mlを順に流してカラムを活性化し、このカラム
に実施例1で得たγ−GTP全イソ酵素混合物の20m
M燐酸カリウム緩衝液(pH7.0)懸濁液40mlを
供した。その後、塩化ナトリウム濃度を0.15−0.
3Mに直線的に変化させた濃度勾配20mM燐酸カリウ
ム緩衝液(pH7.0)1,000 mlを30ml/
hの流速で流しγ−GTPイソ酵素を溶出し、区分Aお
よび区分Bを得た。溶出曲線を図1に示す。
Example 2. Add 2 DEAE-Cellulofine A-500 to a chromatography tube with a diameter of 3.6 cm.
A chromatographic separation column was prepared by packing 0 cm. This column was washed with 400 ml of 0.25 hydrochloric acid and 800 ml of deionized water.
ml, 0.25N sodium oxide aqueous solution, deionized water 8
00 ml of the γ-GTP total isoenzyme mixture obtained in Example 1 was added to the column.
40 ml of M potassium phosphate buffer (pH 7.0) suspension was provided. Then, the sodium chloride concentration was adjusted to 0.15-0.
Add 1,000 ml of 20mM potassium phosphate buffer (pH 7.0) with a linear concentration gradient of 3M to 30ml/
The γ-GTP isoenzyme was eluted by flowing at a flow rate of h to obtain Section A and Section B. The elution curve is shown in Figure 1.

【0021】実施例3.ヒドロキシアパタイトHTPを
20mM燐酸カリウム緩衝液(pH7.0)で膨潤させ
、バッチ法で脱気し、直径1.2cmのクロマト管に4
0cm充填してクロマト分離カラムを作成した。このカ
ラムを20mM燐酸カリウム緩衝液(pH7.0)40
0 mlで平衡化した後、実施例2で得た区分Aを供し
、20mM燐酸カリウム緩衝液(pH7.0)100m
lで洗浄した。その後、このカラムを20mM−0.4
M燐酸カリウム緩衝液(pH7.0)直線濃度勾配液で
溶出し、前記区分A−1およびA−2を得た。溶出曲線
を図2に示す。各区分を前述のp−ニトロソアニリンの
生成量より求めた結果、γ−GTPイソ酵素の量は、そ
れぞれ培地に換算して1ml当り0.26単位(U)、
0.49単位(U)であった。
Example 3. Hydroxyapatite HTP was swollen with 20 mM potassium phosphate buffer (pH 7.0), degassed in a batch method, and placed in a chromatography tube with a diameter of 4 cm.
A chromatographic separation column was prepared by packing 0 cm. This column was mixed with 20mM potassium phosphate buffer (pH 7.0) for 40 minutes.
After equilibration with 0 ml, the section A obtained in Example 2 was added to 100 ml of 20 mM potassium phosphate buffer (pH 7.0).
Washed with l. This column was then mixed with 20mM-0.4
Elution was performed with a linear concentration gradient of M potassium phosphate buffer (pH 7.0) to obtain the sections A-1 and A-2. The elution curve is shown in Figure 2. As a result of calculating each category from the production amount of p-nitrosoaniline mentioned above, the amount of γ-GTP isoenzyme was 0.26 units (U) per ml in terms of culture medium, respectively.
It was 0.49 units (U).

【0022】実施例4.実施例2で得た区分Bに対して
実施例3を繰り返し、区分Bに含まれるイソ酵素〔C〕
を精製した。この量は培地に換算して1ml当り0.2
8単位(U)であった。
Example 4. Example 3 was repeated for Division B obtained in Example 2, and the isoenzyme [C] contained in Division B was
was purified. This amount is 0.2 per ml in terms of culture medium.
It was 8 units (U).

【0023】実施例5〜7.直径2.0cmのクロマト
管にSephadex G−100を30cm充填して
クロマト分離カラムを作成した。このカラムを20mM
燐酸カリウム緩衝液(pH7.0)400 mlで平衡
化した後、実施例3および4で得た区分A−1、区分A
−2および区分Bをそれぞれ供し、20mM燐酸カリウ
ム緩衝液(pH7.0)で溶出し、イソ酵素〔A〕、〔
B〕および〔C〕を精製した。
Examples 5 to 7. A chromatographic separation column was prepared by filling a chromatographic tube with a diameter of 2.0 cm with 30 cm of Sephadex G-100. Add this column to 20mM
After equilibration with 400 ml of potassium phosphate buffer (pH 7.0), Section A-1 and Section A obtained in Examples 3 and 4
-2 and Category B were respectively applied and eluted with 20mM potassium phosphate buffer (pH 7.0), isoenzyme [A], [
B] and [C] were purified.

【0024】実施例8〜10.1mM  D−γ−Gp
NA溶液0.2ml、20mM Gly−Gly溶液0
.3mlおよび 50mM Tris−塩酸緩衝液(p
H8.0)1.3mlからなる混合液に実施例5〜7で
得られたイソ酵素〔A〕、〔B〕および〔C〕精製液0
.2mlをそれぞれ加え、37℃で30分反応させた。 その後、酢酸3.5N水溶液1.0mlを加えて反応を
停止し、反応液の410 nmの吸光度から酵素の転移
活性を求め、この値を100 とした。
Examples 8-10.1mM D-γ-Gp
NA solution 0.2ml, 20mM Gly-Gly solution 0
.. 3 ml and 50 mM Tris-HCl buffer (p
H8.0) 1.3 ml of the purified isoenzymes [A], [B] and [C] obtained in Examples 5 to 7 were added to the mixed solution.
.. 2 ml of each was added and reacted at 37°C for 30 minutes. Thereafter, 1.0 ml of a 3.5N acetic acid aqueous solution was added to stop the reaction, and the transfer activity of the enzyme was determined from the absorbance of the reaction solution at 410 nm, and this value was set as 100.

【0025】実施例11〜13.Gly−Gly の替
わりに表1に記載したアミノ酸を用いた実施例8〜10
を繰り返した。 これらアミノ酸のGly−Gly に対する相対転移活
性を表1に併記した。この表から明かな如く、イソ酵素
〔A〕、〔B〕および〔C〕は相互に類似した相対転移
活性をもっている。
Examples 11-13. Examples 8 to 10 using the amino acids listed in Table 1 instead of Gly-Gly
repeated. The relative transfer activity of these amino acids to Gly-Gly is also listed in Table 1. As is clear from this table, isoenzymes [A], [B] and [C] have similar relative transposition activities.

【0026】実施例14〜16.D−γ−GpNAの替
わりにL−γ−GpNAを用いて実施例8〜10を繰り
返した結果を表1に併記した。
Examples 14-16. Table 1 also shows the results of repeating Examples 8 to 10 using L-γ-GpNA instead of D-γ-GpNA.

【0027】実施例17〜19.実施例11〜13をL
−γ−GpNAを用いて繰り返した結果を表1に併記し
た。L−γ−GpNAを用いてもイソ酵素〔A〕、〔B
〕および〔C〕は相互に類似した相対転移活性をもって
いる。
Examples 17-19. Examples 11 to 13 as L
The results of repeated experiments using -γ-GpNA are also listed in Table 1. Even if L-γ-GpNA is used, isoenzyme [A], [B
] and [C] have similar relative transposition activities.

【0028】[0028]

【表1】[Table 1]

【0029】実施例20〜22.実施例14〜16の反
応を、pH値を変えて実施した結果を図3に示した。イ
ソ酵素〔A〕、〔B〕および〔C〕はいずれもpH8.
8で最大活性を示した。ただし、pH値はpH7〜8の
領域は燐酸緩衝液、pH8〜9の領域はTris−塩酸
緩衝液、そしてpH9〜10の領域は炭酸ナトリウム緩
衝液を用いて調整した。 実施例23〜25.実施例14〜16の反応を温度を変
えて実施した結果を図4に示したが、イソ酵素〔A〕、
〔B〕および〔C〕はいずれも温度55〜60℃の範囲
で最大活性を示す。 実施例26〜29.耐熱性を見るため、それぞれのイソ
酵素を各種温度で24時間保持した後、実施例14〜1
6の反応を実施した。結果を図5に示すがイソ酵素〔A
〕は耐熱性高く、イソ酵素〔B〕は最も低く、イソ酵素
〔C〕は中間である。 実施例30〜32.それぞれのイソ酵素をSephad
ex G−100を用いたゲルろ過法により、分子量標
準として、前述のアルブミン、アルコール脱水素酵素、
β−アミラーゼ、カルボン酸脱水素酵素、チトクローム
Cを用いて測定した結果、イソ酵素〔A〕30,000
、同〔B〕35,000、同〔C〕40,000であっ
た。
Examples 20-22. The reactions of Examples 14 to 16 were carried out at different pH values, and the results are shown in FIG. Isoenzymes [A], [B] and [C] all have a pH of 8.
8 showed maximum activity. However, the pH values were adjusted using a phosphate buffer in the pH 7-8 range, a Tris-hydrochloric acid buffer in the pH 8-9 range, and a sodium carbonate buffer in the pH 9-10 range. Examples 23-25. The results of the reactions of Examples 14 to 16 performed at different temperatures are shown in FIG. 4.
Both [B] and [C] exhibit maximum activity in the temperature range of 55 to 60°C. Examples 26-29. In order to check the heat resistance, each isoenzyme was kept at various temperatures for 24 hours and then tested in Examples 14 to 1.
6 reactions were performed. The results are shown in Figure 5.
] has high heat resistance, isoenzyme [B] has the lowest heat resistance, and isoenzyme [C] has the lowest heat resistance. Examples 30-32. Sephad each isoenzyme
By the gel filtration method using ex G-100, the above-mentioned albumin, alcohol dehydrogenase,
As a result of measurement using β-amylase, carboxylic acid dehydrogenase, and cytochrome C, isoenzyme [A] 30,000
, same [B] 35,000, same [C] 40,000.

【0030】[0030]

【発明の効果】本発明により細菌、特にバチルス属の細
菌がγ−GTPのイソ酵素を生成することが初めて知ら
れた。これら新規なγ−GTPのイソ酵素を含めて混合
生産することにより、γ−GTPの生産性が飛躍的に高
まり、経済的に有利に利用できるようになった。また、
新規なイソ酵素の耐熱特性を利用して、高温での利用あ
るいは低温失活などγ−GTPの利用範囲が広がった。
[Effects of the Invention] According to the present invention, it has been known for the first time that bacteria, particularly bacteria of the genus Bacillus, produce γ-GTP isoenzyme. By producing a mixture including these novel γ-GTP isoenzymes, the productivity of γ-GTP has been dramatically increased, and it has become possible to use it economically. Also,
Utilizing the heat-resistant properties of the new isoenzyme, the range of uses for γ-GTP has expanded, including use at high temperatures and low-temperature inactivation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1はDEAE−Cellulofine A
−500クロマト分離カラムによるγ−GTPの溶出曲
線を示す。
[Figure 1] Figure 1 shows DEAE-Cellulofine A
Figure 2 shows the elution curve of γ-GTP using a -500 chromatographic separation column.

【図2】図2はヒドロキシアパタイトHTPクロマト分
離カラムによる区分Aに含まれるγ−GTPイソ酵素の
溶出曲線を示す。
FIG. 2 shows an elution curve of γ-GTP isoenzyme contained in section A using a hydroxyapatite HTP chromatographic separation column.

【図3】図3はγ−GTPイソ酵素のpH活性曲線を示
す。
FIG. 3 shows the pH activity curve of γ-GTP isoenzyme.

【図4】図4はγ−GTPイソ酵素の温度活性曲線を示
す。
FIG. 4 shows the temperature activity curve of γ-GTP isozyme.

【図5】図5はγ−GTPイソ酵素の耐熱活性曲線を示
す。
FIG. 5 shows a thermostable activity curve of γ-GTP isoenzyme.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  バチルス層の細菌が生成するγ−グル
タミルトランスペプチターゼであり、次の性質、(イ)
基質特異性;D−γ−グルタミル−p−ニトロアニリド
を加水分解し、該化合物中のγ−グルタミル基をD−グ
ルタミン酸を含むアミノ酸またはペプチドに転移する活
性を有する; (ロ)至適pH;γ−グルタミル基転移反応の至適pH
は8.8である; (ハ)作用適温;γ−グルタミル基転移反応の至適温度
は55−60℃である;及び (ニ)ゲルろ過法による分子量が3万である;を有する
γ−グルタミルトランスペプチターゼのイソ酵素〔A〕
Claim 1: A γ-glutamyl transpeptidase produced by Bacillus layer bacteria, which has the following properties: (a)
Substrate specificity; has the activity of hydrolyzing D-γ-glutamyl-p-nitroanilide and transferring the γ-glutamyl group in the compound to an amino acid or peptide containing D-glutamic acid; (b) optimum pH; Optimal pH for γ-glutamyl group transfer reaction
is 8.8; (c) the optimum temperature for action; the optimum temperature for the γ-glutamyl group transfer reaction is 55-60°C; and (d) the molecular weight as determined by gel filtration is 30,000; Glutamyl transpeptidase isoenzyme [A]
.
【請求項2】  バチルス属の細菌が生成するγ−グル
タミルトランスペプチターゼであり、請求項1に記載の
理化学的性質(イ),(ロ)および(ハ)を共有し、ゲ
ルろ過法による分子量が3.5万であるγ−グルタミル
トランスペプチターゼのイソ酵素〔B〕。
Claim 2: A γ-glutamyl transpeptidase produced by bacteria belonging to the genus Bacillus, which shares the physical and chemical properties (a), (b) and (c) described in claim 1, and has a molecular weight determined by gel filtration method. isoenzyme of γ-glutamyl transpeptidase [B] having a value of 35,000.
【請求項3】  バチルス属の細菌がバチルス・リヘニ
フォルミスA35(Bacillus licheni
formis A35) であることを特徴とする請求
項1または2に記載のγ−グルタミルトランスペプチタ
ーゼのイソ酵素〔A〕またはイソ酵素〔B〕。
3. Bacillus licheniformis A35 is a bacterium belonging to the genus Bacillus.
The γ-glutamyl transpeptidase isoenzyme [A] or isoenzyme [B] according to claim 1 or 2, wherein the γ-glutamyl transpeptidase isoenzyme [A] or isoenzyme [B] is S. formis A35).
【請求項4】  請求項1に記載のイソ酵素〔A〕およ
び請求項2に記載のイソ酵素〔B〕の混合物。
4. A mixture of the isoenzyme [A] according to claim 1 and the isoenzyme [B] according to claim 2.
【請求項5】  請求項1に記載のイソ酵素〔A〕もし
くは請求項2に記載のイソ酵素〔B〕または請求項4に
記載のイソ酵素混合物と、同じバチルス属の細菌が生成
するγ−グルタミルトランスペプチターゼの他のイソ酵
素との混合物。
5. γ- produced by the same bacterium of the genus Bacillus as the isoenzyme [A] according to claim 1, the isoenzyme [B] according to claim 2, or the isoenzyme mixture according to claim 4; Mixture of glutamyl transpeptidase with other isoenzymes.
JP3746091A 1991-03-04 1991-03-04 Gamma-glutamyl transpeptidase isoenzymes and isoenzyme mixtures Expired - Lifetime JPH0695936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3746091A JPH0695936B2 (en) 1991-03-04 1991-03-04 Gamma-glutamyl transpeptidase isoenzymes and isoenzyme mixtures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3746091A JPH0695936B2 (en) 1991-03-04 1991-03-04 Gamma-glutamyl transpeptidase isoenzymes and isoenzyme mixtures

Publications (2)

Publication Number Publication Date
JPH04281788A true JPH04281788A (en) 1992-10-07
JPH0695936B2 JPH0695936B2 (en) 1994-11-30

Family

ID=12498142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3746091A Expired - Lifetime JPH0695936B2 (en) 1991-03-04 1991-03-04 Gamma-glutamyl transpeptidase isoenzymes and isoenzyme mixtures

Country Status (1)

Country Link
JP (1) JPH0695936B2 (en)

Also Published As

Publication number Publication date
JPH0695936B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
US3806420A (en) Process for the preparation of creatinine amidohydrolase
US4442214A (en) Thermo-stable micro-organism
EP0229219B1 (en) Urease and process for preparation thereof
JP3691875B2 (en) Thermostable maltose phosphorylase, method for producing the same, fungus used for the production, and method for using the enzyme
JP5022044B2 (en) Method for producing new uricase
JPH04281788A (en) Isoenzyme and its mixture of gamma-glutamyltranspeptidase
JP3078067B2 (en) Thermostable adenosine-5'-3 phosphate sulfurylase and method for producing the same
JP5010291B2 (en) Method for producing new uricase
JPH0328188B2 (en)
JPH05176765A (en) New gamma-gtp and its production
CN111073830B (en) Lactobacillus casei with high yield of gamma-glutamyltranspeptidase and application thereof in production of L-theanine
JPS6248379A (en) Production of cephalosporin c acylase
JPH0998779A (en) Trehalose synthetase, its production and production of trehalose using the enzyme
JPS6248380A (en) Production of cephalosporin c acylase
JPS6098982A (en) Preparation of enzyme for measuring polyamine
JPH04281787A (en) Production of gamma-glutamyltranspeptidase
JPH09247A (en) D-lactate dehydrogenase and its production
Nakamura et al. Purification and some properties of β-phosphoglucomutase from Lactococcus lactis subsp. cremoris IFO 3427
JPS58152482A (en) Heat-resistant proteolytic enzyme aqualysin i and preparation thereof
JPH0616704B2 (en) Bacterial catalase resistant to fluoride ions and Micrococcus sp. KWI-5 strain
JPH03292887A (en) Production of new exo-type hydrolase and production of inulopentaose
JP2008167717A (en) Method for producing novel uricase
JPH08275776A (en) New chitinase and its production
JPH06153936A (en) Aryl sulfotransferase and its production
JPH0195778A (en) Heat-resistant protease and its production