JPS60105944A - Electrophotometric method and apparatus using capillary tube with total reflection long optical path - Google Patents

Electrophotometric method and apparatus using capillary tube with total reflection long optical path

Info

Publication number
JPS60105944A
JPS60105944A JP21256683A JP21256683A JPS60105944A JP S60105944 A JPS60105944 A JP S60105944A JP 21256683 A JP21256683 A JP 21256683A JP 21256683 A JP21256683 A JP 21256683A JP S60105944 A JPS60105944 A JP S60105944A
Authority
JP
Japan
Prior art keywords
capillary tube
light
solvent
tube
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21256683A
Other languages
Japanese (ja)
Other versions
JPH0323859B2 (en
Inventor
Keiichiro Fuwa
不破 敬一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21256683A priority Critical patent/JPS60105944A/en
Publication of JPS60105944A publication Critical patent/JPS60105944A/en
Publication of JPH0323859B2 publication Critical patent/JPH0323859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0346Capillary cells; Microcells

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To achieve a higher sensitivity by a method wherein a capillary tube absorption cell is arranged to house a solvent with a larger refractive index than material thereof and a sample dissolved or dispersed therein and light is made incident at one end of the cell to be absorbed. CONSTITUTION:A capillary tube 5 as absorption cell is so arranged to introduce a solvent with a larger refractive index than material thereof at the inlet 6 and drain from the outlet 7 and an incident light Io from a light source 1 is made to enter the incident end of the tube 5 through a lens 2 or the like. Then, the emission light I from the emission end of the tube 5 is detected with a photodiode 8 and recorded on a recorder 11 via an amplifier 9 while done on a CRT12 or the like via a microprocessor 10. Thus, the tube 5 can be lengthened with a limited space by bending while attenuation due to reflection on the wall of the tube 5 can be eliminated.

Description

【発明の詳細な説明】 本発明は分光光度法及び装置に関し、特に全反射長光路
毛細管を用いた分光光度法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to spectrophotometric methods and apparatus, and more particularly to spectrophotometric methods and apparatus using total internal reflection long-path capillaries.

従来技術 可視光、赤外線または紫外線を吸収セル内に収容した被
測定物質の溶液へ通して物質の定量等を行う分光光度法
は良く知られている。分光光度法における感度は光路長
が長い程大きくなり、低濃度の物質の検出が可能になる
。換言すると、光路長と検出可能な物質濃度限界とは逆
比例の関係にある。しかしながら、光路長を大きくする
と分析装置の寸法が大きくなるので従来はディスク状ま
たは円筒状のセルが用いられているに過ぎない。
BACKGROUND OF THE INVENTION Spectrophotometric methods are well known, in which visible light, infrared rays, or ultraviolet rays are passed through a solution of a substance to be measured contained in an absorption cell to quantify the substance. The sensitivity in spectrophotometry increases as the optical path length increases, making it possible to detect substances at low concentrations. In other words, the optical path length and the detectable substance concentration limit are inversely proportional. However, increasing the optical path length increases the size of the analyzer, so conventionally only disk-shaped or cylindrical cells have been used.

例えば従来の典型的な比色計(可視光を用いる分光光度
計)は直径約2傭×長さ約1〜10α程度のディスク状
または円筒状のセルに溶液を収容した吸収セルを用い、
その軸線方向に光を透過させている。このような光路長
の短い吸収セルでは十分な感度を達成することができな
い。
For example, a typical conventional colorimeter (spectrophotometer that uses visible light) uses an absorption cell in which a solution is housed in a disk-shaped or cylindrical cell with a diameter of about 2 mm and a length of about 1 to 10 α.
Light is transmitted in the direction of its axis. An absorption cell with such a short optical path length cannot achieve sufficient sensitivity.

発明者の試み 一般に二の種の吸収セルはガラスまたは石英などの光透
過性の無機材料から製作され、また被測定物質の溶媒と
して水、アセトン、四塩化炭素、低級アルコールなどが
用いられる。本発明者は、吸収セルの材料としてガラス
(パイレックスガラスンを用いて長さ1m程の毛細管を
製作し、また溶媒として水等の上記した溶媒を用いて光
の透過性を測定したところ、分光光度法の高感度化を達
成することができることを確認した。しかしながら、1
m以上に及ぶ長さの毛細管は直線状のままでは広い場所
を必要とするため、分光光度計を工業的に製作すること
は事実上不可能となる。そこで、本発明者は上記の毛細
管をループ管として構成することを試みたが強力なレー
ザ光を光源として用いたにも拘らず毛細管の他端には光
がほとんど出射しなかった。その原因を探ると、毛細管
壁が鏡面反射型であるために、光が毛細管壁で繰返し反
射するうちに減衰することが原因であることが分った。
Attempts by the Inventor Generally, two kinds of absorption cells are manufactured from a light-transmitting inorganic material such as glass or quartz, and water, acetone, carbon tetrachloride, lower alcohol, etc. are used as a solvent for the substance to be measured. The inventor fabricated a capillary tube with a length of about 1 m using glass (Pyrex glass) as the material of the absorption cell, and measured the light transmittance using the above-mentioned solvent such as water as the solvent. It was confirmed that high sensitivity of the photometric method could be achieved.However, 1
Since a capillary tube with a length of more than m requires a large space if it remains straight, it is virtually impossible to industrially manufacture a spectrophotometer. Therefore, the present inventor attempted to configure the above-mentioned capillary tube as a loop tube, but almost no light was emitted from the other end of the capillary tube even though a powerful laser beam was used as a light source. When we investigated the cause, we found that the capillary wall is a specular reflection type, so the light is attenuated as it is repeatedly reflected on the capillary wall.

そこで本発明者は吸収セルを構成する毛細管を全反射型
の材料に置きかえるどとを着想して本発明に到達するこ
とができた0 発明の目的 本発明の目的は、入射光(可視光、赤外線、紫外線を含
む)の減衰が少なく長光路を有する吸収セルを用いた高
感度分光光度法及び装置を提供することにある。
Therefore, the present inventor came up with the idea of replacing the capillary tube constituting the absorption cell with a total reflection type material, and was able to arrive at the present invention. An object of the present invention is to provide a highly sensitive spectrophotometric method and apparatus using an absorption cell having a long optical path and little attenuation of infrared and ultraviolet light.

発明の概要 本発明の方法は、毛細管吸収セルに、その刺料の屈折率
よりも大きい屈折率を有する溶媒に分散または溶解した
試料を収容し、前記吸収セルの一端より光を入射させて
吸光を行わせること魯より成る、全反射長光路毛細管を
用いる分光光度法゛〔ある0また、本発明の装置はこの
ような毛細管を用いた分光光度計である。
Summary of the Invention The method of the present invention includes storing a sample dispersed or dissolved in a solvent having a refractive index greater than that of the sting in a capillary absorption cell, and absorbing light by entering light from one end of the absorption cell. The apparatus of the present invention is a spectrophotometer using a total reflection long-path capillary tube.

毛細管内壁における全反射条件はスネルの法則により規
定される。今毛細管端面への光の入射角をθとし、毛細
管壁の材料の屈折率をn、とし、毛細背向へ収容される
溶媒の屈折率をnlとするとき、全反射条件はsinθ
<647);ン一となり、n□)nlの関係すなわち、
溶媒の屈折率が毛細管のそれよりも大きいことが重要で
ある。このよう一 な条件は、従来のようなガラスや石灰などの管と水など
の溶媒との組合せでは実現できず、水などに代って二硫
化炭素等の大きい屈折率の溶媒を用いる必要がある。
The conditions for total reflection on the inner wall of the capillary are defined by Snell's law. Now, when the angle of incidence of light on the end face of the capillary is θ, the refractive index of the material of the capillary wall is n, and the refractive index of the solvent accommodated in the back side of the capillary is nl, the total reflection condition is sin θ
<647); n1, and the relationship n□)nl, that is,
It is important that the refractive index of the solvent is greater than that of the capillary. Such a condition cannot be achieved by conventional combinations of tubes made of glass or lime with solvents such as water, and it is necessary to use a solvent with a high refractive index such as carbon disulfide instead of water. be.

本発明によると、普通の分光光度法に比べて大幅な感度
の向上が達成される。使用される毛細管では管壁による
反射により光路長が実効的に増大しているだけでなく、
螺旋状に巻かれた形でも全反射条件を満足させることが
できるので、非常に長い光路長も設計が可能であり、狭
いスペースにおいて従来よりも3〜4桁も感度を向上さ
せることができる。ぎらに、毛細管であるため必要な試
料及び溶媒の景が少なくて済む利点が得られる。
According to the present invention, a significant increase in sensitivity is achieved compared to conventional spectrophotometric methods. In the capillary tube used, not only the optical path length is effectively increased due to reflection from the tube wall, but also
Since the total internal reflection condition can be satisfied even in a spirally wound form, it is possible to design a very long optical path length, and the sensitivity can be improved by 3 to 4 orders of magnitude compared to the conventional one in a narrow space. Additionally, since it is a capillary tube, there is an advantage that fewer samples and solvents are required.

毛細管の材質は溶媒の屈折率との関係で定まるものであ
る。溶媒としてベンゼン、アセトフェノン、二硫化炭素
、1−プロモナタリン等の高屈折率の溶媒を用いる場合
には、パイレックスガラス、石英、プラスチック材料等
が使用できる。溶媒として水を用いる場合には水よりも
小さい屈折率を有することが知られているプラスチック
材料等を用いることができる。毛細管は全体が溶媒より
小さい屈折率を有する必要はなく少くとも管内壁部分が
小さい屈折率を有すれば良い。従って、例えばガラス製
の毛細管の表面に低屈折率の被覆を施したものを用いる
ことができ、以下の実施例では樹脂被覆をした例を挙げ
である。
The material of the capillary tube is determined by the relationship with the refractive index of the solvent. When a high refractive index solvent such as benzene, acetophenone, carbon disulfide, or 1-promonataline is used as the solvent, Pyrex glass, quartz, plastic materials, etc. can be used. When water is used as a solvent, a plastic material or the like known to have a refractive index smaller than that of water can be used. It is not necessary that the entire capillary tube has a refractive index lower than that of the solvent; it is sufficient that at least the inner wall portion of the tube has a lower refractive index. Therefore, for example, a capillary tube made of glass whose surface is coated with a low refractive index can be used, and in the following examples, an example in which the surface is coated with a resin is given.

また、以下の実施例では単一波長の先を入射させた例に
ついて述べるが、光としては連続スペクトルを有する光
(例えばタングステンランプ)をそのまま毛細管に入射
させることも可能である。
Further, in the following embodiments, an example will be described in which light with a single wavelength is input, but it is also possible to directly input light having a continuous spectrum (for example, a tungsten lamp) into the capillary tube.

この場合には毛細管が十分に長りれば異った波長の光が
通過するため、出射光が波長に従って順に出射するいわ
ゆる時間分解が実現でき、分光器は不要となる。
In this case, if the capillary tube is sufficiently long, light of different wavelengths will pass through it, so it is possible to achieve so-called time resolution in which the emitted light is emitted in order according to the wavelength, and a spectrometer is not required.

本発明の方法を実施する装置の一例を図面を参照しI説
明する。
An example of an apparatus for carrying out the method of the present invention will be described with reference to the drawings.

第1図は本発明の分光光度計の概念図であり、第2図は
他の実施例における全反射長光路毛細管を示し、また第
6図は第1図、第2図の実施例に使用できる光入射部及
び溶媒流入部の一例を示す断面図である。
FIG. 1 is a conceptual diagram of the spectrophotometer of the present invention, FIG. 2 shows a total reflection long optical path capillary in another embodiment, and FIG. 6 is used in the embodiments of FIGS. 1 and 2. FIG. 3 is a cross-sectional view showing an example of a light incident part and a solvent inflow part.

第1図を参照するに、適当な光源例えばレーザ、タング
ステンランプ、又はキセノンランプ1からの光をレンズ
2、フィルタ3.4等を通して吸収セルである毛細管5
の入射端へ入射させる。
Referring to FIG. 1, light from a suitable light source such as a laser, a tungsten lamp, or a xenon lamp 1 is passed through a lens 2, a filter 3.4, etc. through a capillary tube 5, which is an absorption cell.
input to the input end of the

毛細管5は例えばパイレックスガラス(屈折率1474
)等の材料から製作されている。毛細管の内径は小さい
程良いが、試料及び溶媒の量及び流動抵抗とポンプの能
力を考慮して適宜に定めることができる。例えば数諌の
内径を有する毛細管は光路長を増大すると予示の試料を
必要とするが、内径数百μmのものを用いると少量でも
大きい光路長を実現できる。毛細管5にはその材料の屈
折率よりも大きい屈折率の溶媒(対型として用いる場合
はそのまま、溶媒として用いる場合には被測定物質の試
料を分散または溶解した溶液)が入口6より導入され、
出ロアへ排出される。なお送液のためには適当なポンプ
(図示せず)を用いる0溶媒は、毛細管の屈折率よりも
大きく且つ試料の溶媒として適当なら何でも良い。1例
のパイレックスガラスに対しては、ベンゼン、アセトフ
ェノン、二硫化炭素、1−プUモナフタリン等の溶媒が
使用できる。毛細管5の出射端から出射した光は光ダイ
オードなどの光感知器6により検出され、増幅器7を経
てレコーダ11に記録され、或いはマイクロブ胃セッサ
10により所定の処理を経て陰SS管12やグラフィッ
クプリンター13などに記録される。
The capillary tube 5 is made of, for example, Pyrex glass (refractive index 1474).
) and other materials. The smaller the inner diameter of the capillary tube, the better, but it can be determined as appropriate by taking into account the amount of sample and solvent, flow resistance, and pump capacity. For example, a capillary tube with an inner diameter of several centimeters requires a specific sample if the optical path length is increased, but if a capillary tube with an inner diameter of several hundred μm is used, a large optical path length can be achieved even with a small amount. A solvent having a refractive index higher than the refractive index of the material is introduced into the capillary tube 5 from an inlet 6 (if used as an anti-type, it is used as is; if used as a solvent, a solution in which a sample of the substance to be measured is dispersed or dissolved) is introduced from an inlet 6,
It is discharged to the output lower. Note that an appropriate pump (not shown) is used for the liquid transfer.The solvent may be any solvent as long as it has a refractive index greater than the refractive index of the capillary tube and is suitable as a sample solvent. For example, for Pyrex glass, solvents such as benzene, acetophenone, carbon disulfide, and 1-monaphthalene can be used. The light emitted from the output end of the capillary tube 5 is detected by a photodetector 6 such as a photodiode, passes through an amplifier 7, and is recorded on a recorder 11, or is subjected to predetermined processing by a microbe stomach processor 10 and sent to a negative SS tube 12 or a graphic printer. 13 etc.

第2図は第1図の直線状毛細管5に代えて用いられる螺
旋形毛細管14の例を示す。この例では溶媒は入口15
より導入され、出口16へ排出される。毛細管14を用
いるとスペースが制限されていても非常に長い管長が実
現でき、それに対応して光路長も非常に長くすることが
できる。−例として、50mの管長のものも無理なく設
計でき5゜ 第3図は毛細管5または14の入射端及び溶媒入口のよ
り具体的購成の一例を示す。T形管19にグラファイト
バッキング20.21を用いて石英棒18及びこれに整
列する端部開放毛細管5(又は14)の端部を支持させ
る。またステンレ、ス鋼バッキング22を用いて溶媒入
口管(ステンレス鋼等)6(又は15)を接続する。
FIG. 2 shows an example of a helical capillary tube 14 used in place of the straight capillary tube 5 in FIG. In this example the solvent is inlet 15
and is discharged to the outlet 16. With the capillary tube 14, very long tube lengths can be achieved even with limited space, and correspondingly very long optical path lengths. - As an example, a pipe length of 50 m can be easily designed. Fig. 3 shows a more specific example of the purchase of the entrance end of the capillary tube 5 or 14 and the solvent inlet. The T-tube 19 uses a graphite backing 20.21 to support the quartz rod 18 and the aligned end of the open-ended capillary tube 5 (or 14). Further, a solvent inlet pipe (stainless steel or the like) 6 (or 15) is connected using a stainless steel backing 22.

毛細管の形状は螺旋に限らず任意の湾曲形状を有するこ
とができることは、その原理から当業者には明らかであ
ろう。
It will be clear to those skilled in the art that the shape of the capillary tube is not limited to a helical shape, but can have any curved shape.

以下の実施例は可視光による分光光度法を説明するが、
紫外線や赤外線を光源として用いても良いことは当業者
には明らかであろう。
The following examples illustrate spectrophotometry with visible light;
It will be clear to those skilled in the art that ultraviolet or infrared light may also be used as a light source.

実施例1 比較例も含めて本発明の分光光度法の実施例を以下に説
明する。
Example 1 Examples of the spectrophotometric method of the present invention, including comparative examples, will be described below.

直線状毛細管と1ループに巻いた毛細管を用いて光の伝
達を測定した。毛細管を屈折率t474のパイレックス
ガラスから製作した。直線状のものは長さ1m、IN−
プ状のものは長さα7mであった。溶媒として水(屈折
率133)、アセトン(i、 35 )、エタノ−、F
l/(1,36)、n−ブチルアルコ−/I/(159
)、アセチルアセトン(t45 )、四塩化炭素(1,
45)、ベンゼン(1,49)、アセトフェノン(t 
s 5 )、二硫化炭素(162)、1−ブロモナフタ
レン(1,65)を用し)た。入射光はタングステンラ
ンプよりの波長750 nmを用いた。その結果光の透
過率は直線状毛細管で(ま屈折率が1474より小さい
溶媒を用し電た場合よりもt474より大きい溶媒を用
し\た場合の方力(2倍程度大きいことが分った。1ル
ープ管の場合には屈折率1474以下の溶媒の透過率6
ま著しく低いが、1474以上の溶媒では余尺atのた
め管内壁面での減衰はほとんど生じなかった。透過率ハ
屈折率が1474より大きい溶媒でははGf同一で、溶
媒の種類によらないことが分った。
Light transmission was measured using a straight capillary tube and a capillary tube wound in one loop. The capillary tube was made from Pyrex glass with a refractive index of t474. The straight one is 1m long, IN-
The length of the pool-shaped one was α7m. As a solvent, water (refractive index 133), acetone (i, 35), ethanol, F
l/(1,36), n-butyl alcohol/I/(159
), acetylacetone (t45), carbon tetrachloride (1,
45), benzene (1,49), acetophenone (t
s 5 ), carbon disulfide (162), and 1-bromonaphthalene (1,65)). The incident light used was a wavelength of 750 nm from a tungsten lamp. As a result, it was found that the light transmittance in a straight capillary is about twice as high when using a solvent with a refractive index larger than t474 than when using a solvent with a refractive index smaller than 1474. In the case of a 1-loop tube, the transmittance of a solvent with a refractive index of 1474 or less is 6.
However, with solvents of 1474 or higher, almost no attenuation occurred on the inner wall surface of the tube due to the extra length. It was found that the transmittance and the Gf were the same for solvents with a refractive index greater than 1474, regardless of the type of solvent.

以上のように、全反射長光路毛細管は鏡面反射型のもの
よりもすぐれており、特に湾曲部を有する場合には全反
射型でなければならな(1こと力(分るO 実施例2 屈折率が異なる各種有機溶媒中でのリン(7オス7オモ
リプデイト ヘテνボリプl 50pgP/d)の吸光
度を測定した。屈折率が1415以下の溶媒として、水
、アセトン、n−ブチルアルコールを用い、146以上
の溶媒として二硫化炭素とアセトンの混合比を変えて1
4+S〜162の屈折率を持つ混合溶媒とした。内径約
2mm、長さ約(L7mのパイレックスガラス!I!I
!?AI−プ毛細管を用い、光の波長750 nmで測
定した吸光度は従来の1mセルに比して屈折率146以
下の溶媒については約200倍、屈折率1474より大
きい溶媒については約400倍であった。
As mentioned above, the total reflection long optical path capillary is superior to the specular reflection type, and especially when it has a curved part, it must be of the total reflection type. The absorbance of phosphorus (7 male, 7 omolypdate, hete ν polyp, 50 pgP/d) was measured in various organic solvents with different refractive indexes.Water, acetone, and n-butyl alcohol were used as solvents with a refractive index of 1415 or less. By changing the mixing ratio of carbon disulfide and acetone as the above solvent,
A mixed solvent having a refractive index of 4+S to 162 was used. Inner diameter approximately 2mm, length approximately (L7m Pyrex glass!I!I
! ? The absorbance measured at a light wavelength of 750 nm using an AI-pu capillary is about 200 times that of a conventional 1 m cell for solvents with a refractive index of 146 or less, and about 400 times for solvents with a refractive index greater than 1474. Ta.

実施例3 内径2滞、長さ4 tnのパイレックスガラス製螺旋状
毛細管を用い、屈折率t474より大きいアセトン−二
硫化炭素溶媒により前例と同様な吸光感度を測定した。
Example 3 Using a spiral capillary tube made of Pyrex glass with an inner diameter of 2 mm and a length of 4 tn, the same absorption sensitivity as in the previous example was measured using an acetone-carbon disulfide solvent with a refractive index greater than t474.

1のセルに対して約1万倍の感度が得られた。さらに各
種毛細管について同様な測定を行ったところ、表1の結
果を得た。いずれも概略値である。
Approximately 10,000 times the sensitivity was obtained compared to the cell number 1. Furthermore, similar measurements were performed on various capillary tubes, and the results shown in Table 1 were obtained. All values are approximate values.

表 1 従来のセルC1ctL) 1 全反射沢毛細管 1) 直線型 長さ α5ηt 2XiO” α7m 1.5XiO−’ 1ffl lX1O’ 2)湾曲型 長さ 1+n 、 lX10’ 3)1〃−プ型 長さ 0.7ff+ 15×IO−” 4)螺旋型 長さ 4m lX10’ 実施例4 四塩化炭素−二硫化炭素混合溶媒(屈折率1474より
も大きいもの)で、比色法でヨウ素を測定した。その結
果は直線状の1mの毛廁箆で5X10 ’Mのヨウ素が
検出できた。
Table 1 Conventional cell C1ctL) 1 Total reflection flooded capillary 1) Straight type length α5ηt 2XiO" α7m 1.5XiO-' 1ffl lX1O' 2) Curved type length 1+n, lX10' 3) 1-Pipe type length 0 .7ff+15×IO-” 4) Helical length 4 ml×10′ Example 4 Iodine was measured by colorimetry using a carbon tetrachloride-carbon disulfide mixed solvent (with a refractive index greater than 1474). As a result, 5 x 10'M of iodine could be detected in a 1m straight line.

実施例5 吸光光度法として代表的なジチゾン法により水銀を検出
した。従来の1儂セルに比して、1mの直線状吸収管で
200〜400倍以上、4mの全反射螺旋毛細管で10
00〜2000倍以上の高感度が得られた。
Example 5 Mercury was detected by the dithizone method, which is a typical spectrophotometric method. Compared to a conventional 1-cylinder cell, a 1 m linear absorption tube has a 200 to 400 times more power, and a 4 m total internal reflection spiral capillary tube has a 10
A high sensitivity of 00 to 2000 times or more was obtained.

実施例6 キセノンランプ及びHe −N e レーザ光と二硫化
炭素溶媒を用いて実施例3と同様な測定を行った。
Example 6 Measurements similar to those in Example 3 were performed using a xenon lamp, He-Ne laser light, and carbon disulfide solvent.

用いたパイレックスガラス製毛細管は長さ10mの螺旋
管であった。感度はレーザ光の場合は従来の1αセルの
約2000倍、キセノンランプからの光の場合は約40
00倍であった。これは、非平行光と平行光とで光の伝
送形式がちがい、光路長に差が出たためであろう。
The Pyrex glass capillary tube used was a spiral tube with a length of 10 m. The sensitivity is about 2000 times that of a conventional 1α cell for laser light, and about 40 times more sensitive for light from a xenon lamp.
It was 00 times. This is probably due to the difference in optical transmission format between non-parallel light and parallel light, resulting in a difference in optical path length.

¥雄側7 キセノンランプからの光(75Dnm)を色々な長さの
全反射型各種毛細管に収容した二硫化炭素−リンモリブ
デンブルーに通して吸光度を測定した。1%の吸収を与
えるリンの濃度と感度向上(従来の1αセルを基準とし
たンを表2に示した。
¥Male side 7 Light (75 Dnm) from a xenon lamp was passed through carbon disulfide-phosphorus molybdenum blue housed in various total reflection capillary tubes of various lengths, and the absorbance was measured. Table 2 shows the concentration of phosphorus that gives 1% absorption and the sensitivity improvement (based on the conventional 1α cell).

表 2 全反射型毛細管セル 1、 直線型 長さ 0.5 m 20 五3.XiO″I 017r
n 15 4.7×10t# 1rn 10 7X10
” 2 螺旋型(パイレックス) 長さ 4m 2.5 2.8X10” # 10ffl 1.0 7XiO” 3、 螺旋型(シリコーン被覆パイレックス)長さ 2
5m a4 1.75X10’IF 51]FI Q、
2 5.5X10’注:1.2の毛細管は内径1〜21
1M、3の毛H1菅は内径α2■であり、Q、i〜1t
ttl/分の流爪(ホンフ圧101rI1./cm’以
下)を用いた。
Table 2 Total reflection type capillary cell 1, straight type length 0.5 m 20 53. XiO″I 017r
n 15 4.7×10t# 1rn 10 7X10
” 2 Spiral type (Pyrex) Length 4m 2.5 2.8X10” # 10ffl 1.0 7XiO” 3, Spiral type (Silicone coated Pyrex) Length 2
5m a4 1.75X10'IF 51] FI Q,
2 5.5X10' Note: 1.2 capillary has an inner diameter of 1 to 21
The hair H1 tube of 1M, 3 has an inner diameter α2■, and Q, i ~ 1t
A flow hook of ttl/min (honf pressure 101rI1./cm' or less) was used.

以上のように、本発明によれば従来のセルに比して3〜
4桁の感度向上が見られる。また湾曲部のある毛細管を
用いることにより吸光セルの占めるスペースを節約しな
がら光路長を長大化できるのでコンパクトでしかも感度
の高い分光光度法及び分光光度計が実現できる。
As described above, according to the present invention, compared to conventional cells,
A four-digit improvement in sensitivity can be seen. Furthermore, by using a capillary tube with a curved portion, the optical path length can be increased while saving the space occupied by the light absorption cell, so that a compact and highly sensitive spectrophotometer and spectrophotometer can be realized.

本発明の範囲内で多くの変形例が可能なことは当業者に
は明らかであろう。
It will be apparent to those skilled in the art that many variations are possible within the scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の分光光度計の実施例を示す図、第2図
は螺旋状毛細管の一例を示す図、及び第3図は毛細管の
光入射端及び溶媒入口の一例を示す断面図である。図中
主な部分は次の通りである。 1:光源 2.3.4:光学系 5:毛細管 6;溶媒入口 ア:溶媒出口 8:フォトダイオード 14:螺旋軟毛IWI管 15:溶媒入口 16:溶媒出口 ■o二入射光 X :出射光 手続補正書 昭和59年 1月12日 特許庁長官 若 杉 和 夫 殿 事件の表示 昭和58年 特願第212566 号発明
の名称 全反射長光路毛細管を用いる分光光度法及び装
置 補正をする者 補正の対象 補正の内容 別紙の通り 明細書を次の通り補正する。 1 第5頁第5行に「灰」とあるを「英」と訂正する。 2、 同頁下から第3行に「プリモナタリン」とあルヲ
「ブロモナフタレン」と訂正する。 3、 第6偶第7行に[ことができ、以下の実施例では
′j#j脂被帽をした例を挙げである。」とあるを1こ
とができる。」と訂正する。 4、 同頁第9行に「先」とあるを「光」と訂正する0 5、 同頁814行に「通過するため、」とある次に「
光をパルス状に断続して入射させることにより」と加入
する。
FIG. 1 is a diagram showing an example of the spectrophotometer of the present invention, FIG. 2 is a diagram showing an example of a spiral capillary tube, and FIG. 3 is a cross-sectional view showing an example of the light incident end and solvent inlet of the capillary tube. be. The main parts in the figure are as follows. 1: Light source 2.3.4: Optical system 5: Capillary tube 6; Solvent inlet a: Solvent outlet 8: Photodiode 14: Spiral soft hair IWI tube 15: Solvent inlet 16: Solvent outlet ■o2 Incident light X: Outgoing light procedure Amendment document January 12, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office Indication of the case 1982 Patent Application No. 212566 Title of the invention Spectrophotometry using a total internal reflection long optical path capillary and the subject of the amendment by the person who makes the device correction Contents of amendment The description is amended as shown in the attached sheet as follows. 1. In the 5th line of page 5, the word ``ash'' is corrected to ``English''. 2. In the third line from the bottom of the same page, correct "Primonataline" and "Bromonaphthalene". 3. In the 7th row of the 6th even, [can be done, and in the following example, an example is given in which a cap is worn. ” can be 1. ” he corrected. 4. On the 9th line of the same page, correct the word ``ahead'' to ``light.''0 5. On the 814th line of the same page, the word ``to pass through,'' is followed by ``
"By injecting light intermittently in a pulsed manner."

Claims (4)

【特許請求の範囲】[Claims] (1)毛細管吸収セルに、前記吸収セルの材料よりも大
きい屈折率を有する溶媒及びそれに溶解又は分散した試
料を収容し、前記吸収セルの一端より光を入射させて吸
光を行わせることより成る、全反射長光路毛細管を用い
る分光光度法。
(1) A capillary absorption cell contains a solvent having a refractive index greater than that of the material of the absorption cell, and a sample dissolved or dispersed therein, and light is caused to enter the absorption cell from one end to cause light absorption. , a spectrophotometric method using a total internal reflection long-path capillary tube.
(2)光源、該光源からの光の入射端と出射端とを有す
る全反射型毛細管、前記毛細管への溶媒及びそれに連行
される試料の導入口及び導出口、及び前記出射端からの
光を感知する手段を含む、全反射長光路毛細管を用いる
分光光度計。
(2) A light source, a total reflection capillary tube having an input end and an output end for the light from the light source, an inlet and an outlet for the solvent to the capillary tube and a sample entrained therein, and an outlet for the light from the output end. A spectrophotometer using a total internal reflection long path capillary tube, including a means for sensing.
(3)毛細管が湾曲部を有する前記第2項記載の分光光
度計。
(3) The spectrophotometer according to item 2 above, wherein the capillary tube has a curved portion.
(4)毛細管が螺旋状に巻かれている前記第2項記載の
分光光度計。
(4) The spectrophotometer according to item 2 above, wherein the capillary tube is spirally wound.
JP21256683A 1983-11-14 1983-11-14 Electrophotometric method and apparatus using capillary tube with total reflection long optical path Granted JPS60105944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21256683A JPS60105944A (en) 1983-11-14 1983-11-14 Electrophotometric method and apparatus using capillary tube with total reflection long optical path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21256683A JPS60105944A (en) 1983-11-14 1983-11-14 Electrophotometric method and apparatus using capillary tube with total reflection long optical path

Publications (2)

Publication Number Publication Date
JPS60105944A true JPS60105944A (en) 1985-06-11
JPH0323859B2 JPH0323859B2 (en) 1991-03-29

Family

ID=16624818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21256683A Granted JPS60105944A (en) 1983-11-14 1983-11-14 Electrophotometric method and apparatus using capillary tube with total reflection long optical path

Country Status (1)

Country Link
JP (1) JPS60105944A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320643A (en) * 1989-04-14 1991-01-29 Kontron Instr Holding Nv Capillary flow cell
JPH04278441A (en) * 1991-03-06 1992-10-05 Agency Of Ind Science & Technol Method for measuring absorption quantity of light
JP2006208344A (en) * 2004-12-28 2006-08-10 Bl Tec Kk Method and device for automatic absorptiometric quantitative analysis, and cell used therefor
JP2006234601A (en) * 2005-02-25 2006-09-07 Bl Tec Kk Automatic quantitative analyzer of absorption photometry
CN104075996A (en) * 2014-06-12 2014-10-01 苏州卫水环保科技有限公司 Long-optical-path detection pool

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153790A (en) * 1976-06-14 1977-12-21 Adrian Werner Gas concentration measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153790A (en) * 1976-06-14 1977-12-21 Adrian Werner Gas concentration measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320643A (en) * 1989-04-14 1991-01-29 Kontron Instr Holding Nv Capillary flow cell
JPH04278441A (en) * 1991-03-06 1992-10-05 Agency Of Ind Science & Technol Method for measuring absorption quantity of light
JP2006208344A (en) * 2004-12-28 2006-08-10 Bl Tec Kk Method and device for automatic absorptiometric quantitative analysis, and cell used therefor
JP2006234601A (en) * 2005-02-25 2006-09-07 Bl Tec Kk Automatic quantitative analyzer of absorption photometry
CN104075996A (en) * 2014-06-12 2014-10-01 苏州卫水环保科技有限公司 Long-optical-path detection pool

Also Published As

Publication number Publication date
JPH0323859B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JP3260431B2 (en) Flow cell fabrication method
US5444807A (en) Micro chemical analysis employing flow through detectors
US6385380B1 (en) Hollow optical waveguide for trace analysis in aqueous solutions
US8107067B2 (en) Opaque additive to block stray light in teflon AF light-guiding flowcells
US4088407A (en) High pressure fluorescence flow-through cuvette
US5652810A (en) Fiber optic sensor for site monitoring
CA1325908C (en) Modular fiber optic chemical sensor
US6603556B2 (en) Photometric detection system having multiple path length flow cell
US4475813A (en) Divergent light optical systems for liquid chromatography
US4276475A (en) Novel photometric system
Berman et al. Measurement of sodium hydroxide concentration with a renewable reagent-based fiber-optic sensor
US3740158A (en) Flow cell
Byrne et al. Construction of a compact spectrofluorometer/spectrophotometer system using a flexible liquid core waveguide
JPS60105944A (en) Electrophotometric method and apparatus using capillary tube with total reflection long optical path
CN110531013A (en) A kind of detection cell being axially totally reflected using capillary wall
US3529896A (en) Flow cell immersed in a fluid having the same refractive index as the flow cell
US7411668B2 (en) Light returning target for a photometer
CN105793706A (en) Disposable photometric measurement tip
GB2105058A (en) Frustrated multiple total internal reflection absorption spectrophotometer
CN212904697U (en) Liquid chromatogram optical path detection pool
JPS61105445A (en) Flow cell for measuring light absorbancy
CN219675816U (en) Cold atom optical path absorption cell device for mercury detector
US10782231B2 (en) Optical immersion refractometer
CN110763787A (en) Liquid chromatogram optical path detection pool
KR810001179B1 (en) Sample-cell structure of liquid analysis meter