JPH04281787A - Production of gamma-glutamyltranspeptidase - Google Patents

Production of gamma-glutamyltranspeptidase

Info

Publication number
JPH04281787A
JPH04281787A JP3736691A JP3736691A JPH04281787A JP H04281787 A JPH04281787 A JP H04281787A JP 3736691 A JP3736691 A JP 3736691A JP 3736691 A JP3736691 A JP 3736691A JP H04281787 A JPH04281787 A JP H04281787A
Authority
JP
Japan
Prior art keywords
bacillus
gtp
medium
yeast extract
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3736691A
Other languages
Japanese (ja)
Inventor
Yoshihiro Asada
浅田 芳宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP3736691A priority Critical patent/JPH04281787A/en
Publication of JPH04281787A publication Critical patent/JPH04281787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain in high yield the title enzyme for e.g. medicines by aerobically incubating in a yeast extract-contg. medium gamma-- glutamyltranspeptidase-productive bacteria belonging to Bacillus and by collecting the product with the production of viscosityraising substances suppressed. CONSTITUTION:Bacteria belonging to Bacillus capable of producing gamma- glutamyltranspeptidase (gamma-GTP) [e.g. Bacillus subtilis Asahikawa (FERM P-12056)] is put to shaking culture under aerobic conditions at 30 deg.C for 3 days in a medium containing yeast extract, glucose, peptone, etc., followed by centrifugation at low temperatures to remove microbial cells, and acetone at 30 deg.C is added to the supernatant so as to come to 45vol% in the final concentration followed by centrifugation at-5 deg.C and 10000rpm and collection of protein, which is, in turn, subjected to anion exchange column chromatography and hydroxyapatite column chromatography in succession, to effect purification, thus giving the objective gamma-GTP.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はバチルス属の細菌が生成
するγ−グルタミルトランスペプチターゼ(以下、γ−
GTP と言う)の製造方法に関する。γ−GTPはグ
ルタチオンなどγ−グルタミル化合物を加水分解し、そ
の生成物であるγ−グルタミル基をペプチドまたはアミ
ノ酸に転移する反応を触媒する酵素として知られている
。このように、γ−GTPは種々のγ−グルタミルアミ
ノ酸あるいはペプチドの酵素合成が可能であり、アミノ
酸をγ−グルタミル化する事によってアミノ酸の溶解度
を高め、また種々のアミノ酸分解酵素からアミノ酸を保
護することができるため、医薬品としての利用が可能で
あるなど工業上の利用価値がある。
[Industrial Application Field] The present invention relates to γ-glutamyl transpeptidase (hereinafter referred to as γ-glutamyl transpeptidase) produced by bacteria of the genus Bacillus.
GTP). γ-GTP is known as an enzyme that catalyzes a reaction that hydrolyzes γ-glutamyl compounds such as glutathione and transfers the resulting γ-glutamyl group to a peptide or amino acid. In this way, γ-GTP is capable of enzymatic synthesis of various γ-glutamyl amino acids or peptides, increases the solubility of amino acids by γ-glutamylation, and protects amino acids from various amino acid degrading enzymes. Therefore, it has industrial utility value, such as being able to be used as a medicine.

【0002】0002

【従来の技術】γ−GTPは広く動物、植物、および微
生物に存在する。たとえば人体にも存在し、血液中の含
有量が肝機能の指標の一つとしても用いられている。細
菌のγ−GTPは1952年にグラム陰性菌プロテウス
・ブルガリス(Proteus vulgaris)に
存在が確認されて以来、グラム陰性細菌に多くその存在
が報告されており、そのアミノ酸配列および遺伝子配列
の判明しているものもある。
BACKGROUND OF THE INVENTION γ-GTP is widely present in animals, plants, and microorganisms. For example, it exists in the human body, and its content in the blood is used as an indicator of liver function. Since the existence of bacterial γ-GTP was confirmed in the Gram-negative bacterium Proteus vulgaris in 1952, its presence has been reported in many Gram-negative bacteria, and its amino acid and gene sequences have not been determined. Some have.

【0003】たとえば、H.Suzuki等は大腸菌の
遺伝子組み替え菌を用いて親株の数十倍の精製酵素の生
産量を得ているが、その比活性は3U/mgに過ぎず、
生産量においても低い(H.Suzuki等:Bioc
hm.Biophys.Res.Commun.Vol
.150 p33(1988))。このように、従来知
られている動植物細胞および微生物はいずれも生産性が
低く、しかも、主として細胞膜に存在するため分離精製
が困難であり、工業的生産には不適当であった。
For example, H. Suzuki et al. used a genetically modified Escherichia coli strain to produce a purified enzyme that was several dozen times that of the parent strain, but its specific activity was only 3 U/mg.
Production volume is also low (H. Suzuki et al.: Bioc
hm. Biophys. Res. Commun. Vol.
.. 150 p33 (1988)). As described above, conventionally known animal and plant cells and microorganisms all have low productivity and are difficult to separate and purify because they mainly exist in cell membranes, making them unsuitable for industrial production.

【0004】最近に於て、本願発明者はバチルス属の細
菌、特にバチルス・ズブチルス(Bacillus s
ubtilis 、以下に、B.ズブチルスと言う)お
よびバチルス・リヘニフォルミス(Bacillus 
licheniformis、以下に、B.リヘニフォ
ルミスと言う)がγ−GTPを高濃度で生産することを
発見し、既に公表した(C.Cheng,Y.Asad
aand T.Aida,Agric.Biol.Ch
em.,Vol53,2369,1989)。
[0004]Recently, the present inventor has studied bacteria of the genus Bacillus, particularly Bacillus subtilis.
B. ubtilis, hereinafter referred to as B. ubtilis. Bacillus subtilis) and Bacillus licheniformis
licheniformis, hereinafter referred to as B. licheniformis. licheniformis) produces γ-GTP at high concentrations, and has already announced it (C. Cheng, Y. Asad
aand T. Aida, Agric. Biol. Ch
em. , Vol53, 2369, 1989).

【0005】これらの細菌は従来の動植物細胞及び微生
物に較べ格段に生産性が高いとはいえ未だ不十分であり
、しかもこれらバチルス属の細菌は納豆の粘質物の主体
成分であるγ−d,1、ポリグルタミン酸(以下γ−P
GAと言う)を併産し、培養の経過に伴い、培地の粘性
が強くなり、しかもγ−PGA自体がγ−GTPの分離
を困難にするため、γ−GTPの分離精製が困難であっ
た。
Although the productivity of these bacteria is much higher than that of conventional animal and plant cells and microorganisms, it is still insufficient, and moreover, these bacteria of the genus Bacillus produce γ-d, which is the main component of the mucilage of natto. 1. Polyglutamic acid (hereinafter referred to as γ-P)
It was difficult to separate and purify γ-GTP because the viscosity of the medium became stronger as the culture progressed, and γ-PGA itself made it difficult to separate γ-GTP. .

【0006】[0006]

【発明が解決しようとする課題】このような現状におい
て本願発明者はバチルス属の細菌、特にB.リヘニフォ
ルミスまたはB.ズブチルスを用い、γ−GTAをさら
に高濃度で生産し、しかもγ−PGAを併産しない方法
について鋭意研究を重ねた。その結果、特定な培養条件
下においてこれらの細菌がγ−GTAを特に大量に生成
し、しかもγ−PGAを併産しないことを見いだし、培
養条件および分離精製方法を確定して本発明のγ−GT
Pの製造方法を完成した。
Problems to be Solved by the Invention Under these circumstances, the inventors of the present application have focused on the development of bacteria belonging to the genus Bacillus, particularly B. licheniformis or B. We have conducted intensive research on a method of producing γ-GTA at higher concentrations using S. subtilis without co-producing γ-PGA. As a result, they found that under specific culture conditions, these bacteria produce particularly large amounts of γ-GTA, and do not co-produce γ-PGA.The culture conditions and separation and purification method were determined, and the γ-GTA of the present invention was determined. GT
A method for manufacturing P was completed.

【0007】本発明の製造方法によれば、γ−GTPの
生成濃度が高い、γ−PGAを併産しないなどの特徴に
加え、γ−GTPを菌体外に生成するため分離回収が極
めて容易である。しかも、培地にグルタミン酸添加が不
要であるなど多くの特徴を併せ持っている。
[0007] According to the production method of the present invention, in addition to features such as high production concentration of γ-GTP and no co-production of γ-PGA, γ-GTP is produced outside the bacterial body, so separation and recovery is extremely easy. It is. Moreover, it has many features such as no need to add glutamic acid to the culture medium.

【0008】[0008]

【課題を解決する手段】上述の状況において本発明が開
示するγ−GTPの製造方法は、バチルス属の細菌を酵
母エキスを含む培地中で好気的条件下で培養し、その培
養培地からγ−GTPを採取することを特徴とするγ−
GTPの製造方法である。バチルス属の細菌はB.ズブ
チルスあるいはB.リヘニフォルミスの何れかより選ば
れる場合が特に生成濃度が高く好ましい。B.ズブチル
スはたとえばB.ズブチルスIFO3022株、B.ズ
ブチルスIFO 3335株、またはB.ズブチルスA
sahikawa(微工研菌寄第 12056号)、B
.sub.Sawaなどが、またB.リヘニフォルミス
はたとえばB.リヘニフォルミスATCC9945、B
.リヘニフォルミスATCC9945A 、B.リヘニ
フォルミスA35(微工研菌寄第 12055号)など
が使える。
[Means for Solving the Problems] In the above-mentioned situation, the method for producing γ-GTP disclosed by the present invention involves culturing Bacillus bacteria under aerobic conditions in a medium containing yeast extract, and extracting γ-GTP from the culture medium. -γ- characterized by collecting GTP
This is a method for producing GTP. Bacteria of the genus Bacillus are B. subtilis or B. Particularly preferred is one selected from any of the P. licheniformis species because of its high production concentration. B. subtilis, for example, B. subtilis. subtilis IFO3022 strain, B. subtilis IFO strain 3335, or B. subtilis IFO strain 3335, or B. subtilis IFO strain 3335. subtilus A
sahikawa (Microtechnology Research Institute No. 12056), B
.. sub. Sawa et al., and B. Licheniformis, for example, B. Licheniformis ATCC9945, B
.. licheniformis ATCC9945A, B. Licheniformis A35 (Feikoken Bacteria No. 12055) can be used.

【0009】本発明に用いる酵母エキスを含む培地には
、たとえば市販のグルコース1%及び酵母エキス1%を
含みpH値が7.0であるグルコース−酵母エキス培地
(GY培地と言う)が使える。酵母エキスおよび炭水化
物以外に他の栄養源を含まない培地であることが好まし
い。エネルギー源としての炭水化物は必ずしもグルコー
スである必要はない。たとえば、蔗糖、果糖、マニトー
ル、マルトースなどを含めた糖類を単独あるいは混合し
て用いることができるし、あるいは糖蜜、廃糖蜜なども
使うことも出来る。
[0009] As the medium containing the yeast extract used in the present invention, for example, a commercially available glucose-yeast extract medium (referred to as GY medium) containing 1% glucose and 1% yeast extract and having a pH value of 7.0 can be used. Preferably, the medium does not contain any other nutritional sources other than yeast extract and carbohydrates. Carbohydrates as an energy source do not necessarily have to be glucose. For example, sugars including sucrose, fructose, mannitol, maltose, etc. can be used alone or in combination, or molasses, blackstrap molasses, etc. can also be used.

【0010】酵母エキスは自己分解酵母細胞の水溶性エ
キスを乾燥して粉末にしたものであり、市販されている
酵母エキス、たとえば極東製薬製酵母エキスなどが使え
る。酵母エキスの量は培地に対して1.0〜2.0%の
場合が最もγ−GTPの生産濃度が高く適当である。1
%未満あるいは2.0%を越えると生産濃度は次第に低
下する。酵母エキスは従来からよく知られた培地成分で
ある。
[0010] Yeast extract is a water-soluble extract of autolyzed yeast cells that is dried and powdered, and commercially available yeast extracts such as Kyokuto Seiyaku Yeast Extract can be used. When the amount of yeast extract is 1.0 to 2.0% based on the medium, it is appropriate to achieve the highest production concentration of γ-GTP. 1
% or more than 2.0%, the production concentration gradually decreases. Yeast extract is a well-known culture medium component.

【0011】しかし、従来の使用方法は、化学合成培地
に対しては、ビタミンや核酸系物質の補給あるいは生育
促進目的で0.05〜0.1%添加するのが普通であり
、天然培地で酵母エキスを窒素源として用いる場合でも
0.5%以下が普通の配合量である。1%以上配合する
ことは通常行われない。酵母エキスの替わりに他の栄養
源を用いた培地ではいずれもγ−GTPの生産量が少な
い、あるいはγ−PGAを併産するため分離精製が容易
でない。
However, the conventional usage method is to add 0.05 to 0.1% to chemically synthesized media for the purpose of replenishing vitamins and nucleic acid substances or promoting growth; Even when yeast extract is used as a nitrogen source, the usual amount is 0.5% or less. Blending more than 1% is usually not done. In any medium using other nutrient sources instead of yeast extract, the amount of γ-GTP produced is small, or γ-PGA is co-produced, making separation and purification not easy.

【0012】これらの培地は寒天、アガロースなどで固
めた固体培地として使用してもよく、あるいは液体培地
として使用してもよい。培養は好気的条件下で行う必要
がある。しかし、大量の空気を導入する必要はなく、液
体培地では、振騰培養など通常の好気的培養条件下の培
養法で十分である。このような方法で、通常の温度、た
とえば30℃前後で数日間培養することでγ−GTPが
高濃度で培地中に蓄積される。
[0012] These media may be used as solid media solidified with agar, agarose, etc., or may be used as liquid media. Cultivation must be carried out under aerobic conditions. However, it is not necessary to introduce a large amount of air, and in a liquid medium, a culture method under normal aerobic culture conditions such as shaking culture is sufficient. By culturing in this manner at a normal temperature, for example around 30° C., for several days, γ-GTP is accumulated in the medium at a high concentration.

【0013】本発明のγ−GTPの製造方法には二つの
大きな特徴がある。その一つは上述のようにγ−GTP
の生成量が多いことである。通常のグルコース−ブイヨ
ン培地(GB培地と言う)、カザミノ酸培地(CA培地
と言う)、ブイヨン培地(B培地と言う)あるいはTr
ypticase Soy broth培地(TSB培
地と言う)などを用いた場合と較べ数倍から十数倍の生
産量が得られる。
The method for producing γ-GTP of the present invention has two major features. One of them is γ-GTP as mentioned above.
is produced in large quantities. Ordinary glucose-bouillon medium (referred to as GB medium), casamino acid medium (referred to as CA medium), bouillon medium (referred to as B medium) or Tr.
Compared to the case of using ypticase soy broth medium (referred to as TSB medium), the production amount can be several times to ten times higher.

【0014】本発明のもう一つの特徴は生成したγ−G
TPの分離精製工程が極めて簡単に行えることである。 この理由は、本発明で用いる培地において、バチルス属
の細菌がγ−GTPを菌体外に生成することとともにγ
−PGAを併産せず、このため培養液はほとんど粘性が
なく、さらにプロテアーゼや他の酵素蛋白の生成も抑制
され、培養後の培養液組成が単純であることによる。た
とえば、プロテウス菌(Proteus mirabi
lis)を用いたR.Nakayama等の方法では1
1工程を要した精製工程が、本発明の製造方法によれば
わずか3工程で行うことができる。
Another feature of the present invention is that the generated γ-G
The TP separation and purification process can be performed extremely easily. The reason for this is that in the medium used in the present invention, Bacillus bacteria produce γ-GTP extracellularly as well as γ-GTP.
- Since PGA is not co-produced, the culture solution has almost no viscosity, the production of protease and other enzyme proteins is also suppressed, and the composition of the culture solution after culturing is simple. For example, Proteus mirabi
lis) using R. 1 in the method of Nakayama et al.
According to the production method of the present invention, a purification step that required one step can be performed in only three steps.

【0015】たとえば、GY培地でバチルス属の細菌を
培養した後、低温で遠心分離して菌体を除去し、上清液
に−30℃のアセトンを終濃度45容量%になるように
加え、−5℃、10,000rpm で遠心分離してタ
ンパク質を採取できる。これらのタンパク質は20mM
燐酸カリウム緩衝液(pH7)に懸濁させる。これから
γ−GTPを分離するには、要求される精製度に応じ、
次の1工程、2工程あるいは3工程で行う。
For example, after culturing Bacillus bacteria in GY medium, the bacterial cells are removed by centrifugation at a low temperature, and acetone at -30°C is added to the supernatant to a final concentration of 45% by volume. Proteins can be collected by centrifugation at -5°C and 10,000 rpm. These proteins are 20mM
Suspend in potassium phosphate buffer (pH 7). To separate γ-GTP from this, depending on the required degree of purification,
This is carried out in the following 1, 2 or 3 steps.

【0016】まず、DEAE−Cellulofine
 A−500を充填した陰イオンカラムクロマトグラフ
ィーに上記アセトン沈澱懸濁液を供し、塩化ナトリウム
濃度勾配20mM燐酸カリウム緩衝液(pH7)で溶出
する。塩化ナトリウム濃度を0.15M−0.3Mに直
線的に変えて溶出していくと、たとえば培養細菌がB.
lich.A35である場合、塩化ナトリウム濃度0.
20−0.23Mの範囲(区分Aと言う)及び0.24
−0.25Mの範囲(区分Bと言う)にγ−GTPが溶
出する。区分Aと区分Bはそれぞれ分子量を異にするγ
−GTPのイソ酵素であり、精製を必要としないときは
、これら両区分を別々にあるいは混合して使用して差し
支えない。
First, DEAE-Cellulofine
The above acetone precipitated suspension is subjected to anion column chromatography packed with A-500 and eluted with a 20 mM potassium phosphate buffer (pH 7) with a sodium chloride concentration gradient. For example, when the concentration of sodium chloride is changed linearly from 0.15M to 0.3M and eluted, the cultured bacteria become B.
lich. In the case of A35, the sodium chloride concentration is 0.
20-0.23M range (referred to as category A) and 0.24
γ-GTP elutes in the range of -0.25M (referred to as section B). Class A and Class B have different molecular weights of γ.
- GTP isoenzyme, and when purification is not required, these two categories may be used separately or in combination.

【0017】精製を必要とする場合は、それぞれの区分
を次のヒドロキシアパタイトHTPを充填したカラムク
ロマトグラフィーで再分画する。すなわち、前工程で得
られたγ−GTP区分をクロマトカラムに供し、濃度勾
配燐酸カリウム緩衝液で溶出する。濃度を20mMから
0.4Mに直線的に変えて溶出を行うと、たとえば前記
B.lich.A35培養液の区分Aを溶出した場合、
γ−GTPは50− 100mMの範囲(区分A−1と
言う)と 110− 150mMの範囲(区分A−2と
言う)に分かれて溶出する。区分A−1および区分A−
2はそれぞれ分子量を異にするγ−GTPのイソ酵素で
ある。
If purification is required, each fraction is refractionated using the following column chromatography packed with hydroxyapatite HTP. That is, the γ-GTP fraction obtained in the previous step is applied to a chromatography column and eluted with a concentration gradient potassium phosphate buffer. When elution is carried out by linearly changing the concentration from 20mM to 0.4M, for example, the B. lich. When eluting section A of A35 culture solution,
γ-GTP is eluted in a range of 50-100mM (referred to as division A-1) and a range of 110-150mM (referred to as division A-2). Category A-1 and Category A-
2 are γ-GTP isoenzymes with different molecular weights.

【0018】すなわち、B.リヘニフォルミスA35は
3種のイソ酵素を生成する。前述の区分Bも同様にして
精製できる(区分B′と言う)。これら区分A−1、区
分A−2および区分B′はそれぞれ単独あるいは混合し
て使用できる。
That is, B. licheniformis A35 produces three isoenzymes. The aforementioned section B can be similarly purified (referred to as section B'). These divisions A-1, A-2 and B' can be used alone or in combination.

【0019】以上の工程で実用上十分な精製が行われる
が、さらに高度に精製する場合は、それぞれの区分を、
Sephdex G−100 を充填したゲルクロマト
グラフィーで精製できる。この方法で、最低でも30U
/mg相当の精製γ−GTPを得ることができる。
[0019] Practically sufficient purification is achieved through the above steps, but when purifying to a higher degree, each section is
It can be purified by gel chromatography packed with Sephdex G-100. With this method, at least 30U
/mg of purified γ-GTP can be obtained.

【0020】[0020]

【実施例】次に実施例を挙げて本願発明をさらに詳しく
説明するが、実施例に先立ち、γ−GTP生産量の測定
方法について説明する。γ−GTP生産量の測定方法;
菌体を分離した後の培養液がもつγ−グルタミル基をア
ミノ酸に転移する能力から生産量を評価した。具体的に
は、γ−グルタミル基供与体として、L−γ−グルタミ
ル−p−ニトロアニリド(以下にL−γ−GpNAと言
う)1mM溶液0.2ml、アミノ酸としてグリシルグ
リシン(以下にGly−Gly と言う)20mM溶液
0.3mlおよびTris−塩酸緩衝液50mM(pH
8.0)1.3mlの混合液にγ−GTP濃度を測定す
べき培養液0.2mlを加え、37℃で30分保持して
γ−グルタミル基を転移させる。
EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. Prior to the Examples, a method for measuring the production amount of γ-GTP will be explained. Method for measuring γ-GTP production;
The production amount was evaluated based on the ability of the culture solution after separating the bacterial cells to transfer the γ-glutamyl group to an amino acid. Specifically, 0.2 ml of a 1 mM solution of L-γ-glutamyl-p-nitroanilide (hereinafter referred to as L-γ-GpNA) was used as a γ-glutamyl group donor, and glycylglycine (hereinafter referred to as Gly-GpNA) was used as an amino acid. Gly) 20mM solution and 0.3ml of Tris-HCl buffer 50mM (pH
8.0) Add 0.2 ml of the culture solution whose γ-GTP concentration is to be measured to 1.3 ml of the mixed solution, and hold at 37° C. for 30 minutes to transfer the γ-glutamyl group.

【0021】その後、酢酸3.5N水溶液1.0mlを
加えて反応を停止し、反応液の 410nmの吸光度を
測定して転移反応で遊離したp−ニトロソアニリン(ε
=8800)の量を求める。p−ニトロソアニリンの生
成量から、γ−GTP濃度を培養液1ml当りの活性単
位として次の式から計算する。 U/ml=吸光度(410nm)* 0.003* 1
06/8800*0.2*20
Thereafter, 1.0 ml of 3.5N acetic acid aqueous solution was added to stop the reaction, and the absorbance of the reaction solution at 410 nm was measured to determine whether p-nitrosoaniline (ε
=8800). From the amount of p-nitrosoaniline produced, the γ-GTP concentration is calculated as activity units per ml of culture solution using the following formula. U/ml=absorbance (410nm)*0.003*1
06/8800*0.2*20

【0022】実施例1〜6.前培養として、6本の試験
管にそれぞれ下記組成のGB培地5mlを入れ、滅菌後
それぞれ表1記載の菌株を1エーゼ接種し、30℃で2
2時間振とう培養した。 グルコース            1%ペプトン  
            1%ブイヨン       
       1%塩化ナトリウム        0
.5%pH                    
7.0
Examples 1 to 6. As a preculture, 5 ml of GB medium with the following composition was placed in each of six test tubes, and after sterilization, each strain was inoculated with 1ase of the strains listed in Table 1, and incubated at 30°C for 2 hours.
The culture was incubated with shaking for 2 hours. glucose 1% peptone
1% bouillon
1% sodium chloride 0
.. 5% pH
7.0

【0023】次に、グルコース1%及び酵母エキ
ス1%を含むpH値が7.0からなる滅菌したGY培地
10mlを入れた試験管を6本用意し、それぞれに前培
養した培養液を0.2ml接種し、30℃で3日間振と
うし本培養を行った。 その結果、本培養培地に蓄積されたγ−GTP濃度はそ
れぞれ表1に示す通りであり、いずれもγ−PGAの生
成は見られなかった。
Next, six test tubes containing 10 ml of sterilized GY medium containing 1% glucose and 1% yeast extract and having a pH value of 7.0 were prepared, and each test tube was filled with 0.0 ml of the precultured culture solution. 2 ml was inoculated and the main culture was performed at 30°C for 3 days with shaking. As a result, the concentrations of γ-GTP accumulated in the main culture medium were as shown in Table 1, and no production of γ-PGA was observed in either case.

【0024】比較例1〜6.本培養液に前培養と同じG
B培地を用いた以外は実施例1〜6を繰り返した。その
結果を表1に示す。
Comparative Examples 1 to 6. Add the same G as the pre-culture to the main culture solution.
Examples 1-6 were repeated except that B medium was used. The results are shown in Table 1.

【0025】比較例7〜12.本培養液に、酵母エキス
の替わりにカザミノ酸を含む下記CA培地を用いた以外
は実施例1〜6を繰り返した。その結果を表1に示す。 カザミノ酸            1%グルコース 
           1%pH          
          7.0
Comparative Examples 7 to 12. Examples 1 to 6 were repeated except that the following CA medium containing casamino acids was used in the main culture solution instead of yeast extract. The results are shown in Table 1. Casamino acids 1% glucose
1% pH
7.0

【0026】比較例13〜
18.本培養液に、酵母エキスの替わりにブイヨンを含
む下記B培地を用いた以外は実施例1〜6を繰り返した
。その結果を表1に示す。 ブイヨン              1%グルコース
            1%pH         
           7.0
Comparative Example 13~
18. Examples 1 to 6 were repeated except that the following medium B containing bouillon was used instead of yeast extract as the main culture solution. The results are shown in Table 1. Bouillon 1% glucose 1% pH
7.0

【0027】比較例19
〜24.本培養液に、酵母エキスの替わりにペプトンを
含む下記ペプトン培地(P培地と言う)を用いた以外は
実施例1〜6を繰り返した。その結果を表1に示す。 ペプトン              1%グルコース
            1%pH         
           7.0
Comparative Example 19
~24. Examples 1 to 6 were repeated except that the following peptone medium (referred to as P medium) containing peptone was used in the main culture solution instead of yeast extract. The results are shown in Table 1. Peptone 1% glucose 1% pH
7.0

【0028】比較例25
〜30.本培養液に下記組成のTSB培地を用いた以外
は実施例1〜6を繰り返した。その結果を表1に示す。 Trypticase Soy broth  1%グ
ルコース            1%KNO3   
               0.5%pH    
                7.4
Comparative Example 25
~30. Examples 1 to 6 were repeated except that TSB medium having the following composition was used as the main culture solution. The results are shown in Table 1. Trypticase Soy broth 1% glucose 1% KNO3
0.5% pH
7.4

【0029】
比較例31〜36.本培養液に下記組成のM培地を単独
に用いた以外は実施例1〜6を繰り返した。その結果を
表1に示す。しかし、この培地では、γ−GTPの生産
濃度は比較的高いが、いずれもγ−GTP以外に多量の
γ−PGAが生成した。 グルコース            3%NH4Cl 
                1%K2HPO4 
               0.15%MgSO4
 ・7H2O          0.035 %Mn
SO4 ・2−6H2O        0.005 
%CaCO3                 3%
pH                    7.2
[0029]
Comparative Examples 31-36. Examples 1 to 6 were repeated except that M medium having the following composition was used alone as the main culture solution. The results are shown in Table 1. However, in this medium, although the production concentration of γ-GTP was relatively high, a large amount of γ-PGA was produced in addition to γ-GTP. Glucose 3%NH4Cl
1%K2HPO4
0.15%MgSO4
・7H2O 0.035%Mn
SO4 ・2-6H2O 0.005
%CaCO3 3%
pH 7.2

【0030】比較例37〜42.本培養液に前述のM培
地にL−グルタミン酸1%を加えたGM培地を用いた以
外は実施例1〜6を繰り返した。その結果を表1に示す
。しかし、この培地では、γ−GTPの生産濃度は高い
が、いずれも多量のγ−GTP以外にγ−PGAが生成
した。
Comparative Examples 37-42. Examples 1 to 6 were repeated except that the main culture solution was the GM medium prepared by adding 1% L-glutamic acid to the M medium described above. The results are shown in Table 1. However, in this medium, although the production concentration of γ-GTP was high, a large amount of γ-PGA was produced in addition to γ-GTP.

【0031】実施例7.培養細菌にB.リヘニフォルミ
スA35株を用いて実施例1〜6の操作を繰り返した。 この際、GY培地の酵母エキス濃度を1%〜4%の範囲
で変化させた場合のγ−GTPの生産濃度は変化を図1
に示した。
Example 7. B. to cultured bacteria. The operations of Examples 1 to 6 were repeated using A35 strain of Licheniformis. At this time, the production concentration of γ-GTP when changing the concentration of yeast extract in GY medium in the range of 1% to 4% is shown in Figure 1.
It was shown to.

【0032】実施例8.培養細菌にB.リヘニフォルミ
スA35株を用いて実施例1〜6の操作を繰り返した。 この際、GY培地のグルコースの替わりに蔗糖、果糖、
マルトース、又はマニトールをそれぞれ用いた。これら
の培地におけるγ−GTPの生産濃度を図2に示した。
Example 8. B. to cultured bacteria. The operations of Examples 1 to 6 were repeated using A35 strain of Licheniformis. At this time, instead of glucose in GY medium, sucrose, fructose,
Maltose or mannitol was used, respectively. The production concentrations of γ-GTP in these media are shown in FIG. 2.

【0033】[0033]

【表1】[Table 1]

【0034】[0034]

【効果】本願発明の製造方法により、γ−GTPを高濃
度で生産できるようになった。また、本願発明の製造方
法によれば、生成したγ−GTPの分離精製が極めて容
易に行える。これらの結果、得られる経済的効果は計り
知れない。
[Effect] By the production method of the present invention, it has become possible to produce γ-GTP at a high concentration. Furthermore, according to the production method of the present invention, the generated γ-GTP can be separated and purified extremely easily. As a result, the economic benefits obtained are immeasurable.

【0035】バチルス・ズブチルス  Asahika
wa は工業技術院微生物工業技術研究所に微工研菌寄
第 12066号(FERM P−12066)として
寄託されており、バチルス・リヘニフォルミスA35は
同様に微工研菌寄第 12055号(FERM P−1
2055)として寄託されている。
Bacillus subtilis Asahika
Bacillus licheniformis A35 has been deposited with the National Institute of Microbiological Technology, Agency of Industrial Science and Technology as FEM Microbial Deposit No. 12066 (FERM P-12066), and Bacillus licheniformis A35 has been deposited with FEM Bacterial Deposit No. 12055 (FERM P-1). 1
2055).

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は培地の酵母エキス濃度とγ−GTP生成
濃度の関係を示す。
FIG. 1 shows the relationship between the concentration of yeast extract in the medium and the concentration of γ-GTP production.

【図2】図2は培地の炭水化物の種類とγ−GTP生成
濃度の関係を示す。
FIG. 2 shows the relationship between the type of carbohydrate in the medium and the concentration of γ-GTP produced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  γ−グルタミルトランスペプチターゼ
を生産することができるバチルス属の細菌を酵母エキス
を含む培地中で好気的条件下で培養し、その培養培地か
らγ−グルタミルトランスペプチターゼを採取すること
を特徴とするγ−グルタミルトランスペプチターゼの製
造方法。
Claim 1: Bacillus bacteria capable of producing γ-glutamyl transpeptidase are cultured under aerobic conditions in a medium containing yeast extract, and γ-glutamyl transpeptidase is collected from the culture medium. A method for producing γ-glutamyl transpeptidase.
【請求項2】  前記バチルス属の細菌がバチルス・ズ
ブチルス(Bacillus subtilis)また
はバチルス・リヘニフォルミス(Bacillus l
icheniformis)の細菌であることを特徴と
する請求項1に記載のγ−グルタミルトランスペプチタ
ーゼの製造方法。
2. The bacterium belonging to the genus Bacillus is Bacillus subtilis or Bacillus licheniformis.
2. The method for producing γ-glutamyl transpeptidase according to claim 1, wherein the γ-glutamyl transpeptidase is a bacterium of the same type.
【請求項3】  前記培地が酵母エキスおよび炭水化物
以外に他の栄養源が添加されていない培地であることを
特徴とする請求項1に記載のγ−グルタミルトランスペ
プチターゼの製造方法。
3. The method for producing γ-glutamyl transpeptidase according to claim 1, wherein the medium is a medium to which no other nutrient source is added other than yeast extract and carbohydrates.
【請求項4】  酵母エキスの配合量が1%以上である
ことを特徴とする請求項3に記載のγ−グルタミルトラ
ンスペプチターゼの製造方法。
4. The method for producing γ-glutamyl transpeptidase according to claim 3, wherein the amount of yeast extract is 1% or more.
【請求項5】  バチルス属の細菌がバチルス・ズブチ
ルスIFO 3022株、バチルス・ズブチルスIFO
 3335株、バチルス・ズブチルス アサヒカワ(微
工研菌寄第 12056号)、バチルス・リヘニフォル
ミス  ATCC9945、バチルス・リヘニフォルミ
ス  ATCC9945A およびバチルス・リヘニフ
ォルミスA35(微工研菌寄第 12055号)からな
る群から選ばれることを特徴とする請求項1に記載のγ
−グルタミルトランスペプチターゼの製造方法。
Claim 5: Bacillus subtilis IFO strain 3022, Bacillus subtilis IFO
3335 strain, Bacillus subtilis Asahikawa (February International Laboratories No. 12056), Bacillus liheniformis ATCC9945, Bacillus liheniformis ATCC9945A, and Bacillus liheniformis A35 (February International Laboratories No. 12055). γ according to claim 1 characterized in
- A method for producing glutamyl transpeptidase.
JP3736691A 1991-03-04 1991-03-04 Production of gamma-glutamyltranspeptidase Pending JPH04281787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3736691A JPH04281787A (en) 1991-03-04 1991-03-04 Production of gamma-glutamyltranspeptidase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3736691A JPH04281787A (en) 1991-03-04 1991-03-04 Production of gamma-glutamyltranspeptidase

Publications (1)

Publication Number Publication Date
JPH04281787A true JPH04281787A (en) 1992-10-07

Family

ID=12495532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3736691A Pending JPH04281787A (en) 1991-03-04 1991-03-04 Production of gamma-glutamyltranspeptidase

Country Status (1)

Country Link
JP (1) JPH04281787A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199576A (en) * 1987-12-21 1989-08-10 Hoechst Ag Alpha-aminoadipinylmonoamino compound

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01199576A (en) * 1987-12-21 1989-08-10 Hoechst Ag Alpha-aminoadipinylmonoamino compound

Similar Documents

Publication Publication Date Title
CA1340504C (en) Y-glutamyltranspeptidase, its preparation and its use
US5702939A (en) Glucosamine-6-phosphate deaminase and process for producing the same
US5827715A (en) Heat resistant maltose phosphorylase, process for preparation thereof, bacteria used for preparation thereof, and methods for using the enzyme
JPH04281787A (en) Production of gamma-glutamyltranspeptidase
JPH0657149B2 (en) Urease and method for producing the same
JPH022589B2 (en)
JP3029915B2 (en) Thermostable adenosine-5'-phosphosulfate kinase and method for producing the same
JPH04281788A (en) Isoenzyme and its mixture of gamma-glutamyltranspeptidase
JPH04126075A (en) Myo-inositol dehydrogenase and production thereof
JPS59159777A (en) Preparation of pyruvic oxidase
JP3873512B2 (en) Method for producing D-3- (2-naphthyl) alanine
JPH05176765A (en) New gamma-gtp and its production
JPH072116B2 (en) Method for producing difructose and dianhydride III
JP3781806B2 (en) Novel pyruvate oxidase, its production method and pyruvate analysis method
JPS6057833B2 (en) Method for producing L-tryptophan
SU1645293A1 (en) Strain bacteria streptococcus faecalis - is a producer of restrictase sfa n
JP2548553B2 (en) Method for producing glutaminase
JP3603396B2 (en) ε-Poly-L-lysine degrading enzyme and process for producing ε-poly-L-lysine using the same
JPH062071B2 (en) Saccharide manufacturing method
JPS5934884A (en) Leucine dehydrogenase and its preparation
JP2885434B2 (en) Protease and method for producing the same
JPH08275776A (en) New chitinase and its production
JPS6248379A (en) Production of cephalosporin c acylase
JPH02227074A (en) Production of new exo-type hydrolase and inulotriose and/or inulotetraose
JPH0773495B2 (en) Heat and salt resistant glutaminase