JPH02216435A - Time division spectroscopic method - Google Patents

Time division spectroscopic method

Info

Publication number
JPH02216435A
JPH02216435A JP3737789A JP3737789A JPH02216435A JP H02216435 A JPH02216435 A JP H02216435A JP 3737789 A JP3737789 A JP 3737789A JP 3737789 A JP3737789 A JP 3737789A JP H02216435 A JPH02216435 A JP H02216435A
Authority
JP
Japan
Prior art keywords
light
time
intensity
pulse
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3737789A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yokoyama
弘之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3737789A priority Critical patent/JPH02216435A/en
Publication of JPH02216435A publication Critical patent/JPH02216435A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make time division measurement of even the emitted light of the wavelength as long as >=1mum by making use of the linearity that the intensity of the light emitted from a light emitting material possesses with respect to the intensity of stimulating light. CONSTITUTION:An incident light pulse 1 is made into a stimulating light pulse 15 by a beam splitter 12 and mirrors 13, 14. A time delay 16 can be provided between the superposed two stimulating light pulses 15 by moving either of the mirror 13 or 14 in the incident direction of the light pulse at this time. The pulses 15 pass through a dichroic mirror 17 and are thereafter condensed and projected by a lens 18 to a sample 19. The emitted light from a sample 19 is reflected by a mirror 17 via a lens 18 and is made into signal light 20. The signal light 20 is converted by a photodetector 21 to an electric signal which is then time averaged and is measured as a voltage or current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、種々の物質、特に半導体の発光命令について
分光計測を行うための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for performing spectroscopic measurements of light emission commands of various materials, particularly semiconductors.

〔従来の技術〕[Conventional technology]

In5(10””秒)以下の時間幅を有する光パルスを
用いた高速の発光過程の計測測定は、種々のデバイス材
料の品質の評価について知見を得る上で非常に有用であ
り、近年急速に普及しつつある。このような測定におい
ては、通常ins以下の時間幅とともに高速の微弱光検
出系を用いる必要がある0代表的な例としては、光パル
スとして、モード周期レーザやパルス電流励起半導体レ
ーザから発生するps(10”秒)領域の時間幅を有す
るレーザパルスを用い、高速微弱光検出系としてストリ
ークカメラまたは単一光子計数系を用いるものがある。
Measurement of high-speed light emission processes using light pulses with a time width of In5 (10"" seconds) or less is extremely useful for gaining knowledge about the quality evaluation of various device materials, and has been rapidly gaining popularity in recent years. It is becoming popular. In such measurements, it is usually necessary to use a high-speed weak light detection system with a time width of less than ins.A typical example is the ps generated from a mode periodic laser or a pulsed current excited semiconductor laser as an optical pulse. There is a method that uses a laser pulse having a time width of (10'' seconds) and uses a streak camera or a single photon counting system as a high-speed weak light detection system.

このような高速の発光計測システムおよび発光計測の具
体的方法については、例えば、フォークエト(Fouq
et ) 、バーンハム(Burnham )によるア
イトリプルイー ジャーナル・オブ・カランタム・エレ
クトロニクス(IEEE、 J、QuantumEle
ctronics )誌の1986年QE−22巻、9
号の1799頁〜1810頁にわたって掲載された論文
の中に詳しい記述がある。この論文の中ではモード同期
したクリプトンイオンレーザと音響光学シャッターの組
み合わせによって820kHzで繰る返される約250
psの光パルスを用いてGaAs/AlGaAs量子井
戸の試料を励起し、この試料からの発光を高速の光子計
数装置を用いて時間分解測定を行っている。
Regarding such a high-speed luminescence measurement system and a specific method of luminescence measurement, see, for example, Fouq.
et), Burnham, IEEE Journal of Quantum Electronics (IEEE, J, QuantumEle)
ctronics) magazine, QE-22, 1986, 9
A detailed description can be found in the paper published on pages 1799 to 1810 of the issue. In this paper, approximately 250
A GaAs/AlGaAs quantum well sample is excited using a ps light pulse, and time-resolved measurement of light emission from this sample is performed using a high-speed photon counter.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した測定方法の大きな問題点は、1μm以上の波長
で十分に高速かつ十分な感度を有する光検出素子がない
ために測定する発光の波長領域が300〜90Or+m
程度に限定されることである。
The major problem with the above measurement method is that there is no photodetection element that is sufficiently fast and sensitive at wavelengths of 1 μm or more, so the wavelength range of the emitted light to be measured is 300 to 90 Or+m.
It is limited to a certain extent.

本発明の目的は、上述した従来の計測方法の欠点を除去
し、1μm以上の長波長の発光についても時間分解測定
が可能な発光計測方法を提供することにある。
An object of the present invention is to provide a luminescence measurement method that eliminates the drawbacks of the conventional measurement methods described above and allows time-resolved measurement of luminescence with a long wavelength of 1 μm or more.

〔課題を解決するための手段〕[Means to solve the problem]

前述の問題点を解決するために本発明が提供する時間分
解分光方法は、発光物質に2つの光パルスをこの光パル
ス間に時間遅延を設けて同一場所に照射し、該発光物質
からの発光を時間積分して検出した信号を前記時間遅延
を変化させつつ測定することを特徴としている。
In order to solve the above-mentioned problems, the time-resolved spectroscopy method provided by the present invention irradiates a light-emitting substance with two light pulses at the same location with a time delay between the light pulses, and detects the light emission from the light-emitting substance. The present invention is characterized in that a signal detected by time-integrating is measured while changing the time delay.

〔作用〕[Effect]

本発明では、発光物質からの発光強度が励起光強度に対
して非線形性を有することを利用する。
The present invention utilizes the fact that the intensity of light emitted from a light-emitting substance has nonlinearity with respect to the intensity of excitation light.

このような特性は多くの物質について見られるものであ
るが、特にドーピングをしない半導体の場合に著しい。
Such characteristics are observed in many materials, but are particularly noticeable in undoped semiconductors.

例えば室温で発光が高速で減衰する多くの場合は、非発
光再結合によって半導体内の光励起キャリアが消滅する
割合が非常に大きい。
For example, in many cases where light emission decays rapidly at room temperature, the rate at which photoexcited carriers in a semiconductor are annihilated by non-radiative recombination is extremely large.

この時光励起キャリア密度に比べてドーピング濃度が十
分に小さければ、発光強度は励起光強度の2乗に比例す
る特性を持つ。また、励起光を短い光パルスとした場合
に、時間積分した発光強度についても同様のことが言え
る。
At this time, if the doping concentration is sufficiently small compared to the optically excited carrier density, the emission intensity has a characteristic that it is proportional to the square of the excitation light intensity. The same thing can be said about the time-integrated emission intensity when the excitation light is a short optical pulse.

この特性を利用すると、例えば2つに分割した光パルス
を、相互に時間遅延を持たせた後再度重ね合わせて半導
体試料に照射した際の発光を時間積分して観測した場合
、その強度は時間遅延がゼロの時に最大となり、時間遅
延が大きくなるに従って減少する。光パルスの時間幅が
発光寿命に比べて十分短かければ、発光寿命は時間遅延
による強度変化の特性から直接的に求められる。この際
、重要なことは観測するのは時間積分した発光強度であ
るので高速の光検出器を要しない点である。それ故高速
でなくとも感度の高い光検出器を用いれば赤外域の長波
長でも実質的に高速度で発光の時間変化を測定できる0
発光強度が励起光強度の2乗に比例する場合、光パルス
を各々1/2の強度に2分割して試料表面上でビームを
重ね合わせて発光を観測すると、時間積分した発光強度
I(τ)は、時間遅延でと I (τ)戊(1+exP (−l rτl ) )の
ような関係になることが計算される。ここにγは発光の
寿命の逆数を表わす。それ散発光強度のτに対する依存
性の測定結果からただちに発光寿命を求めることができ
る。試料が半導体の場合には、1/γが励起キャリアの
寿命を示す。
Utilizing this characteristic, for example, if a light pulse that is split into two is overlapped again after a time delay between them, and the luminescence is observed by time integration when it is irradiated onto a semiconductor sample, the intensity will change over time. It is maximum when the delay is zero and decreases as the time delay increases. If the time width of the optical pulse is sufficiently shorter than the luminescence lifetime, the luminescence lifetime can be directly determined from the characteristics of intensity changes due to time delay. In this case, the important point is that since what is observed is the time-integrated emission intensity, a high-speed photodetector is not required. Therefore, even if a high-speed photodetector is used, it is possible to measure the temporal change in luminescence at a substantially high speed even at long wavelengths in the infrared region by using a highly sensitive photodetector.
When the emission intensity is proportional to the square of the excitation light intensity, if the light pulse is divided into two halves each with 1/2 intensity and the beams are superimposed on the sample surface to observe the emission, the time-integrated emission intensity I(τ ) is calculated to have the following relationship with I (τ) (1+exP (−l rτl ) ) with a time delay. Here, γ represents the reciprocal of the lifetime of light emission. The luminescence lifetime can be immediately determined from the measurement result of the dependence of the scattered luminescence intensity on τ. When the sample is a semiconductor, 1/γ indicates the lifetime of excited carriers.

〔実施例〕〔Example〕

この発明の実施例について図面を参照しながら詳細な説
明を行う。
Embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明を適用した時間分解分光の一実施例の
模式的構成を示している。入射光パルス11をビームス
プリッタ12により半分の強度ずつ2分割し、2分割さ
れた光パルスはミラー13およびミラー14で垂直に反
射され、さらに再びビームスプリッタ12によってそれ
ぞれの半分の強度が下方に反、射されて光路的に重ね合
わせられて励起光パルス15となる。この際ミラー13
またはミラー14のいずれかを光パルスの入射方向に沿
って前後に動かすことにより重ね合わせられた2つの励
起光パルス15間に時間遅延16を持たせることができ
る。励起光パルス15はダイクロイックミラー17を通
り抜けた後レンズ18によって試料19に集光照射され
る。試料1つがらの発光はレンズ18によってコツメー
トされダイクロイックミラー17によって反射されて信
号光20となり、これが光検出器21によっ″C電気信
号に変換され、その後電気信号は時間平均して電圧また
は電流として測定される。
FIG. 1 shows a schematic configuration of an embodiment of time-resolved spectroscopy to which the present invention is applied. The incident light pulse 11 is split into two parts each having half intensity by the beam splitter 12, and the split light pulses are vertically reflected by the mirrors 13 and 14, and each half of the intensity is reflected downward by the beam splitter 12 again. , and are superimposed along the optical path to form an excitation light pulse 15. At this time, mirror 13
Alternatively, by moving one of the mirrors 14 back and forth along the incident direction of the light pulses, a time delay 16 can be provided between the two superimposed excitation light pulses 15. The excitation light pulse 15 passes through a dichroic mirror 17 and is focused onto a sample 19 by a lens 18 . The light emitted from one sample is collated by a lens 18, reflected by a dichroic mirror 17, and becomes a signal light 20. This is converted into a "C" electrical signal by a photodetector 21, and then the electrical signal is converted into a voltage or current on a time average. It is measured as.

本実施例では、入射光パルス11として、パルス電流で
駆動したAJ2GaAsダイオードレーザからのパルス
幅約Loops、波長的830nmの光パルスをレンズ
でコリメートして用いた。また、試料19としては、波
長1.5〜1.6μmの赤外光を測定する目的で、rn
P上にエピタキシャル成長したI nGaAs薄膜を用
いた。さらに光検出器21としては、応答速度がLop
s程度のGe光検出器を用いた。
In this example, as the incident light pulse 11, a light pulse with a pulse width of about Loops and a wavelength of 830 nm from an AJ2GaAs diode laser driven by a pulse current was used, collimated with a lens. In addition, as sample 19, for the purpose of measuring infrared light with a wavelength of 1.5 to 1.6 μm,
An InGaAs thin film epitaxially grown on P was used. Furthermore, the photodetector 21 has a response speed of Lop.
A Ge photodetector with a wavelength of approximately 1.5 s was used.

第2図は、第1図の構成による測定結果の例であり、発
光強度非線形層間曲線31はI nGaAs薄膜からの
発光強度の時間遅延依存性を示している。この測定結果
から、試料の発光寿命は約1.2nsであることが分っ
た。
FIG. 2 shows an example of measurement results using the configuration shown in FIG. 1, and a nonlinear interlayer curve 31 of emission intensity shows the time delay dependence of emission intensity from an InGaAs thin film. From this measurement result, it was found that the luminescence lifetime of the sample was about 1.2 ns.

本実施例では、波長1.5〜1.6μmの発光を測定す
る目的で光パルスの光源、被測定試料および光検出器の
選択を行ったが、本発明はこの組み合せに限定されるも
のではなく、様々な発光材料の発光波長に応じて、励起
光パルス波長およびその光源、さらに光検出器と選べば
良いことは明らかである。
In this example, a light pulse light source, a sample to be measured, and a photodetector were selected for the purpose of measuring light emission with a wavelength of 1.5 to 1.6 μm, but the present invention is not limited to this combination. It is clear that the excitation light pulse wavelength, its light source, and photodetector can be selected depending on the emission wavelength of various luminescent materials.

また、材料の持つ励起光強度に対する発光強度の非線形
性についても、2乗依存性である必要はなく、線形から
はずれているあらゆる場合′について本発明は適用可能
である。また、一般的に、時間遅延を持った2つの励起
光パルスが同一光源からの光パルスを2分したものであ
る必要はなく、波長1強度ともに異なっていても良い、
これらの種々の条件のもとての測定の際に重要なのは、
時間遅延に対する発光強度の変化を解析的に予測し、こ
の予測に基づいて測定データから発光寿命を求める必要
があることである。
Furthermore, the nonlinearity of the emission intensity with respect to the excitation light intensity of the material does not need to be square dependence, and the present invention is applicable to all cases where the nonlinearity deviates from linearity. In addition, in general, the two excitation light pulses with a time delay do not need to be two parts of a light pulse from the same light source, and may have different wavelengths and intensities.
What is important when making measurements under these various conditions is that
It is necessary to analytically predict the change in luminescence intensity with respect to time delay and calculate the luminescence lifetime from the measured data based on this prediction.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明を用いれば高速の光検出器
を必要とせずに、発光物質の発光寿命を高速に測定する
ことが可能となる。
As described above, by using the present invention, it becomes possible to measure the luminescence lifetime of a luminescent substance at high speed without requiring a high-speed photodetector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を適用した時間分解分光測定の一実施
例の模式的構成を示す図である。また、第2図は、第1
図の構成によって測定された、InGaAsfillK
からの発光の強度の時間遅延に対する依存性を示す図で
ある。 11・・・入射光パルス、12・・・ビームスプリッタ
、13・・・ミラー、14・・・ミラー、15・・・励
起光パルス、16・・・時間遅延、17・・・グイクロ
イックミラー 18・・・レンズ、19・・・試料、2
0・・・信号光、21・・・光検出器、31・・・発光
強度非線形相関曲線。
FIG. 1 is a diagram showing a schematic configuration of an embodiment of time-resolved spectrometry to which the present invention is applied. Also, Figure 2 shows the first
InGaAsfillK measured by the configuration shown in the figure
FIG. 3 is a diagram showing the dependence of the intensity of light emitted from the cell on time delay. DESCRIPTION OF SYMBOLS 11... Incident light pulse, 12... Beam splitter, 13... Mirror, 14... Mirror, 15... Excitation light pulse, 16... Time delay, 17... Guicroic mirror 18... Lens, 19... Sample, 2
0...Signal light, 21...Photodetector, 31...Emission intensity nonlinear correlation curve.

Claims (1)

【特許請求の範囲】[Claims]  発光物質に2つの光パルスをこの光パルス間に時間遅
延を設けて同一場所に照射し、該発光物質からの発光を
時間積分して検出した信号を前記時間遅延を変化させつ
つ測定することを特徴とする時間分解分光方法。
A light emitting substance is irradiated with two light pulses at the same place with a time delay between the light pulses, and a signal detected by time-integrating the light emission from the light emitting substance is measured while changing the time delay. Characteristic time-resolved spectroscopy method.
JP3737789A 1989-02-17 1989-02-17 Time division spectroscopic method Pending JPH02216435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3737789A JPH02216435A (en) 1989-02-17 1989-02-17 Time division spectroscopic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3737789A JPH02216435A (en) 1989-02-17 1989-02-17 Time division spectroscopic method

Publications (1)

Publication Number Publication Date
JPH02216435A true JPH02216435A (en) 1990-08-29

Family

ID=12495831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3737789A Pending JPH02216435A (en) 1989-02-17 1989-02-17 Time division spectroscopic method

Country Status (1)

Country Link
JP (1) JPH02216435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278441A (en) * 1991-03-06 1992-10-05 Agency Of Ind Science & Technol Method for measuring absorption quantity of light
JP2006267651A (en) * 2005-03-24 2006-10-05 Olympus Corp Microscopic device
JP2006276667A (en) * 2005-03-30 2006-10-12 Olympus Corp Microscopic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278441A (en) * 1991-03-06 1992-10-05 Agency Of Ind Science & Technol Method for measuring absorption quantity of light
JP2006267651A (en) * 2005-03-24 2006-10-05 Olympus Corp Microscopic device
JP2006276667A (en) * 2005-03-30 2006-10-12 Olympus Corp Microscopic device

Similar Documents

Publication Publication Date Title
US20120160993A1 (en) System and method for analyzing light by three-photon counting
US8634078B2 (en) Sensor, method for detecting the presence and/or concentration of an analyte using the sensor, and use of the method
JPH0477605A (en) Scanning type tunnel microscope and probe used therein
JPH08335617A (en) Method and equipment for response analysis of semiconductor material using optical stimulation
US5128950A (en) Low noise pulsed light source using laser diode
US20170016769A1 (en) Measurement system of real-time spatially-resolved spectrum and time-resolved spectrum and measurement module thereof
NL9002563A (en) PULSE MODULATION OF THE EXCITATION LIGHT SOURCE OF FLOW CYTOMETERS.
JP2525894B2 (en) Fluorescence characteristic inspection device for semiconductor samples
JPS63250835A (en) Inspection of epitaxial wafer
JPWO2005022180A1 (en) Method and apparatus for measuring electric field distribution of semiconductor device
US4988859A (en) Optical waveform measuring device
EP3814780A1 (en) Method and system for performing terahertz near-field mesurements
JPH02216435A (en) Time division spectroscopic method
JP2659554B2 (en) Light intensity correlator
WO2003046519A1 (en) Delay time modulation femtosecond time-resolved scanning probe microscope apparatus
Zhang et al. Simple near-infrared time-correlated single photon counting instrument with a pulsed diode laser and avalanche photodiode for time-resolved measurements in scanning applications
Garro et al. Resonant Rayleigh scattering by excitonic states laterally confined in the interface roughnessof GaAs/Al x Ga 1− x As single quantum wells
JP4441381B2 (en) Method for measuring surface carrier recombination velocity
Strauß et al. Photon-statistics excitation spectroscopy of a single two-level system
US5168164A (en) Optical waveform measuring device
US4772118A (en) Methods of and apparatus for measuring picosecond semiconductor laser pulse duration using the internally generated second harmonic emission accompanying the laser output
JP5370286B2 (en) Fluorescence detection device
JPH08247935A (en) Optical device and detection device
JPH0776711B2 (en) High time resolved total internal reflection spectroscopy and measurement equipment
JP2006300808A (en) Raman spectrometry system