JPH0427818B2 - - Google Patents

Info

Publication number
JPH0427818B2
JPH0427818B2 JP60058483A JP5848385A JPH0427818B2 JP H0427818 B2 JPH0427818 B2 JP H0427818B2 JP 60058483 A JP60058483 A JP 60058483A JP 5848385 A JP5848385 A JP 5848385A JP H0427818 B2 JPH0427818 B2 JP H0427818B2
Authority
JP
Japan
Prior art keywords
branched
sugar
branched oligosaccharides
syrup
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60058483A
Other languages
Japanese (ja)
Other versions
JPS61219345A (en
Inventor
Keiji Kainuma
Shoichi Kobayashi
Eihachiro Yasuda
Hajime Takaku
Tsuneya Yatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Sangyo Co Ltd
Original Assignee
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Sangyo Co Ltd filed Critical Showa Sangyo Co Ltd
Priority to JP60058483A priority Critical patent/JPS61219345A/en
Publication of JPS61219345A publication Critical patent/JPS61219345A/en
Publication of JPH0427818B2 publication Critical patent/JPH0427818B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は甘味料,特にう蝕防止効果のある甘味
料として用いられる分岐オリゴ糖を多量に含むシ
ラツプの製造方法に関するものである。 (従来の技術) 最近、虫歯予防などの見地から砂糖などの甘味
料は敬遠される傾向にあり、それに代わる甘味料
のほとつとしてイソマルトースなどの分岐オリゴ
糖が注目され始めている。しかし、これら分岐オ
リゴ糖を工業的、かつ経済的に大量生産する方法
はまだ確立されていないため、現在ではイソマル
トース等は高価な試薬として販売されているに留
まり、食品等に利用されるには至つていない。 従来、分岐オリゴ糖の製造方法としては、たと
えばα−1,6結合を多く有するプルラン,デキ
ストラン等の高分子多糖類を基質とし、これを適
宜の酵素又は酸類などで加水分解したのち、分子
分画クロマトグラフイ,イオン交換クロマトグラ
フイ等で分画する方法が試みられている。しかし
ながら、プルラン,デキストラン等は非常に高価
であり、この方法は工業的生産には向かない。 また、従来、ぶどう糖の製造過程においてグル
コアミラーゼ等が糖化作用とともにぶどう糖の逆
合成反応を起こし、少量のイソマルトース,パノ
ースほかのいわゆる分岐オリゴ糖を生成させるこ
とが知られている。その生成量は糖固形分に対し
通常、およそ5%前後であるが、ぶどう糖製造と
いう目的からみればこのような分岐オリゴ糖の生
成は好ましい筈がなく、従つてその成を極力抑る
努力が払われてきた。 また、澱粉を酸により高温下で加水分解したと
き、逆合成反応が生じてα−1,6結合をもつ糖
が生成することは知られている。しかし、この場
合、分岐オリゴ糖への転化率は極めて低く、しか
も極めて過激な条件下であるため、副反応による
生成物も多い。それ故、この方法を分岐オリゴ糖
の製造手段として実用的に利用しうる可能性は殆
どない。 (発明が解決しようとする問題点) 本発明は、上記の通り分岐オリゴ糖の工業的製
造方法がまだ確立されていない現状において、う
蝕防止効果のある分岐オリゴ糖の有用性に鑑み、
分岐オリゴ糖の工業的製造方法を提供することを
目的とするものである。 (問題点を解決するための手段) 本発明者らは、分岐オリゴ糖の工業的産につき
検討を重ねた結果、酵素転移反応に基づく極めて
経済的な製造方法を見出だした。 本発明の概要は、DE5〜15に調整した澱粉液化
液にβ−アミラーゼ,澱粉枝切り酵素および糖類
の転移作用を有する酵素を共存状態で作用させ
て、糖質固形分中分岐オリゴ糖含量が40%以上で
あり、かつ分岐オリゴ糖中のイソマルトースの比
率が50%以上である分岐オリゴ糖を生成させたの
ち、必要により更に適宜の方法でグルコースその
他の分岐オリゴ糖以外の種類を分離・除去するも
のである。上記分岐オリゴ糖組成のシラツプを得
るには、DEを5〜15に調整した澱粉液化液にβ
−アミラーゼ(EC3.2.1.2.),澱粉枝切り酵素およ
び糖類の転移作用を有する酵素を共存状態で作用
させる方法がある。 本発明では、糖転移酵素をβ−アミラーゼ、澱
粉枝切り酵素等と同時に澱粉液化液に作用させる
ことも出来ることを見出した。転移反応の基質に
マルトースを用いる従来の研究では、分岐オリゴ
糖を多く生成させるためには、転移酵素の添加以
前にマルトースを生成させておく必要がある。と
考えられていた。しかしながら、本発明者らはこ
のような従来の認識に反して澱粉液化液に各酵素
を同時に作用させることにより、澱粉の水解と転
移反応とがバランスよく進行して分岐オリゴ糖が
収率よく得られることを発見したのである。この
場合の反応条件としては、DEを5〜15に調整し
た澱粉液化液にβ−アミラーゼとして例えば大豆
製酵素製剤(長瀬産業(株)製、純β−アミラーゼな
ど)を基質固形分当り0.3〜1.2%(w/w)、枝
切り酵素としては、例え市販の細菌製プルラナー
ゼ(ノボ社製、プロモザイム200L等)を基質固
形分当り0.3〜0.8%(w/w)、糖転移作用を有
する酵素としては、例えばアスペルギルス・ニガ
−系α−グルコシダーゼ((EC3.2.1.20)0.03〜
11U/g・基質を共存状態で作用させ、PH4.0〜
6.0、50〜65℃で反応させるのが最適である。 分岐オリゴ糖の生成は、転移酵素の添加後1〜
2日の間に最高となり、以後漸次減少に向かう。 このようにして得られた分岐オリゴ糖を含む糖
液は、糖質固形分中の分岐オリゴ糖の含量が40%
以上であり、かつ分岐オリゴ糖中のイソマルトー
スの比率が50%以上であり、そのまま分岐オリゴ
糖シラツプとして利用できるほか、必要によりこ
れを更に処理して高濃度の分岐オリゴ糖シラツプ
とすることもできる。そのための方法としては、
例えば次のようなものが挙げられる。 (1) 糖液に食塩を添加してぶどう糖−食塩の複塩
結晶を晶出させ、除去する方法。 (2) 糖液にアルコール類,アセトン等の有機溶媒
を添加して分岐オリゴ糖以外の糖類を沈澱さ
せ、除去する方法。 (3) 活性炭カラム,ゲルろ過等の分子分画クロマ
トグラフイまたはイオン交換体によるイオン交
換クロマトグラフイを用いて分岐オリゴ糖以外
の糖類を除去する方法。 (4) 糖液に酵母を作用させて分岐オリゴ糖以外の
糖類を資化させる方法。 (発明の効果) 以上の通り、本発明方法は分岐オリゴ糖の含有
率の高いシラツプを工業的に製造する実用的方法
を提供する。 このようにして得られる分岐オリゴ糖を高濃度
に含有するシラツプは、さわやかな甘味を有する
ので、種々の食品の甘味料あるいは風味改良剤と
して多方面の用途がある。そのうえ、う蝕防止効
果があるので、虫歯予防を目的とする甘味料とし
ても広く利用しうるものである。この他分岐オリ
ゴ糖には種類の晶出抑制効果がり、砂糖,ぶどう
糖,異性化糖,マルトース等の糖液に少量添加す
ることにより晶出防止剤としても利用できる。 (実施例) 参考例 1 マルトース70%含有糖液(固形分30%)にアス
ペルギルス・ニガー系α−グルコシダーゼ
0.08IU/s基質を添加し、PH5,55℃で24時間反
応させて分岐オリリゴ糖を含む糖液を得た。 その糖組成は第1表に示した。 実施例 1 33%コーンスターチ水溶液(PH6.3)に耐熱性
α−アミラーゼ(ノボ社製、ターマミル60L)
0.08%(w/w)を添加して105℃,10分間反応
させた。これに同じ酵素0.03%(w/w)を加え
て95℃,3時間反応させてDE12とした後、α−
アミラーゼを失活させてPH5に調整した液化液
に、β−アミラーゼ(長瀬産業製、No.150)0.3%
(w/w),プルラナーゼ(ノボ社製、プロモザイ
ム200L)0.2%を加えて60℃,24時間反応させた。
しかる後、アスペルギルス・ニガー系α−グルコ
シダーゼ0.11U/g・基質を添加し、55℃で24時
間反応させて分岐オリゴ糖シラツプを得た。糖組
成を第1表に示した。 実施例 2 実施例1と同様に処理して得た液化液にβ−ア
ミラーゼ(長瀬産業製、No.150)1.0%(w/w),
プルラナーゼ(ノボ社製、プモザイム200L)0.7
%(w/w),アスペルギルス・ニガー系α−グ
ルコシダーゼ0.02IU/g・基質を同時に加えて60
℃,36時間反応させ、分岐オリゴ糖を豊富に含む
シラツプを得た。糖組成は第1表に示す通りであ
る。 参考例 2 固形分30%を含み、その70%がマルトースであ
る糖液にアスペルギルス・アワモリ系α−グルコ
シダーゼを添加(0.5IU/g・基質)し、PH4.5,
60℃で24時間反応させて、分岐オリゴ糖43%以上
を含む糖液を得た。その糖組成を第1表に示し
た。
(Industrial Field of Application) The present invention relates to a method for producing a syrup containing a large amount of branched oligosaccharide, which is used as a sweetener, particularly a sweetener having an anti-caries effect. (Prior Art) Recently, sweeteners such as sugar have tended to be avoided from the viewpoint of preventing tooth decay, and branched oligosaccharides such as isomaltose have begun to attract attention as an alternative sweetener. However, as a method for industrially and economically mass-producing these branched oligosaccharides has not yet been established, isomaltose and the like are currently only sold as expensive reagents and are not used in foods. has not been reached yet. Conventionally, the method for producing branched oligosaccharides has been to use polymeric polysaccharides such as pullulan and dextran with many α-1,6 bonds as substrates, hydrolyze them with appropriate enzymes or acids, and then separate the molecules. Fractionation methods such as fractional chromatography and ion exchange chromatography have been attempted. However, pullulan, dextran, etc. are very expensive, and this method is not suitable for industrial production. Furthermore, it has been known that in the process of producing glucose, glucoamylase and the like cause a retrosynthesis reaction of glucose as well as a saccharification effect, producing small amounts of so-called branched oligosaccharides such as isomaltose and panose. The amount of branched oligosaccharides produced is usually around 5% of the sugar solid content, but from the perspective of glucose production, the production of branched oligosaccharides is not desirable, and therefore efforts are being made to suppress their formation as much as possible. It has been paid. It is also known that when starch is hydrolyzed with acid at high temperatures, a retrosynthetic reaction occurs and sugars having α-1,6 bonds are produced. However, in this case, the conversion rate to branched oligosaccharides is extremely low, and the conditions are extremely harsh, so there are many products due to side reactions. Therefore, there is almost no possibility that this method can be practically used as a means for producing branched oligosaccharides. (Problems to be Solved by the Invention) The present invention, in view of the usefulness of branched oligosaccharides having an anti-caries effect, in the current situation where an industrial production method for branched oligosaccharides has not yet been established as described above,
The object of the present invention is to provide an industrial method for producing branched oligosaccharides. (Means for Solving the Problems) As a result of repeated studies on the industrial production of branched oligosaccharides, the present inventors have discovered an extremely economical production method based on enzyme transfer reaction. The outline of the present invention is to reduce the branched oligosaccharide content in the carbohydrate solids by allowing β-amylase, starch debranching enzyme, and an enzyme having a sugar transfer action to coexist on a starch liquefied liquid adjusted to DE5 to 15. After producing a branched oligosaccharide in which the isomaltose content is 40% or more and the ratio of isomaltose in the branched oligosaccharide is 50% or more, glucose and other types other than branched oligosaccharides are separated and separated by an appropriate method if necessary. It is to be removed. To obtain syrup with the above branched oligosaccharide composition, β
- There is a method in which amylase (EC3.2.1.2.), a starch debranching enzyme, and an enzyme that has a saccharide transfer effect are used in coexistence. In the present invention, it has been found that glycosyltransferase can be made to act on the starch liquefaction liquid simultaneously with β-amylase, starch debranching enzyme, etc. In conventional research using maltose as a substrate for the transfer reaction, in order to generate a large amount of branched oligosaccharides, it is necessary to generate maltose before adding the transferase. It was thought that However, contrary to this conventional understanding, the present inventors have found that by simultaneously acting on each enzyme in the starch liquefaction solution, starch hydrolysis and transfer reaction proceed in a well-balanced manner, and branched oligosaccharides can be obtained in good yield. I discovered that it can be done. In this case, the reaction conditions include adding β-amylase such as a soybean enzyme preparation (manufactured by Nagase Sangyo Co., Ltd., pure β-amylase, etc.) to a starch liquefied solution with a DE of 5 to 15 per solid content of the substrate. 1.2% (w/w), as a debranching enzyme, for example, commercially available bacterial pullulanase (manufactured by Novo, Promozyme 200L, etc.) is used at 0.3 to 0.8% (w/w) per solid substrate content, an enzyme with glycosyl transfer activity. For example, Aspergillus niger α-glucosidase ((EC3.2.1.20) 0.03~
11U/g・Substrate coexisting, pH4.0~
6.0, it is optimal to react at 50-65℃. The production of branched oligosaccharides occurs from 1 to 1 after the addition of transferase.
It peaks within two days and then gradually decreases. The sugar solution containing branched oligosaccharides obtained in this way has a branched oligosaccharide content of 40% in the carbohydrate solid content.
In addition, the ratio of isomaltose in the branched oligosaccharide is 50% or more, and it can be used as a branched oligosaccharide syrup as it is, or if necessary, it can be further processed to make a highly concentrated branched oligosaccharide syrup. can. The method for this is
Examples include: (1) A method of adding salt to a sugar solution to crystallize and remove glucose-salt double salt crystals. (2) A method in which saccharides other than branched oligosaccharides are precipitated and removed by adding alcohols, acetone, or other organic solvents to the sugar solution. (3) A method of removing sugars other than branched oligosaccharides using molecular fractionation chromatography such as an activated carbon column or gel filtration, or ion exchange chromatography using an ion exchanger. (4) A method of assimilating sugars other than branched oligosaccharides by allowing yeast to act on a sugar solution. (Effects of the Invention) As described above, the method of the present invention provides a practical method for industrially producing syrup with a high content of branched oligosaccharides. The syrup thus obtained containing a high concentration of branched oligosaccharides has a refreshing sweet taste, and has a wide range of uses as a sweetener or flavor improver for various foods. Furthermore, since it has an anti-caries effect, it can be widely used as a sweetener for the purpose of preventing dental caries. In addition, branched oligosaccharides have various types of crystallization inhibiting effects, and can be used as crystallization inhibitors by adding small amounts to sugar solutions such as sugar, glucose, isomerized sugar, and maltose. (Example) Reference example 1 Aspergillus niger α-glucosidase in sugar solution containing 70% maltose (solid content 30%)
0.08 IU/s substrate was added, and the mixture was reacted at pH 5 and 55° C. for 24 hours to obtain a sugar solution containing branched oligosaccharides. Its sugar composition is shown in Table 1. Example 1 33% cornstarch aqueous solution (PH6.3) with heat-resistant α-amylase (Novo, Termamill 60L)
0.08% (w/w) was added and reacted at 105°C for 10 minutes. To this, 0.03% (w/w) of the same enzyme was added and reacted at 95℃ for 3 hours to obtain DE12, and then α-
Add 0.3% β-amylase (manufactured by Nagase Sangyo, No. 150) to the liquefied liquid that has been adjusted to pH 5 by inactivating amylase.
(w/w) and 0.2% pullulanase (Promozyme 200L, manufactured by Novo) were added and reacted at 60°C for 24 hours.
Thereafter, 0.11 U/g of Aspergillus niger α-glucosidase and substrate were added, and the mixture was reacted at 55°C for 24 hours to obtain a branched oligosaccharide syrup. The sugar composition is shown in Table 1. Example 2 β-amylase (manufactured by Nagase Sangyo, No. 150) 1.0% (w/w),
Pullulanase (manufactured by Novo, Pumozyme 200L) 0.7
% (w/w), Aspergillus niger α-glucosidase 0.02 IU/g, substrate added at the same time 60
The reaction was carried out at ℃ for 36 hours to obtain a syrup rich in branched oligosaccharides. The sugar composition is shown in Table 1. Reference Example 2 Aspergillus awamori α-glucosidase was added (0.5 IU/g/substrate) to a sugar solution containing 30% solids, of which 70% was maltose, and the pH was 4.5.
The reaction was carried out at 60°C for 24 hours to obtain a sugar solution containing 43% or more of branched oligosaccharides. The sugar composition is shown in Table 1.

【表】 参考例 3 実施例1で得られた糖液を、活性炭により脱色
してイオン精製した後60%まで濃縮し,イオン交
換樹脂(ダウエツクス株式会社製、ダウエツクス
88)を充填したカラムにより分画して分岐オリゴ
糖含有シラツプを得た。その糖組成は第2表の通
りである。
[Table] Reference Example 3 The sugar solution obtained in Example 1 was decolorized and ion-purified with activated carbon, concentrated to 60%, and treated with an ion exchange resin (manufactured by Dowex Co., Ltd., Dowex Co., Ltd.).
88) was used to obtain a syrup containing branched oligosaccharides. Its sugar composition is shown in Table 2.

【表】 処理条件 カラム 50mmφ×1000mmh (但し、樹脂高700mm) ジヤケツト付 65℃ 充填物 ダウエツクス 88(Na型) 負荷糖量 30g(乾物) 流速 SV=0.1 参考例 4 実施例1で得られた糖液を、活性炭により脱色
してイオン精製した後、15%(対向形分)の食塩
を添加・溶解して濃度約85%まで濃縮し、3リツ
トル容ジヤケツト付横型撹拌式晶出装置を用いて
下記の条件によりグルコース−食塩複塩結晶を晶
出させ、遠心分離機によりこの結晶を除去した。
分離液をイオン交換樹脂で精製して残存する食塩
を除去し、分岐オリゴ糖の高含有糖液を得た。そ
の糖組成は第3表の通りである。 品出条件 糖濃度 84.7% 温度・時間 第1図のプログラムにより実施 シード 対固形分0.5%のグルコース−食
塩結晶 撹 拌 10rpm
[Table] Processing conditions Column 50mmφ×1000mmh (resin height 700mm) With jacket 65℃ Packing Dowex 88 (Na type) Loaded sugar amount 30g (dry matter) Flow rate SV=0.1 Reference example 4 Sugar obtained in Example 1 After decolorizing the liquid with activated carbon and ion-purifying it, 15% (opposed portion) of common salt was added and dissolved to concentrate to a concentration of approximately 85%, and a horizontal stirring type crystallizer with a 3-liter jacket was used. Glucose-salt double salt crystals were crystallized under the following conditions, and the crystals were removed using a centrifuge.
The separated solution was purified using an ion exchange resin to remove residual common salt, and a sugar solution with a high content of branched oligosaccharides was obtained. Its sugar composition is shown in Table 3. Product conditions Sugar concentration 84.7% Temperature and time Performed according to the program shown in Figure 1 Seed Glucose-salt crystals with a solid content of 0.5% Stirring 10 rpm

【表】 参考例 5 参考例2で得られた分岐オリゴ糖高含有シラツ
プを用い、晶出防止試験を行なつた。 (1) 試料 A:マルトース80%シラツプ(固形分75%) B:マルトース83%シラツプに実施例4で得た
糖液を10%混合したもの(固形分75%) (2) 保存温度 5,12,20℃及び室温(冬季) (3) 結 果 第4表の通り 第4表 晶出までの日数 保存温度(℃) A B 5 9 40 12 5 20 20 9 23室温 8 24 (注)シラツプ中に2〜3個の結晶が肉眼で認めら
れた日を晶出日とした。 第4表から明らかなように、イソマルトースを
添加したものの方がいずれの保存条件においても
結晶晶出までの日数が長く、顕著な晶出抑制効果
を示した。
[Table] Reference Example 5 A crystallization prevention test was conducted using the branched oligosaccharide-rich syrup obtained in Reference Example 2. (1) Sample A: Maltose 80% syrup (solid content 75%) B: Maltose 83% syrup mixed with 10% of the sugar solution obtained in Example 4 (solid content 75%) (2) Storage temperature 5. 12, 20℃ and room temperature (winter) (3) Results As shown in Table 4 Table 4 Number of days until crystallization Storage temperature (℃) A B 5 9 40 12 5 20 20 9 23 Room temperature 8 24 (Note) Syrup The day on which 2 to 3 crystals were observed with the naked eye was defined as the day of crystallization. As is clear from Table 4, the number of days until crystallization was longer in the case of the sample to which isomaltose was added under all storage conditions, showing a remarkable effect of suppressing crystallization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は参考例4におけるグルコース−食塩の
複塩結晶の晶出についての温度及び時間のプログ
ラムである。横軸,縦軸はそれぞれ晶出時間(時
間),晶出温度(℃)を表わす。
FIG. 1 is a temperature and time program for crystallization of glucose-salt double salt crystals in Reference Example 4. The horizontal and vertical axes represent crystallization time (hours) and crystallization temperature (°C), respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 DE5〜15に調整した澱粉液化液にβ−アミラ
ーゼ、澱粉枝切り酵素および糖類の転移作用を有
する酵素を共存状態で作用させて、糖質固形分中
分岐オリゴ糖含量が40%以上であり、かつ分岐オ
リゴ糖中のイソマルトースの比率が50%以上であ
る分岐オリゴ糖シラツプを得ることを特徴とする
分岐オリゴ糖を多量に含むシラツプの製造方法。
1. A starch liquefied solution adjusted to DE5 to 15 is treated with β-amylase, starch debranching enzyme, and an enzyme that has a saccharide transfer action in the coexistence state, and the branched oligosaccharide content in the carbohydrate solid content is 40% or more. , and the ratio of isomaltose in the branched oligosaccharide is 50% or more. A method for producing a syrup containing a large amount of branched oligosaccharide.
JP60058483A 1985-03-25 1985-03-25 Production of syrup containing large amount of branched oligosaccharide Granted JPS61219345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60058483A JPS61219345A (en) 1985-03-25 1985-03-25 Production of syrup containing large amount of branched oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60058483A JPS61219345A (en) 1985-03-25 1985-03-25 Production of syrup containing large amount of branched oligosaccharide

Publications (2)

Publication Number Publication Date
JPS61219345A JPS61219345A (en) 1986-09-29
JPH0427818B2 true JPH0427818B2 (en) 1992-05-12

Family

ID=13085675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60058483A Granted JPS61219345A (en) 1985-03-25 1985-03-25 Production of syrup containing large amount of branched oligosaccharide

Country Status (1)

Country Link
JP (1) JPS61219345A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3035837B2 (en) * 1991-06-06 2000-04-24 株式会社林原生物化学研究所 Powdered carbohydrate, its production method and use
CN102027022B (en) * 2008-03-14 2013-11-20 松谷化学工业株式会社 Branched dextrin, process for production thereof, and food or beverage
MX2011008654A (en) 2010-08-24 2012-02-23 Corn Products Int Inc Production of isomaltooligosaccharides and uses therefor.
CN105009931A (en) * 2015-04-13 2015-11-04 鲁东大学 Preparation of liquid strain for pleurotus eryngii and research method of culture technique of high-quality high-yield pleurotus eryngii through liquid strain

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651982A (en) * 1979-10-05 1981-05-09 Tax Adm Agency Enzyme composition for preparing saccharoses
JPS5872598A (en) * 1981-10-26 1983-04-30 Hayashibara Biochem Lab Inc Production of high-purity isomaltose

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5651982A (en) * 1979-10-05 1981-05-09 Tax Adm Agency Enzyme composition for preparing saccharoses
JPS5872598A (en) * 1981-10-26 1983-04-30 Hayashibara Biochem Lab Inc Production of high-purity isomaltose

Also Published As

Publication number Publication date
JPS61219345A (en) 1986-09-29

Similar Documents

Publication Publication Date Title
US5681826A (en) Saccharide composition with reduced reducibility, and preparation and uses thereof
US4675293A (en) Preparation of maltose and maltitol syrups
JPH03503238A (en) Enzymatic synthesis method of oligodextran useful for producing sugar substitutes and novel oligodextran
US5141859A (en) Manufacturing method of high purity maltose and its reduced product
JPH114700A (en) Production of syrup rich in isomalto-oligosaccharide
US3703440A (en) Process for the production of starch syrups that have fructose on their molecular ends
EP0558213B1 (en) Process for preparing neotrehalose, and its uses
JPH0427818B2 (en)
US5576303A (en) Energy-supplementing saccharide source and its uses
JPH0614872B2 (en) Method for producing branched oligosaccharide syrup
TW200404812A (en) Process for producing 2-O-α-D-glucopyranosyl-L-ascorbic acid
CA1110989A (en) Process for preparing maltose-containing starch hydrolyzate and crystallization of maltose therefrom
JP3513197B2 (en) Method for producing high purity maltitol
JP3072433B2 (en) Method for producing high-purity maltose
JPH0669385B2 (en) Method for producing sugar with high content of branched oligosaccharide
JPH07102144B2 (en) Continuous production method of branched oligosaccharide syrup
JP2022024332A (en) Method for producing isomaltose
US4217413A (en) Novel maltulose-containing syrups and process for making the same
JP2840944B2 (en) How to make syrup
JPS61219392A (en) Production of branched oligosaccharide syrup by condensation reaction at elevated temperature
JPS63109791A (en) Continuous production of branched oligosaccharide syrup
JP2933960B2 (en) Method for producing branched oligosaccharide
JP3062264B2 (en) Method for producing high purity maltose aqueous solution
JPH0292296A (en) Production of high-purity maltose and reduced material thereof
JPH0242997A (en) Production of powdery maltose and powdery maltitol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term