JPH04278441A - Method for measuring absorption quantity of light - Google Patents

Method for measuring absorption quantity of light

Info

Publication number
JPH04278441A
JPH04278441A JP6547491A JP6547491A JPH04278441A JP H04278441 A JPH04278441 A JP H04278441A JP 6547491 A JP6547491 A JP 6547491A JP 6547491 A JP6547491 A JP 6547491A JP H04278441 A JPH04278441 A JP H04278441A
Authority
JP
Japan
Prior art keywords
light
absorption
solution sample
optical
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6547491A
Other languages
Japanese (ja)
Inventor
Takashi Hiraga
隆 平賀
Kenji Ito
健司 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6547491A priority Critical patent/JPH04278441A/en
Publication of JPH04278441A publication Critical patent/JPH04278441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To detect the minute change in the absorption quantity of light to the light incident simultaneously with detection light with high efficiency. CONSTITUTION:A quartz glass pipe 1 with an inner diameter of about 0.3mm is filled with a solution sample S having a refractive index higher than that of said pipe 1 and the light propagating through the solution sample S is totally reflected even at the interface with the quartz glass pipe 1 and propagated from the incident end of the pipe 1 to the emitting end thereof without receiving any loss other than the absorption of light due to the solution sample S to allow a plurality of light axes to perfectly coincide and the transitional absorption quantity being the minute absorption quantity of light is made possible to measure. The mutual acting regions of two different lights are allowed to perfectly coincide by an easy optical adjusting method and this method is optimum to an optical apparatus using a femto-sec region requiring strict optical adjustment up to about 10mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ピコ秒、フェムト秒も
しくはこれより短い時間幅を有する第2の光であるパル
ス光の入射に対して応答性を示し、第1の入射光に対す
る光吸収量変化の測定方法の改良に関するものである。
[Industrial Application Field] The present invention exhibits responsiveness to the incidence of pulsed light, which is second light having a time width of picoseconds, femtoseconds, or shorter, and which exhibits responsiveness to the incidence of pulsed light with respect to the first incident light. This invention relates to improvements in methods for measuring changes in quantity.

【0002】0002

【従来の技術】溶液試料における定常光吸収量測定にお
いては、光学距離10mmの石英ガラス製セルにより、
また、希薄溶液試料の場合には100mm程度の長さを
持つ石英ガラス製セルを用いるかするが、いずれにして
も、セル内で多重反射させて光学距離を長くして測定す
ることが多い。定常光吸収量測定においては、1本の光
ビームによる測定なので、上記方法においても実用上な
んら支障は生じないが、過渡光吸収量測定においては、
スペクトル測定用の白色光に対する光吸収量を適正範囲
(吸光係数:0.1〜2.0)に設定すること、および
励起光による光吸収量変化を大きくすることが必要とな
る。これを実現するために、2種の光学配置が考案され
ており、それぞれ横励起、縦励起と呼ばれている。
[Prior Art] In the measurement of steady-state light absorption in a solution sample, a quartz glass cell with an optical distance of 10 mm is used.
Further, in the case of a dilute solution sample, a quartz glass cell having a length of about 100 mm is used, but in any case, the measurement is often performed by making multiple reflections within the cell and increasing the optical distance. In the measurement of the amount of steady light absorption, since the measurement is performed using a single light beam, there is no practical problem with the above method, but in the measurement of the amount of transient light absorption,
It is necessary to set the amount of light absorption for white light for spectrum measurement in an appropriate range (absorption coefficient: 0.1 to 2.0) and to increase the change in the amount of light absorption due to excitation light. To achieve this, two types of optical arrangements have been devised, called transverse excitation and longitudinal excitation, respectively.

【0003】横励起は図4に示すように、溶液試料を保
持する容器として平面、かつ透明な4面の光学窓を有す
る両面透明石英セル8に溶液試料Sを充填して用いる。 図4において、11Aは第1の光源11より出射された
第1の光で、両面透明石英セル8に対して互いに共焦点
をなすように配置された、例えば焦点距離150mmの
球面レンズ5により集光される。6は球面レンズで、光
検出器13に入射する第1の入射光11Bを収光する。 12は第2の光源で、第2の光12Aを発する。9は円
筒レンズ対で、円筒凸レンズ9aと円筒凹レンズ9bと
からなり、第2の光12Aを第1の光11Aの光軸方向
に拡大したり、直交する方向に縮小したりする。この図
4のように、光吸収量を測定する第1の光11Aに対し
て、これと直行する方向から光励起を行うものである。 この際、第1の光11Aに対する相互作用距離を大きく
するために、図5の(a),(b)の平面図と側面図に
示すように、第2の光12Aであるパルス光を、第1の
光11Aの光軸方向に両面透明石英セル8の光路長まで
拡大し(図5(a))、これと直交する方向に第1の光
11Aのビーム径まで縮小している(図5(b))。従
って、第2の光12Aの光学系の制約から、光吸収量の
測定を行う光路長は10mm程度に制限されてしまう。
For lateral excitation, as shown in FIG. 4, a solution sample S is filled in a double-sided transparent quartz cell 8, which serves as a container for holding the solution sample and has flat, transparent optical windows on four sides. In FIG. 4, 11A is the first light emitted from the first light source 11, which is focused by a spherical lens 5 with a focal length of 150 mm, for example, arranged so as to be confocal with respect to the double-sided transparent quartz cell 8. be illuminated. 6 is a spherical lens that converges the first incident light 11B that enters the photodetector 13. 12 is a second light source that emits second light 12A. A cylindrical lens pair 9 is composed of a cylindrical convex lens 9a and a cylindrical concave lens 9b, and magnifies the second light 12A in the optical axis direction of the first light 11A or reduces it in a direction perpendicular to the first light 11A. As shown in FIG. 4, the first light 11A whose amount of light absorption is to be measured is optically excited from a direction perpendicular to the first light 11A. At this time, in order to increase the interaction distance for the first light 11A, as shown in the plan view and side view of FIGS. 5(a) and 5(b), the pulsed light that is the second light 12A is The first light 11A expands to the optical path length of the double-sided transparent quartz cell 8 in the optical axis direction (FIG. 5(a)), and decreases to the beam diameter of the first light 11A in the direction perpendicular to this (FIG. 5(a)). 5(b)). Therefore, due to constraints on the optical system of the second light 12A, the optical path length for measuring the amount of light absorption is limited to about 10 mm.

【0004】これに対し縦励起は、図6に示すように、
光吸収量の測定を行う第1の光11Aと第2の光12A
であるパルス光との光軸を一致させてから、溶液試料S
を保持する容器として平面、かつ透明な2面の光学窓を
有する片面透明石英セル10に入射させるもので、片面
透明石英セル10で測定を行うことが可能であり、光吸
収量の測定を行う光路長の制限はないが、光軸調整の制
限から実質的には10数cmが限度である。なお、6a
は球面レンズ、7は半透鏡または微小直角プリズムであ
る。
On the other hand, vertical excitation, as shown in FIG.
First light 11A and second light 12A for measuring the amount of light absorption
After aligning the optical axis with the pulsed light, the solution sample S
The light is incident on a single-sided transparent quartz cell 10 that is a flat container that holds the light and has optical windows on two transparent sides.Measurements can be made using the single-sided transparent quartz cell 10, and the amount of light absorbed can be measured. Although there is no limit to the optical path length, the practical limit is more than 10 cm due to restrictions on optical axis adjustment. In addition, 6a
is a spherical lens, and 7 is a semi-transparent mirror or a minute rectangular prism.

【0005】また、過渡光吸収量測定と同種の測定であ
る多光子吸収スペクトル測定方法においては、蛍光を発
する化合物については蛍光検出励起スペクトル法による
測定が最も高感度であるが、蛍光を発する化合物に制限
されてしまうこと、励起光源であるレーザー光の波長可
変にかなりの時間を要することおよび測定波長が離散的
となってしまい連続スペクトルが得られない等の欠点を
有する。
In addition, in the multiphoton absorption spectrum measurement method, which is the same type of measurement as transient light absorption measurement, the fluorescence detection excitation spectrometry method has the highest sensitivity for compounds that emit fluorescence; however, for compounds that emit fluorescence, It takes a considerable amount of time to tune the wavelength of the laser beam that is the excitation light source, and the measurement wavelength becomes discrete, making it impossible to obtain a continuous spectrum.

【0006】[0006]

【発明が解決しようとする課題】このように、従来の溶
液試料Sにおける定常光吸収測定においては、横励起法
では光吸収量の測定を行う光路長は10mm程度に制限
されてしまう。また、縦励起法でも10数cmが限度で
あり、満足すべきものではなかった。さらに、過渡光吸
収量測定と同種の測定である多光子吸収スペクトル測定
方法では溶液試料Sが蛍光を発する化合物に制限されて
しまう等の欠点があった。
As described above, in the conventional steady light absorption measurement for a solution sample S, the optical path length for measuring the amount of light absorption is limited to about 10 mm in the transverse excitation method. Further, even in the longitudinal excitation method, the limit is about 10-odd cm, which is not satisfactory. Furthermore, the multiphoton absorption spectrum measurement method, which is the same type of measurement as the transient light absorption amount measurement, has the disadvantage that the solution sample S is limited to compounds that emit fluorescence.

【0007】本発明の目的は、これらの欠点を除去する
ことにあり、原理的には光路長の制限を有しない縦励起
法において、光吸収量の測定を行う第1の光と第2の光
であるパルス光をセル内において自動的、かつ完全に一
致させることを目的とし、フェムト秒領域までの光吸収
量の測定に対して、最適の光吸収量測定方法を提供する
ものである。
The purpose of the present invention is to eliminate these drawbacks, and in principle, in the longitudinal excitation method, which has no limitation on the optical path length, the first light and the second light for measuring the amount of light absorption are used. The aim is to automatically and completely match pulsed light within a cell, and to provide an optimal light absorption measurement method for measuring light absorption up to the femtosecond region.

【0008】[0008]

【課題を解決するための手段】本発明にかかる光吸収量
測定方法は、被測定物質からの検出光と第2の光である
パルス光の相互作用領域を完全に一致させ、かつ、この
パルス光による微小な光吸収量変化を効率よく検出する
ために、相互作用距離を充分に長くして測定するように
したものである。
[Means for Solving the Problems] The method for measuring the amount of light absorption according to the present invention is to completely match the interaction region of the detected light from the substance to be measured and the pulsed light which is the second light, and to In order to efficiently detect minute changes in light absorption due to light, the interaction distance is made sufficiently long for measurement.

【0009】[0009]

【作用】本発明によれば、内径0.3〜0.5mmの石
英ガラス管内にこれよりも高い屈折率を有する溶液試料
を充填し、この溶液試料中を伝播する光が石英ガラス管
との界面においての全反射により、溶液試料による光吸
収以外のいかなる損失も受けずに入射端より出射端まで
伝播させることにより2本の光軸を完全に一致させ、微
小光吸収量である過渡的光吸収量等を測定可能にする。
[Operation] According to the present invention, a quartz glass tube with an inner diameter of 0.3 to 0.5 mm is filled with a solution sample having a higher refractive index than the quartz glass tube, and light propagating through the solution sample is caused to interact with the quartz glass tube. Due to total reflection at the interface, the two optical axes are perfectly aligned by propagating from the input end to the output end without suffering any loss other than light absorption by the solution sample, and transient light with a small amount of light absorption is generated. Make it possible to measure absorption amount, etc.

【0010】0010

【実施例】図1は本発明を実施するための装置の構成図
である。図1において、図4,図5,図6と同じ符号は
同じものを示し、1は内径0.3mmに形成され、端面
ができる限り光軸に対して直交するように形成された長
さ2mの石英ガラス管で、その両端に、光学的に平面、
かつ平滑な光学窓3を有する試料溜2を設置する。この
光学窓3と石英ガラス管1の端面の間の距離は、これに
結合する集光光学系の開口数(0.12)により最小値
2mmに設定されている。以上により溶液試料Sを保持
するための試料容器4が構成される。この時の試料容積
は1m1であった。石英ガラス管1の屈折率はn(58
9.3nm)=1.458,(n(1.06μm)=1
.449)であり、溶媒として用いたベンゼンの屈折率
はn(589.3nm)=1.4979であるので、光
ファイバとしての光の伝送条件を満たしている。この時
、溶質であるナフタレンの濃度は3.4x10−4mo
l/lと希薄であり、屈折率に対する寄与は小さいので
無視してよい。白色光を透過させた時に吸収スペクトル
は、通常の10mmセルによる測定と一致した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of an apparatus for carrying out the present invention. In Fig. 1, the same reference numerals as in Figs. 4, 5, and 6 indicate the same parts, and 1 is formed with an inner diameter of 0.3 mm and a length of 2 m with the end face as perpendicular to the optical axis as possible. A quartz glass tube with optically flat surfaces at both ends,
A sample reservoir 2 having a smooth optical window 3 is installed. The distance between the optical window 3 and the end face of the silica glass tube 1 is set to a minimum value of 2 mm due to the numerical aperture (0.12) of the condensing optical system coupled thereto. The sample container 4 for holding the solution sample S is configured as described above. The sample volume at this time was 1 ml. The refractive index of the quartz glass tube 1 is n(58
9.3nm)=1.458, (n(1.06μm)=1
.. 449), and the refractive index of benzene used as a solvent is n (589.3 nm) = 1.4979, which satisfies the light transmission conditions for an optical fiber. At this time, the concentration of naphthalene, which is a solute, is 3.4 x 10-4 mo
Since it is dilute (1/l) and its contribution to the refractive index is small, it can be ignored. The absorption spectrum when transmitting white light was consistent with measurements using a conventional 10 mm cell.

【0011】次に、白色光に加えて励起光として波長1
.06μmのレーザ光を通過させた時のスペクトルを図
2に示す。これは、蛍光検出励起スペクトル法による測
定結果(図3)に比べて、連続スペクトルが得られ波長
分解能がはるかに良く、この方法による微小光吸収量測
定の有用性が実証された。
Next, in addition to white light, a wavelength of 1 is used as excitation light.
.. FIG. 2 shows the spectrum when a laser beam of 0.06 μm is passed through. This shows that a continuous spectrum was obtained and the wavelength resolution was much better than the measurement results using fluorescence detection excitation spectroscopy (Fig. 3), demonstrating the usefulness of measuring minute light absorption using this method.

【0012】なお、本発明の光吸収量測定方法は上述の
実施例に拘束されない。例えば、石英ガラス管1の代り
に他の光学ガラスもしくは低い屈折率を有する高分子チ
ューブを用いることも可能である。
[0012] The method for measuring the amount of light absorption according to the present invention is not limited to the above-mentioned embodiments. For example, instead of the quartz glass tube 1, it is also possible to use other optical glasses or polymer tubes with a low refractive index.

【0013】[0013]

【発明の効果】本発明の光吸収量測定方法は、被測定物
質からの検出光と第2の光であるパルス光の相互作用領
域を完全に一致させ、かつ、このパルス光による微小な
光吸収量変化を効率よく検出するために、相互作用距離
を充分に長くして測定するようにしたので、容易な光学
調整方法により相異なる2つの光の相互作用領域を完全
に一致させるのに適しており、特に10ミクロン程度ま
での厳密な光学調整を要求されるフェムト秒領域で使用
する光学装置として最適であることは上述の通りである
Effects of the Invention The light absorption measurement method of the present invention allows the interaction region of the detected light from the substance to be measured and the pulsed light, which is the second light, to completely match, and also allows the detection light from the pulsed light to In order to efficiently detect changes in absorption, the interaction distance is made sufficiently long for measurement, making it suitable for perfectly matching the interaction regions of two different lights using a simple optical adjustment method. As mentioned above, it is particularly suitable as an optical device for use in the femtosecond region, which requires precise optical adjustment down to about 10 microns.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光吸収量測定方法を実施するための測
定装置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a measuring device for implementing the light absorption amount measuring method of the present invention.

【図2】ナフタレンの同時2光子吸収スペクトル図であ
る。
FIG. 2 is a simultaneous two-photon absorption spectrum diagram of naphthalene.

【図3】ナフタレンの蛍光検出2光子吸収スペクトル図
である。
FIG. 3 is a fluorescence-detected two-photon absorption spectrum diagram of naphthalene.

【図4】従来の横励起による光吸収量測定方法を説明す
るための測定装置の構成図である。
FIG. 4 is a configuration diagram of a measuring device for explaining a conventional method for measuring light absorption using lateral excitation.

【図5】図4の円筒レンズ対の作用を説明するための図
である。
5 is a diagram for explaining the action of the cylindrical lens pair in FIG. 4. FIG.

【図6】従来の縦励起による光吸収量測定方法を説明す
るための測定装置の構成図である。
FIG. 6 is a configuration diagram of a measuring device for explaining a conventional method for measuring light absorption using longitudinal excitation.

【符号の説明】[Explanation of symbols]

1      石英ガラス管 2      試料溜 3      光学窓 4      試料容器 5      球面レンズ 6      球面レンズ 7      半透鏡または微小直角プリズム8   
   両面透明石英セル 9      円筒レンズ対 10    片面透明石英セル 11    第1の光源 12    第2の光源 13    光検出器 11A  第1の光 11B  第1の入射光 12A  第2の光 S      溶液試料
1 Quartz glass tube 2 Sample reservoir 3 Optical window 4 Sample container 5 Spherical lens 6 Spherical lens 7 Semi-transparent mirror or minute right angle prism 8
Double-sided transparent quartz cell 9 Cylindrical lens pair 10 Single-sided transparent quartz cell 11 First light source 12 Second light source 13 Photodetector 11A First light 11B First incident light 12A Second light S Solution sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光吸収量の測定を行う第1の光と、ピ
コ秒、フェムト秒もしくはこれより短い時間幅を有する
第2の光であるパルス光の入射に対して応答性を示し、
入射光と相互作用を行った被測定物質の光吸収量測定方
法において、前記被測定物質からの検出光と前記第2の
光であるパルス光の相互作用領域を完全に一致させ、か
つ、このパルス光による微小な光吸収量変化を効率よく
検出するために、相互作用距離を充分に長くして測定す
ることを特徴とする光吸収量測定方法。
1. Shows responsiveness to the incidence of first light for measuring the amount of light absorption and pulsed light that is second light having a time width of picoseconds, femtoseconds or shorter,
In a method for measuring the amount of light absorption of a substance to be measured that interacts with incident light, the interaction region of the detection light from the substance to be measured and the pulsed light that is the second light is made to completely match, and A method for measuring light absorption amount, characterized in that measurement is performed with a sufficiently long interaction distance in order to efficiently detect minute changes in light absorption amount due to pulsed light.
JP6547491A 1991-03-06 1991-03-06 Method for measuring absorption quantity of light Pending JPH04278441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6547491A JPH04278441A (en) 1991-03-06 1991-03-06 Method for measuring absorption quantity of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6547491A JPH04278441A (en) 1991-03-06 1991-03-06 Method for measuring absorption quantity of light

Publications (1)

Publication Number Publication Date
JPH04278441A true JPH04278441A (en) 1992-10-05

Family

ID=13288142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6547491A Pending JPH04278441A (en) 1991-03-06 1991-03-06 Method for measuring absorption quantity of light

Country Status (1)

Country Link
JP (1) JPH04278441A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103271A (en) * 2018-10-29 2020-05-05 谱焰实业(上海)有限公司 Atomic fluorescence analysis method for outer tube sample injection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105944A (en) * 1983-11-14 1985-06-11 Keiichiro Fuwa Electrophotometric method and apparatus using capillary tube with total reflection long optical path
JPS6351259B2 (en) * 1978-06-09 1988-10-13 Mitsubishi Heavy Ind Ltd
JPS63313036A (en) * 1987-06-16 1988-12-21 Hitachi Ltd Transitional absorption spectral method
JPH02216435A (en) * 1989-02-17 1990-08-29 Nec Corp Time division spectroscopic method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6351259B2 (en) * 1978-06-09 1988-10-13 Mitsubishi Heavy Ind Ltd
JPS60105944A (en) * 1983-11-14 1985-06-11 Keiichiro Fuwa Electrophotometric method and apparatus using capillary tube with total reflection long optical path
JPS63313036A (en) * 1987-06-16 1988-12-21 Hitachi Ltd Transitional absorption spectral method
JPH02216435A (en) * 1989-02-17 1990-08-29 Nec Corp Time division spectroscopic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103271A (en) * 2018-10-29 2020-05-05 谱焰实业(上海)有限公司 Atomic fluorescence analysis method for outer tube sample injection
CN111103271B (en) * 2018-10-29 2021-08-31 重庆民泰新农业科技发展集团有限公司 Atomic fluorescence analysis method for outer tube sample injection

Similar Documents

Publication Publication Date Title
US3604927A (en) Total reflection fluorescence spectroscopy
US7064836B2 (en) Brewster's angle flow cell for cavity ring-down spectroscopy
US6385380B1 (en) Hollow optical waveguide for trace analysis in aqueous solutions
JP2017522542A (en) Prism coupling system and method for evaluating characteristics of waveguides with large layer depth
US20180031475A1 (en) Beam splitter and arrangement for examining a sample which can be excited by means of electromagnetic radiation
Belz et al. Linearity and effective optical pathlength of liquid waveguide capillary cells
JPS63273042A (en) Optical measuring instrument
Thompson et al. Component selection for fiber-optic fluorometry
JPH04278441A (en) Method for measuring absorption quantity of light
Chen et al. Light-sheet skew-ray enhanced pump-absorption for sensing
JP3848125B2 (en) Photothermal conversion spectroscopic analysis method and microchemical system
US7057729B2 (en) Photothermal conversion spectroscopic analysis method, and photothermal conversion spectroscopic analysis apparatus for carrying out the method
JP4565061B2 (en) Optical branch circuit and sensor
JP2006125919A (en) Spectral analyzer and spectral analysis method
CN111579535A (en) Preparation method of core region compression type optical fiber Mach-Zehnder interferometer
JPH0585020B2 (en)
JP4331126B2 (en) Thermal lens spectrometer
CN113960009B (en) Capillary fluorometer with low background signal
JP2000088749A (en) Probe for optical measurement
Ding et al. Fiber refractive index sensor based on surface plasmon resonance with no-core fiber
KR100604357B1 (en) apparatus for measuring the refractive index profile of optical devices using confocal scanning microscopy
JPH06109635A (en) Optical measuring device
Pal Reliability of Liquid Core Optical Waveguides for Sensitive Optical Absorption Measurements of Trace Species in water
Kao et al. Elliptical trough reflector for the collection of light from linear sources
RU2134874C1 (en) Apparatus measuring gas concentrations