JPH04280616A - Chip type laminated ceramic capacitor and manufacture thereof - Google Patents

Chip type laminated ceramic capacitor and manufacture thereof

Info

Publication number
JPH04280616A
JPH04280616A JP6901691A JP6901691A JPH04280616A JP H04280616 A JPH04280616 A JP H04280616A JP 6901691 A JP6901691 A JP 6901691A JP 6901691 A JP6901691 A JP 6901691A JP H04280616 A JPH04280616 A JP H04280616A
Authority
JP
Japan
Prior art keywords
terminal electrode
ceramic capacitor
chip
plating
bare chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6901691A
Other languages
Japanese (ja)
Inventor
Koichiro Yoshimoto
幸一郎 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP6901691A priority Critical patent/JPH04280616A/en
Publication of JPH04280616A publication Critical patent/JPH04280616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a chip type laminated ceramic capacitor, having high reliability and mechanical strength, on which a plated layer can be formed continuously on the surface of a terminal electrode in a tightly fixed manner without strictly controlling the upper limit of compounding quantity of inorganic bonding material. CONSTITUTION:The title ceramic capacitor is provided with a bare chip 11 formed by polymerizing a plurality of ceramic dielectric layers having internal electrodes 13, terminal electrodes 12 which are electrically connected to inner electrodes 13 by baking paste, containing metal powder and inorganic bonding material, on both end parts of the bare chip 11, and metal-plated layers 14 and 15 formed on the surface of the terminal electrodes 12. The characteristics of the above-mentioned constitution is that the surface of the terminal electrodes 12 of a laminated ceramic capacitor 10 is polished and that metal-plated layers 14 and 15 are formed on the polished surface of the terminal electrodes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は端子電極が金属粉末と無
機結合材を含むペーストを焼付けた電極層からなり、こ
の焼付け電極層の表面にめっき層を有するチップ型積層
セラミックコンデンサ及びその製造方法に関するもので
ある。
[Industrial Application Field] The present invention relates to a chip-type multilayer ceramic capacitor whose terminal electrode is composed of an electrode layer baked with a paste containing metal powder and an inorganic binder, and a plating layer on the surface of the baked electrode layer, and a method for manufacturing the same. It is related to.

【0002】0002

【従来の技術】チップ型積層セラミックコンデンサは、
内部電極を有するセラミック誘電体層を複数個重合して
形成されたベアチップと、この内部電極と電気的に接続
された端子電極とを備え、この端子電極の表面にNiめ
っき、Sn又はSn/Pbめっきの2層のめっき電極層
が形成されている。この端子電極はAg,Pd,Pt等
の金属粉末と無機結合材と有機ビヒクルとを混練してつ
くられたペーストをベアチップの両端部に塗布した後、
600〜800℃程度の温度で焼成してめっき下地の端
子電極を形成し、この下地電極の表面に無電解又は電解
めっき法によりNiめっきとSn又はSn/Pbめっき
の2層をこの順に形成している。このチップ型積層セラ
ミックコンデンサは端子電極を基板にはんだ付けして使
用される。上記端子電極はコンデンサの内部電極と基板
上の電気回路とを接続するためのものであるため、その
良否がコンデンサの電気的特性、信頼性、機械的特性等
に大きな影響を及ぼす。そのため端子電極にははんだ濡
れ性とはんだ耐熱性という相反する2つの特性と、更に
耐湿性に代表される信頼性を有することが要求される。
[Prior art] Chip type multilayer ceramic capacitors are
It is equipped with a bare chip formed by polymerizing a plurality of ceramic dielectric layers having internal electrodes, and a terminal electrode electrically connected to the internal electrode, and the surface of the terminal electrode is plated with Ni, Sn or Sn/Pb. Two plating electrode layers are formed. This terminal electrode is made by applying a paste made by kneading metal powder such as Ag, Pd, or Pt, an inorganic binder, and an organic vehicle to both ends of the bare chip.
A terminal electrode with a plating base is formed by firing at a temperature of about 600 to 800°C, and two layers of Ni plating and Sn or Sn/Pb plating are formed in this order on the surface of this base electrode by electroless or electrolytic plating. ing. This chip-type multilayer ceramic capacitor is used with terminal electrodes soldered to a substrate. Since the terminal electrodes are used to connect the internal electrodes of the capacitor and the electric circuit on the substrate, their quality greatly affects the electrical characteristics, reliability, mechanical characteristics, etc. of the capacitor. Therefore, terminal electrodes are required to have two contradictory properties: solder wettability and solder heat resistance, and also to have reliability as typified by moisture resistance.

【0003】Niめっきは、コンデンサの端子電極をは
んだ付けする際に、溶融はんだへの端子電極の金属成分
の溶出、換言すればはんだによる電極食われを防止する
ために施され、Sn又はSn/Pbめっきは、はんだ付
け性を容易にするために施される。通常、これらのめっ
きは湿式の電解バレルめっき法で行われる。めっき処理
時に端子電極内部に空孔があると空孔に電解液が浸入す
ることがあり、この場合にはコンデンサの信頼性を低下
させたり、端子電極の接合強度を弱める原因となる。こ
の端子電極のベアチップに対する接合強度を高めるため
にペーストに主としてガラスからなる無機結合材が加え
られる。この無機結合材は端子電極の焼付け時には溶融
し、端子電極内部の空孔を埋める効果がある。この無機
結合材の組成、配合比を調整することにより、電解液に
よる信頼性の低下を防止することができる。
Ni plating is applied to prevent the metal components of the terminal electrodes from being leached into the molten solder when soldering the terminal electrodes of a capacitor, in other words, to prevent the electrodes from being eaten away by the solder. Pb plating is applied to facilitate solderability. Usually, these platings are performed using a wet electrolytic barrel plating method. If there are holes inside the terminal electrode during the plating process, the electrolytic solution may infiltrate into the holes, which may reduce the reliability of the capacitor or weaken the bonding strength of the terminal electrode. In order to increase the bonding strength of this terminal electrode to the bare chip, an inorganic bonding material mainly made of glass is added to the paste. This inorganic binder melts when the terminal electrode is baked and has the effect of filling the voids inside the terminal electrode. By adjusting the composition and blending ratio of this inorganic binder, it is possible to prevent a decrease in reliability due to the electrolyte.

【0004】0004

【発明が解決しようとする課題】しかし、無機結合材の
配合比を大きくすると、端子電極の焼付け時に金属粒子
が焼結して体積が収縮するに従ってガラスが端子電極表
面に押出され、端子電極がガラスで覆われた状態になる
。特に電極厚みが比較的大きな頭頂部分においてその傾
向は顕著である。この状態でめっき処理すると、ガラス
の表面にはめっき膜は析出しないため、めっき膜は先ず
金属の表面に析出しそこから横方向に張出して端子電極
の表面全体を覆う。即ちめっき膜は膜全体で端子電極に
密着せずに部分的に密着しているだけの状態になってし
まう。この状態ではコンデンサ自体の信頼性に問題ない
が、基板にはんだ付けした後に端子電極に外力が加わる
と、めっき膜と端子電極との間で容易にクラックが生じ
るため、実際の使用状態では信頼性は著しく低下してし
まう問題点があった。反対に、無機結合材の配合比を小
さくすると、端子電極表面のガラスの浮き出しは防止で
きるが、端子電極内部に空孔が残存するため、前述した
ように電解液の浸入を防止できなくなってしまう欠点が
あった。
[Problems to be Solved by the Invention] However, when the blending ratio of the inorganic binder is increased, the glass is pushed out onto the surface of the terminal electrode as the metal particles are sintered and the volume contracts when the terminal electrode is baked. It will be covered with glass. This tendency is particularly noticeable in the parietal region where the electrode thickness is relatively large. When plating is performed in this state, the plating film is not deposited on the surface of the glass, so the plating film first deposits on the surface of the metal and extends laterally from there to cover the entire surface of the terminal electrode. In other words, the entire plating film does not come into close contact with the terminal electrode, but only partially. In this state, there is no problem with the reliability of the capacitor itself, but if an external force is applied to the terminal electrode after it is soldered to the board, cracks will easily occur between the plating film and the terminal electrode, so the reliability will be reduced in actual use. There was a problem in that the value decreased significantly. On the other hand, if the blending ratio of the inorganic binder is reduced, it is possible to prevent the glass from protruding on the surface of the terminal electrode, but since pores remain inside the terminal electrode, it is no longer possible to prevent the electrolyte from entering as described above. There were drawbacks.

【0005】本発明の目的は、無機結合材の上限配合量
を厳格に規制する必要がなく、端子電極表面にめっき層
を連続して密着形成でき、高い信頼性と機械的強度を有
するチップ型積層セラミックコンデンサ及びその製造方
法を提供することにある。
The object of the present invention is to provide a chip type that does not require strict regulation of the upper limit of the amount of inorganic binder, can form a plating layer in close contact with the surface of a terminal electrode, and has high reliability and mechanical strength. An object of the present invention is to provide a multilayer ceramic capacitor and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明のチップ型積層セ
ラミックコンデンサは、図1に示すように内部電極13
を有するセラミック誘電体層を複数個重合して形成され
たベアチップ11と、金属粉末と無機結合材を含むペー
ストをベアチップ11の両端部に焼付けることにより内
部電極13と電気的に接続された端子電極12と、端子
電極12の表面に形成されためっき層14,15とを備
える。その特徴ある構成は積層セラミックコンデンサ1
0の端子電極12の表面が研磨され、この端子電極の研
磨表面にめっき層14,15が形成されたことにある。
[Means for Solving the Problems] The chip type multilayer ceramic capacitor of the present invention has an internal electrode 13 as shown in FIG.
The bare chip 11 is formed by polymerizing a plurality of ceramic dielectric layers having the following properties, and the terminals are electrically connected to the internal electrodes 13 by baking a paste containing metal powder and an inorganic binder onto both ends of the bare chip 11. It includes an electrode 12 and plating layers 14 and 15 formed on the surface of the terminal electrode 12. Its characteristic structure is a multilayer ceramic capacitor 1
The surface of the terminal electrode 12 of No. 0 was polished, and the plating layers 14 and 15 were formed on the polished surface of this terminal electrode.

【0007】以下、本発明を詳述する。本発明の積層セ
ラミックコンデンサは、内部電極を有するセラミック誘
電体層を複数個重合してベアチップを形成し、このベア
チップの両端部に内部電極と電気的に接続された端子電
極を形成して作製される。このセラミック誘電体には、
鉛系、チタン酸バリウム系等の誘電体が用いられ、内部
電極にはPd,Pt,Ag/Pd等の貴金属、或いはN
i,Fe,Co等の卑金属が用いられる。本発明の端子
電極の表面にはNiめっき層及びSn又はSn/Pbめ
っき層がこの順に形成される。
The present invention will be explained in detail below. The multilayer ceramic capacitor of the present invention is manufactured by polymerizing a plurality of ceramic dielectric layers having internal electrodes to form a bare chip, and forming terminal electrodes electrically connected to the internal electrodes at both ends of the bare chip. Ru. This ceramic dielectric has
Dielectric materials such as lead-based and barium titanate-based materials are used, and noble metals such as Pd, Pt, Ag/Pd, or N are used for the internal electrodes.
Base metals such as i, Fe, Co, etc. are used. A Ni plating layer and a Sn or Sn/Pb plating layer are formed in this order on the surface of the terminal electrode of the present invention.

【0008】この端子電極の製造方法は、先ず金属粉末
と無機結合材とを有機ビヒクルとともに混練してペース
トを調製する。金属粉末にはAg,Pd,Pt,Cuを
1種又は2種以上を含むものが用いられ、無機結合材に
は、例えばホウケイ酸鉛ガラス、ホウケイ酸亜鉛ガラス
、ホウ酸鉛亜鉛ガラス等のガラスが用いられる。このガ
ラスはめっき処理中に電解液に浸食されず、かつ接合す
るベアチップとの熱的な整合がとれていることが必要で
ある。また無機結合材には、ガラス以外に酸化物微粒子
を配合することもある。有機ビヒクルにはエチルセルロ
ース又はメチルセルロース等に有機溶剤を混合したもの
が用いられる。ペーストを100重量%とするとき、金
属粉末は70〜80重量%、無機結合材は金属粉末に対
して4〜15重量%、有機ビヒクルは残部が配合される
。無機結合材の上記配合比は、金属成分の比重、粒度、
焼付け後の密度、ガラスの比重等に応じて、しかもめっ
き中の劣化を防止するために端子電極を焼付けた後の金
属粒子の空隙を埋める量よりも多く配合するように決め
られる。即ち無機結合材の上限配合量15重量%は通常
の配合量より多めになっている。
[0008] In this method of manufacturing a terminal electrode, first, metal powder and an inorganic binder are kneaded together with an organic vehicle to prepare a paste. The metal powder used includes one or more of Ag, Pd, Pt, and Cu, and the inorganic binder includes glass such as lead borosilicate glass, zinc borosilicate glass, lead zinc borate glass, etc. is used. This glass must not be corroded by the electrolyte during the plating process and must have thermal matching with the bare chip to be bonded. In addition to glass, oxide fine particles may also be blended into the inorganic binder. The organic vehicle used is a mixture of ethyl cellulose, methyl cellulose, or the like with an organic solvent. When the paste is 100% by weight, the metal powder is 70 to 80% by weight, the inorganic binder is 4 to 15% by weight based on the metal powder, and the organic vehicle is the balance. The above blending ratio of the inorganic binder depends on the specific gravity, particle size, and
Depending on the density after baking, the specific gravity of the glass, etc., and in order to prevent deterioration during plating, it is decided to mix the amount in an amount greater than the amount that fills the voids of the metal particles after baking the terminal electrode. That is, the upper limit of the inorganic binder content of 15% by weight is a little higher than the usual content.

【0009】次いで調製したペーストにベアチップの端
部を浸漬して引上げ150〜200℃で乾燥した後、6
00〜800℃で焼成してペーストを焼付けて端子電極
を形成する。上記無機結合材の配合比では端子電極の表
面をガラス成分が覆う状態になるため、この端子電極の
表面を研磨して電極表面に浮き出たガラス成分を除去す
る。端子電極の研磨方法は、りん酸ナトリウム水溶液等
でガラス成分を溶解除去する化学的な方法、バレル研磨
により除去する物理的な方法がある。信頼性の観点から
バレル研磨が好ましい。バレル研磨には回転バレル、遠
心バレル、振動バレル等の方法がある。いずれも研磨材
、水又は有機溶媒からなる媒体により研磨される。回転
バレル研磨はポリエチレン等の樹脂ポットに積層セラミ
ックコンデンサチップと微粒のセラミック質の研磨材と
水とを入れ、これらを攪拌してセラミックコンデンサの
端子電極を研磨する。これらの混入割合、研磨時間等の
研磨条件はコンデンサチップの研磨量、材質、形状等に
応じて決められるが、混入割合は樹脂ポットを100容
積%とするとき、積層セラミックコンデンサチップを1
〜10容積%、研磨材を5〜20容積%、水を20〜5
0容積%入れることが好ましく、研磨時間は30〜90
分程度が好ましい。研磨した後、イオン交換水により超
音波洗浄を10〜30分行う。
Next, the end of the bare chip was immersed in the prepared paste, pulled up, and dried at 150 to 200°C.
The paste is baked at 00 to 800°C to form a terminal electrode. With the above-mentioned blending ratio of the inorganic binder, the surface of the terminal electrode is covered with the glass component, so the surface of the terminal electrode is polished to remove the glass component floating on the electrode surface. As methods for polishing the terminal electrode, there are a chemical method in which the glass component is dissolved and removed using an aqueous sodium phosphate solution, and a physical method in which the glass component is removed by barrel polishing. Barrel polishing is preferred from the viewpoint of reliability. Barrel polishing includes methods such as rotating barrel, centrifugal barrel, and vibrating barrel. Both are polished with a medium consisting of an abrasive, water, or an organic solvent. In rotary barrel polishing, a multilayer ceramic capacitor chip, fine ceramic abrasive material, and water are placed in a resin pot made of polyethylene or the like, and the terminal electrodes of the ceramic capacitor are polished by stirring them. Polishing conditions such as the mixing ratio and polishing time are determined depending on the polishing amount, material, shape, etc. of the capacitor chip, but the mixing ratio is as follows: When the resin pot is 100% by volume, the multilayer ceramic capacitor chip is
~10% by volume, 5-20% by volume of abrasive, 20-5% by volume of water.
It is preferable to add 0% by volume, and the polishing time is 30 to 90%.
About a minute is preferable. After polishing, ultrasonic cleaning is performed using ion-exchanged water for 10 to 30 minutes.

【0010】研磨した端子電極の表面にNiめっき層及
びSn又はSn/Pbめっき層がこの順に形成される。 本発明ではNiめっき層の厚みは1〜3μmが、Sn又
はSn/Pbめっき層の厚みは5〜20μmが好ましい
。これらのめっき層は無電解又は電解めっき等をバレル
めっきで行うことにより形成される。めっき浴はNi,
Sn,Sn/Pbともそれぞれ公知のものを使用する。
[0010] A Ni plating layer and a Sn or Sn/Pb plating layer are formed in this order on the surface of the polished terminal electrode. In the present invention, the thickness of the Ni plating layer is preferably 1 to 3 μm, and the thickness of the Sn or Sn/Pb plating layer is preferably 5 to 20 μm. These plating layers are formed by barrel plating, such as electroless or electrolytic plating. The plating bath is Ni,
For both Sn and Sn/Pb, known ones are used.

【作用】無機結合材の上限配合量を厳格に規制せずにば
らつきを考慮して多めに無機結合材を配合してペースト
を調製し、このペーストをベアチップの両端部に焼付け
ても、焼付け後に端子電極の表面に浮き出てきた余剰の
無機結合材は研磨により除去される。この状態でめっき
処理するとめっき膜が金属の表面に連続して密着形成さ
れる。
[Effect] Even if a paste is prepared by blending a large amount of inorganic binder in consideration of variations without strictly regulating the upper limit of the inorganic binder content, and this paste is baked on both ends of the bare chip, even if the paste is baked on both ends of the bare chip, Excess inorganic bonding material floating on the surface of the terminal electrode is removed by polishing. When plating is performed in this state, a plating film is formed continuously and closely on the surface of the metal.

【0011】[0011]

【発明の効果】以上述べたように、従来技術では、表面
に浮き出すガラスを考慮して端子電極を設計する必要が
あり、汎用性のある端子電極材料を製造することが非常
に困難であったものが、本発明によれば、上記考慮をし
なくても焼付け後に端子電極の表面を研磨してこの表面
にめっき処理することにより、めっき層が連続して密着
形成され、耐湿性及びはんだ濡れ性の両方に優れた特性
を有する、端子電極を作製することができる。これによ
り、コンデンサ材料のばらつきや製造条件のばらつきが
大きくてもこれを吸収して、常に信頼性、機械的特性に
優れた端子電極を有するチップ型積層セラミックコンデ
ンサを製造することができる。
[Effects of the Invention] As described above, in the conventional technology, it is necessary to design a terminal electrode by taking into consideration glass protruding on the surface, and it is extremely difficult to manufacture a versatile terminal electrode material. However, according to the present invention, by polishing the surface of the terminal electrode after baking and plating the surface without taking the above considerations, the plating layer is formed in continuous and close contact, improving moisture resistance and solder resistance. It is possible to produce a terminal electrode that has excellent properties in both wettability. As a result, even if there are large variations in capacitor materials or manufacturing conditions, it is possible to absorb this and produce a chip-type multilayer ceramic capacitor that always has terminal electrodes with excellent reliability and mechanical properties.

【0012】0012

【実施例】次に本発明の実施例を図面に基づいて比較例
とともに説明する。 <実施例>図1に示すように、チップ型積層セラミック
コンデンサ10はベアチップ11とこのベアチップ11
の両端部に形成された端子電極12とを備える。ベアチ
ップ11はチタン酸バリウム系であって、貴金属のPd
からなる内部電極13を有し、長さ3.1mm、幅1.
5mm、厚み0.85mmのサイズを有するチップ(三
菱マテリアル(株)製,3216タイプ,JIS−R特
性 定格50V 容量100nF)を用いた。端子電極
12の表面にはNiめっき層14及びSn/Pbめっき
層15がこの順に形成される。端子電極12は次の条件
により形成した。
EXAMPLES Next, examples of the present invention will be explained based on the drawings together with comparative examples. <Example> As shown in FIG. 1, a chip-type multilayer ceramic capacitor 10 includes a bare chip 11 and
Terminal electrodes 12 formed at both ends of the terminal electrodes 12 are provided. The bare chip 11 is made of barium titanate and contains the noble metal Pd.
The internal electrode 13 has a length of 3.1 mm and a width of 1.
A chip having a size of 5 mm and a thickness of 0.85 mm (manufactured by Mitsubishi Materials Corporation, type 3216, JIS-R characteristics, rating 50 V, capacity 100 nF) was used. A Ni plating layer 14 and a Sn/Pb plating layer 15 are formed in this order on the surface of the terminal electrode 12. The terminal electrode 12 was formed under the following conditions.

【0013】Ag成分78重量%を含む市販の銀ペース
ト(三菱マテリアル(株)製 JPN5224)と、ホ
ウケイ酸鉛系のガラスからなる無機結合材と、残部がエ
チルセルロースとブチルカルビトールとテルピネオール
を含む有機ビヒクルとを3本ロール混練機で混練してペ
ーストを調製した。ホウケイ酸鉛系のガラスは600メ
ッシュアンダー(ガラス粒径が約20μm以下)まで粉
砕したものを用い、金属成分に対して4重量%、8重量
%及び12重量%を配合したペーストを3種類調製した
。端子電極塗布機(パロマ社製)を用いて3種類のペー
ストを焼付け後の厚さが100μmになるようにベアチ
ップ11の両端部に塗布し、大気圧下、200℃で10
分間乾燥した。端子電極焼付け用ベルト炉(光洋リンド
バーグ社製)を用いて乾燥したベアチップを25℃/分
の速度で、大気圧下、800℃まで昇温しそこで5分間
保持した後、20分/分の速度で室温まで降温してAg
からなる焼付け電極層を得た。
[0013] A commercially available silver paste (JPN5224 manufactured by Mitsubishi Materials Corporation) containing 78% by weight of Ag component, an inorganic binder consisting of lead borosilicate glass, and the remainder an organic paste containing ethyl cellulose, butyl carbitol, and terpineol. A paste was prepared by kneading the mixture with vehicle using a three-roll kneader. Lead borosilicate glass is ground to under 600 mesh (glass particle size is approximately 20 μm or less), and three types of pastes are prepared containing 4% by weight, 8% by weight, and 12% by weight based on the metal component. did. Using a terminal electrode applicator (manufactured by Paloma), three types of paste were applied to both ends of the bare chip 11 so that the thickness after baking was 100 μm, and the paste was applied to both ends of the bare chip 11 at 200°C under atmospheric pressure for 10 minutes.
Dry for a minute. Bare chips dried using a belt furnace for terminal electrode baking (manufactured by Koyo Lindberg Co., Ltd.) were heated to 800°C under atmospheric pressure at a rate of 25°C/min, held there for 5 minutes, and then heated at a rate of 20 min/min. The temperature was lowered to room temperature at
A baked electrode layer was obtained.

【0014】端子電極の研磨を次の条件により行った。           ポット      ポリエチレン
樹脂製ポット  内容積2000cc        
  研磨材      SiC研磨材#100(平均粒
径約150μm)          媒  体   
   水(界面活性剤0.1重量%含む)      
    混合比      積層コンデンサチップ20
0cc(20000個)              
        研磨材500cc         
             媒体1000cc    
      研磨時間    回転数200rpmで3
0分間
The terminal electrode was polished under the following conditions. Pot: Polyethylene resin pot, internal volume: 2000cc
Abrasive material SiC abrasive material #100 (average particle size approximately 150 μm) Media
Water (contains 0.1% by weight of surfactant)
Mixing ratio Multilayer capacitor chip 20
0cc (20000 pieces)
Abrasive material 500cc
Medium 1000cc
Polishing time 3 at rotation speed 200 rpm
0 minutes

【0015】Niめっき層及びSn/Pbめっき
層を次の条件により形成した。 ■  Niめっき pH4.0、温度50℃のスルファミン酸ニッケル(N
i(NH2SO3)2・4H2O)120g/Lの組成
の浴を用い、電解バレルめっき法で端子電極の表面に1
μm厚のNiめっき層を形成した。 ■  Sn/Pbめっき pH4.5、温度25℃の錫(Sn)15g/Lと鉛(
Pb)6g/Lの組成の浴を用い、電解バレルめっき法
でNiめっき層の表面に5μm厚のSn/Pbめっき層
を形成した。これにより、端子電極の上に更に2層のめ
っき層を形成したチップ型積層セラミックコンデンサを
得た。 <比較例>実施例と同一のベアチップの両端部に、端子
電極を研磨しない以外は実施例と同様にして無機結合材
の配合量を異にした3種類の端子電極を形成し、更にこ
の表面に実施例と同様に2層のめっき層を形成した。
A Ni plating layer and a Sn/Pb plating layer were formed under the following conditions. ■ Ni plating pH 4.0, temperature 50℃ nickel sulfamate (N
Using a bath with a composition of i(NH2SO3)2.4H2O) 120g/L, 1 was applied to the surface of the terminal electrode by electrolytic barrel plating.
A μm thick Ni plating layer was formed. ■ Sn/Pb plating pH 4.5, tin (Sn) 15g/L and lead (
Using a bath having a composition of 6 g/L (Pb), a Sn/Pb plating layer with a thickness of 5 μm was formed on the surface of the Ni plating layer by electrolytic barrel plating. As a result, a chip-type multilayer ceramic capacitor was obtained in which two further plating layers were formed on the terminal electrodes. <Comparative Example> Three types of terminal electrodes with different amounts of inorganic binder were formed on both ends of the same bare chip as in the example in the same manner as in the example except that the terminal electrodes were not polished. Two plating layers were formed in the same manner as in the example.

【0016】<測定方法>上記実施例及び比較例で作製
した積層セラミックコンデンサについて、諸特性を次の
方法により測定した。括弧内の数値nは試験した試料数
である。 (a) 静電容量(nF)及び誘電正接(%)(n=1
00) LCRメータ(ヒューレットパッカード社製 4284
型)を用いて、1kHz、1Vrmsで測定した。 (b) 絶縁抵抗(Ω)(n=50) 高抵抗計(ヒューレットパッカード社製4329A型)
を用いて、50Vの直流電圧を印加した後、30秒経過
後の抵抗を測定した。 (c) 端子電極付着強度(n=10)強度試験機(イ
ンテスコ社製 IM−20型)を用いて、試料の端子電
極に0.8mmのはんだ引き鋼線を230℃のホットプ
レート上で共晶クリームはんだにより接着し、この鋼線
を10mm/分で引張ることにより付着強度を測定した
。 (d) たわみ限界値(n=5) 強度試験機(インテスコ社製 IM−20型)を用いて
、長さ90mm,幅40mm,厚み1.6mmのガラス
エポキシ基板の中央に試料の端子電極をはんだ付けし、
試料のはんだ付け面を下面にしてこの基板をスパン90
mmの支持台に載せ、スパン中心の上面に荷重をかけ、
試料が基板から剥離するまでの基板のたわみ量を測定し
た。 (e) 高温負荷試験(n=30) 125℃の温度で1%以下の相対湿度下、100Vの直
流電圧を印加して1000時間後の絶縁破壊の有無を調
べた。 (f) 耐湿負荷試験(n=20) 85℃の温度で85%の相対湿度下、50Vの直流電圧
を印加して絶縁破壊するまでの時間を測定した。 (g) プレッシャクッカー試験(n=50)151℃
の温度で水蒸気圧5atm下、50Vの直流電圧を印加
して絶縁破壊するまでの時間を測定した。
<Measurement Method> Various characteristics of the multilayer ceramic capacitors manufactured in the above Examples and Comparative Examples were measured by the following methods. The number n in parentheses is the number of samples tested. (a) Capacitance (nF) and dielectric loss tangent (%) (n=1
00) LCR meter (manufactured by Hewlett Packard Company 4284)
Measurements were made at 1 kHz and 1 Vrms using (b) Insulation resistance (Ω) (n=50) High resistance meter (Model 4329A manufactured by Hewlett-Packard)
After applying a direct current voltage of 50 V using the following, the resistance was measured after 30 seconds had elapsed. (c) Terminal electrode adhesion strength (n = 10) Using a strength tester (IM-20 model manufactured by Intesco), a 0.8 mm solder drawn steel wire was attached to the terminal electrode of the sample on a hot plate at 230°C. They were adhered using crystal cream solder, and the adhesion strength was measured by pulling the steel wire at 10 mm/min. (d) Deflection limit value (n = 5) Using a strength testing machine (IM-20 model manufactured by Intesco), the terminal electrode of the sample was placed in the center of a glass epoxy substrate with a length of 90 mm, a width of 40 mm, and a thickness of 1.6 mm. Solder and
Span this board at 90° with the soldering side of the sample facing down.
Place it on a support stand of mm, apply a load to the upper surface of the center of the span,
The amount of deflection of the substrate until the sample peeled off from the substrate was measured. (e) High temperature load test (n=30) A DC voltage of 100 V was applied at a temperature of 125° C. and a relative humidity of 1% or less, and the presence or absence of dielectric breakdown after 1000 hours was examined. (f) Humidity load test (n=20) A DC voltage of 50 V was applied at a temperature of 85° C. and a relative humidity of 85%, and the time until dielectric breakdown occurred was measured. (g) Pressure cooker test (n=50) 151°C
A DC voltage of 50 V was applied at a temperature of 5 atm and a water vapor pressure of 5 atm, and the time until dielectric breakdown occurred was measured.

【0017】<測定結果と評価>上記(a)〜(g)の
結果を実施例については表1に、比較例については表2
にそれぞれ示す。(以下、本頁余白)
<Measurement results and evaluation> The results of (a) to (g) above are shown in Table 1 for Examples and Table 2 for Comparative Examples.
are shown respectively. (Hereafter, this page margin)

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【表2】[Table 2]

【0020】表1及び表2より、実施例及び比較例とも
耐湿負荷試験及びプレッシャクッカー試験で代表される
耐湿性の性能は、無機結合材であるガラスの配合比が大
きくなるにつれて向上しているのが分る。また機械的特
性の代表値である端子電極付着強度及びたわみ限界値で
は、端子電極の研磨効果が大きく、実施例ではガラスの
配合比が大きくなるにつれて、両方の数値とも上昇して
いる。これに対して端子電極の研磨を行わない比較例で
はガラスの配合比が過剰の12重量%になると、めっき
膜の密着性が悪くなるため、端子電極付着強度及びたわ
み限界値とも大きく減少し、実用性がなくなってしまう
。この結果、比較例に対して実施例は電気的特性及び信
頼性についてはほぼ同等の値を示し、機械的強度及びは
んだ濡れ性について優れた値を示すことが判明した。
From Tables 1 and 2, in both Examples and Comparative Examples, the moisture resistance performance represented by the moisture resistance load test and pressure cooker test improves as the blending ratio of glass, which is an inorganic binder, increases. I understand. In addition, the terminal electrode adhesion strength and deflection limit value, which are typical values of mechanical properties, have a large polishing effect on the terminal electrode, and in the examples, both values increase as the blending ratio of glass increases. On the other hand, in a comparative example in which the terminal electrodes were not polished, when the glass blending ratio reached an excessive 12% by weight, the adhesion of the plating film deteriorated, and both the terminal electrode adhesion strength and the deflection limit value decreased significantly. It becomes impractical. As a result, it was found that the example exhibited substantially the same electrical characteristics and reliability as the comparative example, and exhibited superior values in mechanical strength and solder wettability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のチップ型積層セラミックコンデンサの
断面図。
FIG. 1 is a sectional view of a chip-type multilayer ceramic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

10  チップ型積層セラミックコンデンサ11  ベ
アチップ 12  端子電極 13  内部電極 14,15  めっき層
10 Chip type multilayer ceramic capacitor 11 Bare chip 12 Terminal electrode 13 Internal electrodes 14, 15 Plating layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  内部電極(13)を有するセラミック
誘電体層を複数個重合して形成されたベアチップ(11
)と、金属粉末と無機結合材を含むペーストを前記ベア
チップ(11)の両端部に焼付けることにより前記内部
電極(13)と電気的に接続された端子電極(12)と
、前記端子電極(12)の表面に形成されためっき層(
14,15)とを備えたチップ型積層セラミックコンデ
ンサ(10)において、前記端子電極(12)の表面が
研磨され、前記端子電極の研磨表面に前記めっき層(1
4,15)が形成されたことを特徴とするチップ型積層
セラミックコンデンサ。
1. A bare chip (11) formed by polymerizing a plurality of ceramic dielectric layers having internal electrodes (13).
), a terminal electrode (12) electrically connected to the internal electrode (13) by baking a paste containing metal powder and an inorganic binder onto both ends of the bare chip (11), and a terminal electrode (12) electrically connected to the internal electrode (13); 12) Plating layer formed on the surface of (
14, 15), the surface of the terminal electrode (12) is polished, and the plating layer (12) is coated on the polished surface of the terminal electrode.
4, 15) A chip-type multilayer ceramic capacitor characterized in that: 4, 15) are formed.
【請求項2】  端子電極(12)の表面研磨がバレル
研磨である請求項1記載のチップ型積層セラミックコン
デンサ。
2. The chip-type multilayer ceramic capacitor according to claim 1, wherein the surface polishing of the terminal electrode (12) is barrel polishing.
【請求項3】  内部電極(13)を有するセラミック
誘電体層を複数個重合してベアチップ(11)を形成し
、前記ベアチップ(11)の両端部に金属粉末と無機結
合材を含むペーストを塗布した後、焼成して前記内部電
極(13)と電気的に接続された端子電極(12)を形
成し、前記端子電極(12)の表面にめっき層(14,
15)を形成するチップ型積層セラミックコンデンサの
製造方法において、前記端子電極(12)の表面を研磨
した後、前記めっき層(14,15)を形成することを
特徴とするチップ型積層セラミックコンデンサの製造方
法。
3. A bare chip (11) is formed by polymerizing a plurality of ceramic dielectric layers having internal electrodes (13), and a paste containing metal powder and an inorganic binder is applied to both ends of the bare chip (11). After that, a terminal electrode (12) electrically connected to the internal electrode (13) is formed by firing, and a plating layer (14,
15), in which the plating layer (14, 15) is formed after polishing the surface of the terminal electrode (12). Production method.
JP6901691A 1991-03-08 1991-03-08 Chip type laminated ceramic capacitor and manufacture thereof Pending JPH04280616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6901691A JPH04280616A (en) 1991-03-08 1991-03-08 Chip type laminated ceramic capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6901691A JPH04280616A (en) 1991-03-08 1991-03-08 Chip type laminated ceramic capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04280616A true JPH04280616A (en) 1992-10-06

Family

ID=13390372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6901691A Pending JPH04280616A (en) 1991-03-08 1991-03-08 Chip type laminated ceramic capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04280616A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426560A (en) * 1992-11-19 1995-06-20 Murata Manufacturing Co., Ltd. Electronic component
EP0858085A1 (en) * 1997-02-03 1998-08-12 TDK Corporation Laminated chip varistor and production method thereof
JP2002246262A (en) * 2001-02-14 2002-08-30 Hitachi Metals Ltd Electronic component exhibiting excellent uniformity in plating film thickness and its manufacturing method
JP2008028064A (en) * 2006-07-20 2008-02-07 Murata Mfg Co Ltd Electronic component and method for manufacturing the same
JP2008171889A (en) * 2007-01-09 2008-07-24 Nichicon Corp Positive characteristic thermistor and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426560A (en) * 1992-11-19 1995-06-20 Murata Manufacturing Co., Ltd. Electronic component
EP0858085A1 (en) * 1997-02-03 1998-08-12 TDK Corporation Laminated chip varistor and production method thereof
US5994995A (en) * 1997-02-03 1999-11-30 Tdk Corporation Laminated chip varistor and production method thereof
JP2002246262A (en) * 2001-02-14 2002-08-30 Hitachi Metals Ltd Electronic component exhibiting excellent uniformity in plating film thickness and its manufacturing method
JP2008028064A (en) * 2006-07-20 2008-02-07 Murata Mfg Co Ltd Electronic component and method for manufacturing the same
JP2008171889A (en) * 2007-01-09 2008-07-24 Nichicon Corp Positive characteristic thermistor and its manufacturing method

Similar Documents

Publication Publication Date Title
US4811162A (en) Capacitor end termination composition and method of terminating
JPH10284343A (en) Chip type electronic component
JPH097877A (en) Multilayered ceramic chip capacitor and manufacture thereof
KR880001344B1 (en) A method of forming electrodes ceramic bodies to provide electronic compounds
JPH04280616A (en) Chip type laminated ceramic capacitor and manufacture thereof
JPH09190950A (en) Outer electrode of electronic part
JP2001189229A (en) Capacitor
JP4409225B2 (en) Ferrite core, manufacturing method thereof, and common mode noise filter using the same
JP3257036B2 (en) Conductive paste for chip-type electronic components
JP2973558B2 (en) Conductive paste for chip-type electronic components
JPH04280613A (en) Chip type laminated ceramic capacitor and manufacture thereof
JP2618019B2 (en) Conductive paint for plating base and plating method using the same
JP3798979B2 (en) Conductive paste and use thereof
JPH10163067A (en) External electrode of chip electronic component
JP3291831B2 (en) Conductive paste for chip-type electronic components
JPH03296205A (en) Ceramic capacitor
JPH09266129A (en) External electrode of chip type electronic parts
JP2002298649A (en) Conductive paste and chip type electronic component using the same
JP4710204B2 (en) Method for forming end face electrode of electronic component
JP4654563B2 (en) Chip electronic components
JPH09115772A (en) External electrode for chip electronic component
JP2958480B2 (en) Chip capacitors
JP3123310B2 (en) Conductive paste for chip-type electronic components
JPH0878279A (en) Formation of outer electrode on electronic chip device
JPS629204B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981222