JPH0669385B2 - Method for producing sugar with high content of branched oligosaccharide - Google Patents

Method for producing sugar with high content of branched oligosaccharide

Info

Publication number
JPH0669385B2
JPH0669385B2 JP62123679A JP12367987A JPH0669385B2 JP H0669385 B2 JPH0669385 B2 JP H0669385B2 JP 62123679 A JP62123679 A JP 62123679A JP 12367987 A JP12367987 A JP 12367987A JP H0669385 B2 JPH0669385 B2 JP H0669385B2
Authority
JP
Japan
Prior art keywords
sugar
solution
branched
amylase
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62123679A
Other languages
Japanese (ja)
Other versions
JPS63291588A (en
Inventor
敏彦 宮本
武彦 中島
雅男 浅野
正人 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SHIRYO KOGYO KK
Original Assignee
NIPPON SHIRYO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SHIRYO KOGYO KK filed Critical NIPPON SHIRYO KOGYO KK
Priority to JP62123679A priority Critical patent/JPH0669385B2/en
Publication of JPS63291588A publication Critical patent/JPS63291588A/en
Publication of JPH0669385B2 publication Critical patent/JPH0669385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Seasonings (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 (a) 発明の目的 (産業上の利用分野) 本発明は、非醗酵性で、う蝕防止効果、ビフイダス菌増
殖効果を有し、しかも砂糖に近似する水溶液粘度を有す
る分岐オリゴ糖高含有糖を安価な酵素を使用して工業的
に有利に製造する方法に関する。本発明の製造法で得ら
れる糖は、飲食物、し好品、飼料、餌料及び医薬品等の
分野における甘味料として有利に使用される。
DETAILED DESCRIPTION OF THE INVENTION (a) Object of the Invention (Industrial field of application) The present invention is non-fermentative, has a caries-preventing effect, a bifidus-growing effect, and has an aqueous solution viscosity similar to that of sugar. The present invention relates to a method for industrially producing a saccharide having a high branched oligosaccharide content using an inexpensive enzyme. The sugar obtained by the production method of the present invention is advantageously used as a sweetener in the fields of food and drink, favourites, feed, feed, pharmaceuticals and the like.

(従来の技術) 分岐オリゴ糖は古くより清酒中に存在するオリゴ糖とし
て、イソマルトース、サスビオース、コージビオース、
パノース、イソマルトトリオース等が知られ、これらの
分岐オリゴ糖は非醗酵性糖とも称せられ、酒類との関連
において多くの研究が発表されている。
(Prior Art) Branched oligosaccharides have long been used in sake as isomaltose, susbiose, kojibiose,
Panose, isomaltotriose and the like are known, and these branched oligosaccharides are also called non-fermentable sugars, and many studies have been published in relation to alcoholic beverages.

また、積極的に酒質の改善をはかるために、分岐オリゴ
糖生成に関与するα−グルコシダーゼ(トラスグルコシ
ダーゼともいう。)を調製し、それを4段用酵素剤とし
て用いて分岐オリゴ糖含量の高い4段糖化液を作り、原
料もろみに添加する研究〔醸協:74,53P(1979)〕、或
いはそれを3倍増醸用糖類としてのマルトース転移糖を
多く含有する澱粉糖の製造に利用する方法(特公昭40−
27319号、特公昭41−5918号公報)の提案もされたが、
いずれも糖製造コストが高くて、酒造用以外の用途、た
とえば飲食物や飼料用等には利用できない。
Further, in order to positively improve the quality of liquor, α-glucosidase (also referred to as truss glucosidase) involved in branched oligosaccharide production is prepared, and it is used as an enzyme preparation for four steps to control the content of branched oligosaccharide. Research on making a high four-stage saccharified solution and adding it to raw mash [Bryokyo: 74 , 53P (1979)], or using it for the production of starch sugar containing a large amount of maltose transfer sugar as a brewing saccharide. (Japanese Patent Sho 40-
No. 27319, Japanese Patent Publication No. 41-5918) were proposed,
All of them have high sugar production costs and cannot be used for purposes other than brewing, such as food and drink and feed.

さらに、3倍増醸酒の味質改善を目的として、マルトー
スを主として生成するアミラーゼとトランスグルコシダ
ーゼを用いて非醗酵性糖を製造する提案(特開昭56−51
982号公報)もされた。これによれば、イソマルトー
ス、パノース、イソマルトトリオース、ニゲロース等の
非醗酵性糖の含有量が約50%程度の分岐オリゴ糖製品が
得られるが、その製品はリミツトデキストリン含量が高
く、したがって酒造用以外の用途、たとえば飲食物用等
の用途に利用する場合に、砂糖に較べて粘度が高いため
に、その用途に制限があった。
Further, for the purpose of improving the taste of triple-brewed sake, it is proposed to produce a non-fermentable sugar using amylase and transglucosidase, which mainly produce maltose (JP-A-56-51).
No. 982) was also published. According to this, a branched oligosaccharide product having a content of non-fermentable sugars such as isomaltose, panose, isomaltotriose, and nigerose of about 50% can be obtained, but the product has a high limit dextrin content, Therefore, when it is used for purposes other than brewing, for example, for food and drink, it has a higher viscosity than sugar, which limits its use.

近年、虫歯予防などの見地から、砂糖などの甘味料が敬
遠される傾向があり、う蝕防止性或いは低う蝕性の甘味
料の出現が要望され、その一つとして分岐オリゴ糖高含
有糖が注目されはじめた。たとえば特開昭58−76063号
及び特開昭61−181354号公報には、分岐オリゴ糖の物
性、低う蝕性及びビフイダス菌増殖効果を利用する飲食
物への使用等が記載されており、その分岐オリゴ糖の製
造法としては、α−1,6結合を多く有するプルラン、デ
キストラン等の高分子多糖類を基質とし、これらを適当
な酵素又は酸で加水分解したのち、分子分画クロマトグ
ラフイー、イオン交換クロマトグラフイー等で分画し、
減圧乾燥、粉砕する方法が記載されているが、この方法
はプルラン、デキストラン等の基質が非常に高価であ
り、工業的生産には不適当である。また、高濃度グルコ
ース溶液にグルコアミラーゼを作用させ、グルコアミラ
ーゼの逆合成作用を利用して分岐オリゴ糖を生成させた
のち、分画する方法も記載されているが、この方法は反
応に長時間を要し、実質的でない。
In recent years, sweeteners such as sugar tend to be shunned from the viewpoint of preventing dental caries, and the emergence of caries-preventing or low-cariogenic sweeteners has been demanded. Started to be noticed. For example, JP-A-58-76063 and JP-A-61-181354 describe physical properties of branched oligosaccharides, low cariogenicity, use in foods and drinks that utilize the bifidus bacteria growth effect, and the like, As a method for producing the branched oligosaccharide, a high molecular polysaccharide such as pullulan or dextran having many α-1,6 bonds is used as a substrate, and these are hydrolyzed with an appropriate enzyme or acid, and then molecular fractionation chromatograph Fractionation by e, ion exchange chromatography, etc.,
Although a method of drying under reduced pressure and pulverizing is described, this method is unsuitable for industrial production because substrates such as pullulan and dextran are very expensive. In addition, a method in which glucoamylase is allowed to act on a high-concentration glucose solution to generate branched oligosaccharides by utilizing the reverse synthesizing effect of glucoamylase, and then fractionation is also described, but this method requires a long time for the reaction. Required and not substantial.

さらに、分岐オリゴ糖製品の粘度を低下させ、浸透圧を
高めるために、β−アミラーゼ、澱粉枝切り酵素及び転
移作用により分岐オリゴ糖を生成する酵素を用いて分岐
オリゴ糖を多量に含むシロツプを製造する方法(特開昭
61−219345号公報)も提案されたが、この方法は、前記
の特開昭56−51982号公報に記載された方法に、単に澱
粉枝切り酵素を併用してリミツトデキストリン含量を低
下せしめたにすぎず、糖化に長時間を要し、しかも高価
な澱粉枝切り酵素を必要とするので、工業的に不利であ
る。
Furthermore, in order to reduce the viscosity and increase the osmotic pressure of branched oligosaccharide products, a syrup containing a large amount of branched oligosaccharides is prepared using β-amylase, starch debranching enzyme and an enzyme that produces branched oligosaccharides by transfer action. Manufacturing method
61-219345) was also proposed, but in this method, the starch debranching enzyme was simply used in combination with the method described in JP-A-56-51982 to reduce the limit dextrin content. However, saccharification requires a long time and expensive starch debranching enzyme is required, which is industrially disadvantageous.

(発明が解決しようとする問題点) 本発明は、う蝕防止効果及びビフイダス菌増殖効果に優
れ、しかも砂糖に近似する水溶液粘度を有する分岐オリ
ゴ糖高含有糖を安価な酵素を用いて短時間に、したがっ
て工業的に有利に製造する方法を提供しようとするもの
である。
(Problems to be Solved by the Invention) The present invention provides a branched oligosaccharide-rich sugar having an excellent caries-preventing effect and a bifidus bacteria-proliferating effect, and having an aqueous solution viscosity similar to that of sugar using an inexpensive enzyme for a short time. Therefore, it is an object of the present invention to provide a method for industrially advantageous production.

(b) 発明の構成 (問題点を解決するための手段) 本発明者らは、前記の問題点を解決するために種々研究
を重ねた結果、澱粉液化液をマルトースを主として生成
するアミラーゼ及び転移作用により分岐オリゴ糖を生成
する酵素の存在下で糖化反応させる公知の方法におい
て、さらにグルコアミラーゼを併用すれば、生成糖が分
岐オリゴ糖含量の僅かな低下で5糖類以上の糖量を著し
く低下させることができ、ひいては生成糖の水溶液粘度
を砂糖の水溶液粘度に近似する程度に低下させることが
できることを見出し、本発明に到達したのである。
(B) Structure of the Invention (Means for Solving Problems) The inventors of the present invention have conducted various studies in order to solve the above problems, and as a result, amylase and transfer of starch liquefaction liquid mainly producing maltose. In a known method of saccharification reaction in the presence of an enzyme that produces a branched oligosaccharide by action, if glucoamylase is further used in combination, the amount of the produced sugar is significantly reduced by a slight decrease in the branched oligosaccharide content. The present invention has been accomplished, and it has been found that the viscosity of the produced sugar aqueous solution can be lowered to a degree close to that of the sugar aqueous solution, and the present invention has been achieved.

すなわち、本発明の分岐オリゴ糖高含有糖の製造法は、
濃度25%以上で、かつDE10〜20の澱粉液化液を、マルト
ースを主として生成するアミラーゼ及び転移作用により
分岐オリゴ糖を生成する酵素の存在下で糖化反応させる
方法において、さらにグルコアミラセーゼを併用するこ
とを特徴とする方法である。
That is, the method for producing a sugar having a high branched oligosaccharide content of the present invention is
In a method of saccharifying a starch liquefaction solution having a concentration of 25% or more and DE10 to 20 in the presence of an amylase mainly producing maltose and an enzyme producing a branched oligosaccharide by a transfer action, glucoamylase is further used. The method is characterized by

本発明における原料澱粉はその種類を問わず、各種の澱
粉がいづれも使用できる。その澱粉は、濃度25%以上
で、かつDE10〜20の範囲内に液化させてから糖化反応さ
せる。
Regardless of the type of raw material starch used in the present invention, any of various types of starch can be used. The starch has a concentration of 25% or more and is liquefied within a range of DE10 to DE20 before the saccharification reaction.

本発明におけるマルトースを主として生成するアミラー
ゼとしては、たとえば麦芽アミラーゼ、糸状菌や細菌の
α−アミラーゼ、放線菌や細菌のβ−アミラーゼ、植物
起源のα−アミラーゼなどがあげられる。
Examples of the amylase that mainly produces maltose in the present invention include malt amylase, α-amylase of filamentous fungi and bacteria, β-amylase of actinomycetes and bacteria, and α-amylase of plant origin.

本発明における転移作用により分岐オリゴ糖を生成する
酵素としては、α−グルコシダーゼ(トランスグルコシ
ダーゼともいう。)が用いられ、その起源を問わない。
具体例としては、アスペルギルス、リゾプス、ムコール
等の糸状菌トランスグルコシダーゼがあげられる。
As the enzyme that produces a branched oligosaccharide by the transposition action in the present invention, α-glucosidase (also referred to as transglucosidase) is used, and its origin is not limited.
Specific examples thereof include filamentous fungal transglucosidases such as Aspergillus, Rhizopus, and Mucor.

本発明におけるグルコアミラーゼとしては、アスペルギ
ルスやラゾプス起源のものが用いられる。
As the glucoamylase in the present invention, those originating from Aspergillus or Razops are used.

本発明の製造方法の代表的な態様例としては、濃度25
%以上で、かつDE10〜20の澱粉液化液に、マルトースを
主として生成するアミラーゼ、転移作用により分岐オリ
ゴ糖を生成する酵素、及びグルコアミラーゼを実質上同
時に添加して、所定の温度で反応させて、分岐オリゴ糖
生成反応と、生成した5糖以上のオリゴ糖の減少反応と
を同時に行なわせる方法、濃度25%以上で、かつDE10
〜20の澱粉液化液に、まずマルトースを主として生成す
るアミラーゼ及び転移作用により分岐オリゴ糖を生成す
る酵素を添加して、所定の温度で反応させて分岐オリゴ
糖を充分に生成させたのち、次いでグルコアミラーゼを
添加して5糖類以上のオリゴ糖を減少させる方法の二つ
の方法があげられる。
As a typical embodiment of the production method of the present invention, a concentration of 25
% Or more and a DE10 to 20 starch liquefaction solution, an amylase mainly producing maltose, an enzyme producing a branched oligosaccharide by a transfer action, and a glucoamylase are added substantially simultaneously, and allowed to react at a predetermined temperature. , A method of simultaneously performing a branched oligosaccharide production reaction and a reduction reaction of produced oligosaccharides of 5 or more sugars, at a concentration of 25% or more, and DE10
To the starch liquefaction solution of ~ 20, first, amylase which mainly produces maltose and an enzyme which produces branched oligosaccharide by transfer action are added and reacted at a predetermined temperature to sufficiently produce branched oligosaccharide, and then, There are two methods of adding glucoamylase to reduce oligosaccharides having 5 or more sugars.

本発明の製造法における反応温度は、通常40〜60℃、好
ましくは50〜55℃であり、全反応時間は通常20〜35時
間、好ましくは24〜30時間である。そして、前記の方
法におけるグルコアミラーゼ添加後の反応時間は通常10
〜24時間、好ましくは15〜20時間である。
The reaction temperature in the production method of the present invention is usually 40 to 60 ° C, preferably 50 to 55 ° C, and the total reaction time is usually 20 to 35 hours, preferably 24 to 30 hours. Then, the reaction time after the addition of glucoamylase in the above method is usually 10
-24 hours, preferably 15-20 hours.

本発明の製造反応によって得られる分岐オリゴ糖液は、
常法にしたがって過、脱色、イオン交換精製等の処理
をしたのち、真空濃縮して高濃度の液状製品(シラツプ
状製品)とすることができるし、またその濃縮液に粉末
化基剤を添加し或いは添加することなくスプレー乾燥し
て粉末製品にすることができる。
The branched oligosaccharide solution obtained by the production reaction of the present invention is
After performing treatments such as filtration, decolorization, and ion-exchange purification according to the usual methods, it is possible to concentrate in vacuum to obtain a high-concentration liquid product (syrup-like product), and add powdered base to the concentrate. Or spray-dried without addition to powder products.

さらに、本発明の製造反応によって得られる分岐オリゴ
糖液は、必要に応じて下記の(イ)〜(ハ)のような処
理を施して高純度の分岐オリゴ糖液にしてから、上記と
同様の精製処理やスプレー乾燥をして高純度の分岐オリ
ゴ糖製品にすることができる。
Furthermore, the branched oligosaccharide solution obtained by the production reaction of the present invention is subjected to the following treatments (a) to (c) as necessary to obtain a highly pure branched oligosaccharide solution, and then the same as above. It is possible to obtain a highly pure branched oligosaccharide product by subjecting it to a purification treatment or spray drying.

(イ) 糖液に食塩を添加して、グルコース−食塩の複
塩結晶を晶出させ、グルコースを除く処理。
(A) A process of adding salt to the sugar solution to crystallize double salt crystals of glucose-salt and removing glucose.

(ロ) 糖液を活性炭カラム、ゲル過等の分子分画ク
ロマトグラフイー又はイオン交換クロマトグラフイーを
用いて処理して、分岐ゴリゴ糖以外の糖類を除く処理。
(B) Treatment of sugar solution using activated carbon column, molecular fraction chromatography such as gel filtration or ion exchange chromatography to remove sugars other than branched gorigo sugar.

(ハ) 糖液に酵母を作用させて、同糖液から分岐オリ
ゴ糖以外の糖類を資化醗酵させて除く処理。
(C) A process in which yeast is allowed to act on a sugar solution to remove sugars other than branched oligosaccharides by assimilating fermentation from the sugar solution.

(実施例等) 以下に、実施例及び比較例をあげてさらに詳述する。こ
れらの例において用いた酵素の活性測定法は下記のとお
りである。
(Examples, etc.) Hereinafter, examples and comparative examples will be described in more detail. The method for measuring the activity of the enzyme used in these examples is as follows.

アミラーゼ 1%可溶性澱粉液(pH6.0)10mlに酵素液1mlを添加し、
40℃で30分間酵素反応を行なわせ、フエーリング・レー
マンシヨール法で還元糖を定量し、40℃、30分間にグル
コースとして10mgを生成する活性を1単位とした。
Amylase Add 1 ml of enzyme solution to 10 ml of 1% soluble starch solution (pH 6.0),
The enzyme reaction was carried out at 40 ° C. for 30 minutes, and the reducing sugar was quantified by the Fehling-Lehmann-Schiol method, and the activity of producing 10 mg as glucose in 40 minutes at 40 ° C. was defined as 1 unit.

トランスグルコシダーゼ 2%α−メチル−D−グルコシド溶液1ml及び0.02N−酢
酸・酢酸ナトリウム緩衝液(pH5.0)1ml混合液に酵素液
0.5mlを加えて、40℃で60分間酵素反応を行なわせる。
正確に60分後に沸騰水溶液中に入れ5分間加熱し、流水
中で冷却する。この液0.1mlを用いてグルコース・オキ
シダーゼ法により、生成したグルコースを定量し、40℃
で60分間に反応液2.5mlに1μgのグルコースを生成す
る活性を1単位とした。
Transglucosidase 2% α-methyl-D-glucoside solution 1 ml and 0.02 N-acetic acid / sodium acetate buffer (pH 5.0) 1 ml mixed solution with enzyme solution
Add 0.5 ml and let the enzyme react at 40 ° C for 60 minutes.
Exactly 60 minutes later, the mixture is placed in a boiling aqueous solution, heated for 5 minutes, and cooled in running water. Using 0.1 ml of this solution, quantify the glucose produced by the glucose oxidase method and
The activity for producing 1 μg of glucose in 2.5 ml of the reaction solution for 60 minutes was defined as 1 unit.

グルコアミラーゼ 0.56%可溶性澱粉溶液9mlに酵素液1mlを加えて、40℃30
分間の酵素反応を行なせえる。フエーリング・レーマン
シヨール法で酵素反応により生成した還元糖を定量し、
40℃で30分間に10mgのグルコースを生成する活性を1単
位とした。
Glucoamylase 0.56% Soluble starch solution Add 9 ml of enzyme solution to 40 ℃ 30
Enzyme reaction for minutes can be performed. Quantifying the reducing sugars produced by the enzymatic reaction by the Fehling-Lehmann-Sjohl method,
One unit was the activity of producing 10 mg of glucose at 40 ° C for 30 minutes.

実施例1 コーンスターチ液化液(濃度30%、DE14.5)をpH5.5に
調整したのち、麹面α−アミラーゼ8u/g−ds、アスペ
ルギルス・ニガールのトランスグルコシダーゼ0600u/
g−dsを添加して、55℃で24時間糖化を行なわせたの
ち、酵素を失活させることなく、グルコアミラーゼ(ア
スペルギルス・ニガー系)0.45u/g−dsを添加してさ
らに反応させた。その結果は第1表に示すとおりであっ
た。
Example 1 A corn starch liquefaction solution (concentration 30%, DE14.5) was adjusted to pH 5.5, and then koji surface α-amylase 8u / g-ds and Aspergillus niger transglucosidase 0600u /
After adding g-ds and saccharifying at 55 ° C for 24 hours, 0.45u / g-ds of glucoamylase (Aspergillus niger system) was added and further reacted without inactivating the enzyme. . The results are shown in Table 1.

第1表からわかるように、24時間糖化後に、酵素を失活
させることなくグルコアミラーゼを添加してさらに糖化
反応させることにより、分岐2等類〜分岐4糖類合計量
が約2減少するのみで、分岐5糖類以上の糖類を約11%
減少させることができた。
As can be seen from Table 1, after saccharification for 24 hours, by adding glucoamylase without deactivating the enzyme and further performing a saccharification reaction, the total amount of branched 2-class compounds to branched tetrasaccharides is reduced by about 2. , About 11% sugars with 5 or more branched sugars
Could be reduced.

実施例2 コーンスターチ液化液(濃度30.4%、DE13.0)をpH5.5
に調整したのち、麹菌α−アミラーゼ8u/g−ds、アス
ペルギルス・ニガーのトランスグルコシダーゼ600u/g
−ds、及びグルコアミラーゼ(アスペルギルス・ニガー
系)0.225〜0.45u/g−dsを同時添加して、55℃で酵素
反応を行なわせた結果は第2表に示すとおりであった。
Example 2 A corn starch liquefaction solution (concentration 30.4%, DE13.0) was added to pH 5.5.
After adjusting to, aspergillus α-amylase 8u / g-ds, Aspergillus niger transglucosidase 600u / g
-Ds and glucoamylase (Aspergillus niger system) 0.225 to 0.45 u / g-ds were simultaneously added and the enzymatic reaction was carried out at 55 ° C. The results are shown in Table 2.

第2表からわかるように、酵素反応の初期からグルコア
ミラーゼを共存させて反応を行なわせても、分岐2糖類
〜分岐4糖類合計の含有量を減少させることなく、5糖
類以上の含量を減少させることができた。
As can be seen from Table 2, even when glucoamylase is allowed to coexist in the reaction from the initial stage of the enzyme reaction, the content of the branched disaccharides to the branched tetrasaccharides is reduced without decreasing the content of the pentasaccharides or more. I was able to do it.

以上の実施例1及び実施例2から明らかなように、グル
コアミラーゼを併用することにより分岐2糖類〜分岐4
糖類の合計含量を実質上低下させることなく、或いは極
く僅かの低下で、5糖類以上の糖類の合計含量を有効に
減少させることができる。そして、かかる5糖類以上の
糖類含有量を低下させた分岐オリゴ糖高含有糖は水溶液
粘度を砂糖の水溶液粘度に近づけることができるので、
砂糖と同様の用途に有利に使用できるようになる。
As is clear from Example 1 and Example 2 above, branching 2 sugars to branching 4 can be achieved by using glucoamylase in combination.
It is possible to effectively reduce the total content of saccharides of 5 or more sugars without substantially reducing the total content of saccharides, or with a very slight decrease. And since the branched oligosaccharide-rich sugar having a reduced sugar content of 5 sugars or more can bring the aqueous solution viscosity close to that of sugar,
It can be advantageously used for the same purpose as sugar.

また、上記実施例1及び2から、グルコアミラーゼの適
正な添加量は、α−アミラーゼ8u/g−ds及びトランス
グルコシダーゼ600u/g−dsの場合には、0.3〜0.45u/
g−dsであり、α−アミラーゼ11.2u/g−ds及びトラ
ンスグルコシダーゼ840u/g−dsの場合には、0225〜0.
375u/g−dsである。
Further, from Examples 1 and 2 described above, the proper addition amount of glucoamylase is 0.3 to 0.45u / in the case of α-amylase 8u / g-ds and transglucosidase 600u / g-ds.
g-ds, in the case of α-amylase 11.2u / g-ds and transglucosidase 840u / g-ds, 0225-0.
375u / g-ds.

実施例3 32%コーンスターチ・スラリー(pH6.25)に耐熱性α−
アミラーゼ(大和化成社商品名クライスターゼT−5)
を澱粉に対して0.12%添加し、105℃で10分間クツキン
グしたのち、95℃で90分間加熱して液化させ、DE13.5の
液化液を得た。
Example 3 32% Corn Starch Slurry (pH 6.25) Heat-resistant α-
Amylase (Daiwa Kasei Co., Ltd., trade name Crystase T-5)
Was added to starch at 0.12%, cooked at 105 ° C for 10 minutes, and then heated at 95 ° C for 90 minutes to liquefy, to obtain a liquefied solution of DE13.5.

この液化液を55℃に冷却し、pHを5.5に調整したのち、
α−アミラーゼ(天野製薬社商品名ビオザイム−C)0.
2%/ds、トランスグルコシダーゼ(天野製薬社製)0.0
4%/ds、及びグルコアミラーゼ(天野製薬社商品名GNL
−3000)0.015%/dsを同時に添加して、55℃で30時間
糖化反応させた。
After cooling the liquefied liquid to 55 ° C and adjusting the pH to 5.5,
α-Amylase (Amano Pharmaceutical Co., trade name Biozyme-C) 0.
2% / ds, transglucosidase (Amano Pharmaceutical Co., Ltd.) 0.0
4% / ds, and glucoamylase (trade name GNL, Amano Pharmaceutical Co., Ltd.
-3000) 0.015% / ds was added at the same time, and saccharification reaction was carried out at 55 ° C for 30 hours.

得られた糖化液を脱色、イオン交換精製を行なったの
ち、真空濃縮して濃度75%の糖液(シロツプ)を得た。
その糖組成は第3表に示すとおりであった。また、この
糖の水溶液粘度は第1図に示すとおりである。砂糖の水
溶液粘度に近似していた。また、この糖の水溶液の浸透
圧は第2図に示すとおりであった。
The obtained saccharified solution was decolorized and subjected to ion exchange purification, and then concentrated in vacuo to obtain a sugar solution (syrup) having a concentration of 75%.
The sugar composition was as shown in Table 3. The aqueous solution viscosity of this sugar is as shown in FIG. It was similar to the aqueous solution viscosity of sugar. The osmotic pressure of this sugar aqueous solution was as shown in FIG.

実施例4 実施例3と同様に処理して得られた澱粉液化液を、55
℃、pH5.5に調整したのち、実施例3で用いたのと同じ
α−アミラーゼ0.2%/ds、同じトランスグルコシダー
ゼ0.04%/dsを同時に添加して55℃で24時間反応させた
のち、酵素を失活させずに、さらに実施例3で用いたの
と同じグルコアミラーゼ0.015%/dsを添加して、16時
間反応させた。
Example 4 A starch liquefaction liquid obtained by treating in the same manner as in Example 3 was
After adjusting the temperature to 5.5 ° C and pH 5.5, the same α-amylase 0.2% / ds and the same transglucosidase 0.04% / ds used in Example 3 were simultaneously added and reacted at 55 ° C for 24 hours. The same glucoamylase as used in Example 3, 0.015% / ds, was further added without inactivating, and reacted for 16 hours.

得られた糖化液を脱色、イオン交換精製したのち、真空
濃縮して糖濃度75%の濃縮液とした。その糖組成は第3
表に示すとおりであった。
The obtained saccharified solution was decolorized and purified by ion exchange, and then concentrated in vacuo to give a concentrated solution having a sugar concentration of 75%. Its sugar composition is third
It was as shown in the table.

実施例5 実施例3で用いたのと同じα−アミラーゼ0.28%/ds、
同じトランスグルコシダーゼ0.054%/ds、及び同じグ
ルコアミラーゼ0.0125%/dsを用い、糖化時間を24時間
に変更し、そのほかは実施例3と同様にして反応させ、
同様にして精製、真空濃縮して、糖濃度75%の高濃縮糖
液を得た。その糖組成は第3表に示すとおりであった。
Example 5 The same α-amylase 0.28% / ds used in Example 3,
The same transglucosidase 0.054% / ds and the same glucoamylase 0.0125% / ds were used, the saccharification time was changed to 24 hours, and the other reaction was performed in the same manner as in Example 3,
In the same manner, purification and vacuum concentration were performed to obtain a highly concentrated sugar solution having a sugar concentration of 75%. The sugar composition was as shown in Table 3.

比較例 実施例3におけると同様にして液化された澱粉液化液
に、実施例3で用いたのと同じα−アミラーゼ0.1%/d
s、同じトランスグルコシダーゼ0.02%/dsを同時に添
加して、55℃20時間反応させた。得られた糖液を脱色、
イオン交換精製した糖液の糖組成は第3表に示すとおり
であり、分岐5糖類以上の含量が著しく高かった。ま
た、この糖の水溶液の粘度及び浸透は第1図及び第2図
に示すとおりであった。
Comparative Example A starch liquefaction liquid liquefied in the same manner as in Example 3 was added with the same α-amylase 0.1% / d as used in Example 3.
s and the same transglucosidase 0.02% / ds were added simultaneously and reacted at 55 ° C. for 20 hours. Decolorize the obtained sugar solution,
The sugar composition of the ion-exchange purified sugar solution is as shown in Table 3, and the content of branched pentasaccharides or higher was extremely high. The viscosity and permeation of this sugar solution in water were as shown in FIGS. 1 and 2.

実施例6 実施例3で得られた分岐オリゴ糖高含有糖の精製液を下
記の条件でスプレー乾燥して粉末製品とした。
Example 6 The purified solution of the sugar having a high branched oligosaccharide content obtained in Example 3 was spray-dried under the following conditions to give a powder product.

糖液濃度 45% 糖液加熱温度 80℃ スプレードライヤー出口温度 60℃ 絵液量 4.5/hr デイスク経 100mm デイスク回転数 16,000r.p.m. 得られた糖粉末は水分2.2%であり、25℃、RH55%にお
ける安息角が55゜であった。なお、この乾燥におけるス
プレードライヤー出口温度を65℃以上とすると、糖粉末
の流動性が悪くなり、ドライヤー内に堆積した。
Sugar liquid concentration 45% Sugar liquid heating temperature 80 ℃ Spray dryer outlet temperature 60 ℃ Picture liquid amount 4.5 / hr Disk length 100mm Disk rotation speed 16,000rpm The sugar powder obtained had a water content of 2.2% and a rest at 25 ℃ and RH55%. The angle was 55 °. In addition, when the outlet temperature of the spray dryer in this drying was set to 65 ° C. or higher, the fluidity of the sugar powder was deteriorated and the sugar powder was deposited in the dryer.

実施例7 実施例3で得られた濃度45%の分岐オリゴ糖高含有糖の
精製液に、その固形分に対して5%量のカゼインナトリ
ウムと、25%量のデキストリンを添加して、スプレード
ライヤー出口温度を90℃にしたほかは実施例6のスプレ
ー乾燥におけると同一の条件を用いてスプレー乾燥し、
流動性のよい糖粉末製品を得た。
Example 7 To a purified solution of a sugar having a high content of branched oligosaccharides having a concentration of 45% obtained in Example 3, 5% sodium caseinate and 25% dextrin were added to the solid content, and sprayed. Spray drying using the same conditions as in spray drying of Example 6 except that the dryer outlet temperature was 90 ° C,
A free flowing sugar powder product was obtained.

この糖粉末製品は水分が2.4%であり、25℃、RH55%に
おける安息角が52゜であった。
The sugar powder product had a water content of 2.4% and an angle of repose of 52 ° at 25 ° C and 55% RH.

実施例8 実施例3で得られた糖液を、活性炭で脱色したのち、イ
オン交換樹脂で精製し、濃度50%まで真空濃縮した。次
いで、得られた濃縮液を分画用樹脂(三菱化成工業株式
会社商品名ダイヤイオンFRK−01)を用いて分画し、高
純度の分岐オリゴ糖シラツプを得た。その分画条件及び
得られた糖組成は下記のとおりであった。
Example 8 The sugar solution obtained in Example 3 was decolorized with activated carbon, purified with an ion exchange resin, and concentrated under vacuum to a concentration of 50%. Then, the obtained concentrated liquid was fractionated using a fractionation resin (Mitsubishi Kasei Kogyo Co., Ltd., trade name Diaion FRK-01) to obtain a highly pure branched oligosaccharide syrup. The fractionation conditions and the obtained sugar composition were as follows.

分画条件 カラム :17mmφ×800mm(樹脂フル充填)、ジャケッ
ト付、60℃ 分離樹脂 :ダイヤイオンFRK−01(Na型) 分離負荷量:45g(乾物) 流速 :SV=0.2 糖組成 G1 1.6% G2 11.6% iG2 33.7% G3 1.3% P 9.5% iG3 12.0% iG4 12.3% iG5+ 18.0% 分岐オリゴ糖会計 85.5% (e) 発明の効果 本発明の製造方法は、澱粉より安価な酵素を用いて比較
的短時間に、しがたがって工業的に有利に砂糖に近い水
溶液粘度を示す分岐オリゴ糖高含有糖を製造することが
できる。
Fractionation conditions Column: 17 mmφ x 800 mm (filled with resin), with jacket, 60 ° C Separation resin: Diaion FRK-01 (Na type) Separation load: 45 g (dry matter) Flow rate: SV = 0.2 Sugar composition G 1 1.6% G 2 11.6% iG 2 33.7% G 3 1.3% P 9.5% iG 3 12.0% iG 4 12.3% iG 5+ 18.0% Branched oligosaccharide accounting 85.5% (e) Effect of the invention The production method of the present invention is cheaper than starch. It is possible to produce a sugar having a high content of branched oligosaccharides, which has an aqueous solution viscosity similar to that of sugar, industrially, advantageously, in a relatively short time using various enzymes.

そして、その得られた分岐オリゴ糖高含有糖は、極めて
まろやかな甘味を有し、各種の食品等の酸味、塩から
味、渋味、旨味、苦味などの呈味とよる調和するので、
通常の飲食物、し好物などに対する甘味付け用、或いは
呈味改善用等に使用できる。
And, the obtained high-branched oligosaccharide sugar has an extremely mellow sweetness, and it is in harmony with the sourness of various foods, etc., from salt to taste, astringency, umami, and bitter taste.
It can be used for sweetening or improving the taste of ordinary foods and drinks.

さらに、この分岐オリゴ糖高含有糖は、低又は抗う蝕性
甘味料、ビフイダス菌増殖促進剤、保湿剤、結晶防止
剤、食品の照りやボデー付与剤等としても優れている。
Further, this sugar having a high content of branched oligosaccharides is also excellent as a low or anti-cariogenic sweetener, a bifidus bacteria growth promoter, a moisturizer, a crystallization inhibitor, a food luster and a body-imparting agent.

【図面の簡単な説明】[Brief description of drawings]

第1図は、実施例3で得られた分岐オリゴ糖高含有糖、
比較例で得られた分岐オリゴ糖高含有糖、及び砂糖につ
いて、それらの各水溶液濃度と粘度の関係を図示したも
のであり、第2図は、それらの各水溶液濃度と浸透圧の
関係を図示したものである。
FIG. 1 is a saccharide having a high content of branched oligosaccharides obtained in Example 3,
FIG. 2 shows the relationship between the concentration of each aqueous solution and the viscosity of the sugar having a high content of branched oligosaccharide and the sugar obtained in Comparative Example. FIG. 2 shows the relationship between the concentration of each aqueous solution and the osmotic pressure. It was done.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】濃度25%以上で、かつDE10〜20の澱粉液化
液を、マルトースを主として生成するアミラーゼ及び転
移作用により分岐オリゴ糖を生成する酵素の存在下で糖
化反応させる方法において、さらにグルコアミラーゼを
併用することを特徴とする分岐オリゴ糖高含有糖の製造
法。
1. A method for saccharifying a starch liquefaction solution having a concentration of 25% or more and DE10 to 20 in the presence of an amylase mainly producing maltose and an enzyme producing a branched oligosaccharide by a transfer action, further comprising A method for producing a sugar having a high branched oligosaccharide content, which comprises using an amylase together.
【請求項2】澱粉液化液にマルトースを主として生成す
るアミラーゼ、転移作用により分岐オリゴ糖を生成する
酵素及びグルコアミラーゼを同時に添加して糖化反応さ
せる特許請求の範囲第1項記載の製造法。
2. The production method according to claim 1, wherein an amylase which mainly produces maltose, an enzyme which produces branched oligosaccharides by a transfer action and a glucoamylase are simultaneously added to the starch liquefaction liquid to carry out a saccharification reaction.
【請求項3】澱粉液化液に、まずマルトースを主として
生成するアミラーゼ及び転移作用により分岐オリゴ糖を
生成する酵素を加えて糖化反応させて分岐オリゴ糖を生
成させたのち、グルコアミラーゼを添加してさらに反応
させる特許請求の範囲第1項記載の製造法。
3. A starch liquefaction solution is first added with an amylase which mainly produces maltose and an enzyme which produces a branched oligosaccharide by a transfer action to cause a saccharification reaction to produce a branched oligosaccharide, and then a glucoamylase is added. The method according to claim 1, further comprising reacting.
【請求項4】生成糖化液の濃縮液をスプレー乾燥して粉
末製品にする特許請求の範囲第1項、第2項又は第3項
記載の製造法。
4. The production method according to claim 1, 2, or 3, wherein a concentrated solution of the produced saccharified solution is spray-dried to obtain a powder product.
JP62123679A 1987-05-22 1987-05-22 Method for producing sugar with high content of branched oligosaccharide Expired - Lifetime JPH0669385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62123679A JPH0669385B2 (en) 1987-05-22 1987-05-22 Method for producing sugar with high content of branched oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62123679A JPH0669385B2 (en) 1987-05-22 1987-05-22 Method for producing sugar with high content of branched oligosaccharide

Publications (2)

Publication Number Publication Date
JPS63291588A JPS63291588A (en) 1988-11-29
JPH0669385B2 true JPH0669385B2 (en) 1994-09-07

Family

ID=14866623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62123679A Expired - Lifetime JPH0669385B2 (en) 1987-05-22 1987-05-22 Method for producing sugar with high content of branched oligosaccharide

Country Status (1)

Country Link
JP (1) JPH0669385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109868A (en) * 2008-03-14 2015-06-18 松谷化学工業株式会社 Branched dextrin, manufacturing method thereof, and food and beverage

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559790B2 (en) * 1993-12-20 2004-09-02 松谷化学工業株式会社 Method for imparting bifidobacteria growth promoting action to food
GB9708893D0 (en) * 1997-05-02 1997-06-25 Cerestar Holding Bv Method for the production of isomalto-oligosaccharide rich syrups
US8993039B2 (en) 2006-01-25 2015-03-31 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
JP5778888B2 (en) * 2009-10-16 2015-09-16 日本食品化工株式会社 Flavor improving agent containing branched sugar and masking agent for pharmaceutical preparation
GB201107221D0 (en) * 2011-05-03 2011-06-15 Givaudan Sa Process
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287496A (en) * 1987-05-20 1988-11-24 Gunei Kagaku Kogyo Kk Production of high conversion syrup containing isomaltose

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63287496A (en) * 1987-05-20 1988-11-24 Gunei Kagaku Kogyo Kk Production of high conversion syrup containing isomaltose

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015109868A (en) * 2008-03-14 2015-06-18 松谷化学工業株式会社 Branched dextrin, manufacturing method thereof, and food and beverage
JP6019493B2 (en) * 2008-03-14 2016-11-02 松谷化学工業株式会社 Branched dextrin, method for producing the same, and food and drink

Also Published As

Publication number Publication date
JPS63291588A (en) 1988-11-29

Similar Documents

Publication Publication Date Title
DK167029B1 (en) ENZYM PRODUCT AND ITS USE IN SUCCARIFICATION OF STARCH
EP0875585B1 (en) Method for the production of isomalto-oligosaccharide rich syrups
US5462864A (en) Manufacturing method of high purity maltose and its reduced product
KR100498758B1 (en) How to make syrup rich in maltose
JPH08336388A (en) Recombinant heat-resistant enzyme capable of liberating trehalose from non-reducing carbohydrate
JPH0669385B2 (en) Method for producing sugar with high content of branched oligosaccharide
WO2002040659A1 (en) POLYPEPTIDES HAVING α-ISOMALTOSYL TRANSFERASE ACTIVITY
USRE30820E (en) Novel maltulose-containing syrups and process for making the same
JP3513197B2 (en) Method for producing high purity maltitol
US4734364A (en) Production of dextrose and maltose syrups using an enzyme derived from rice
CN110004128A (en) Compounded saccharifying enzyme preparation and amylolytic method
JPH0614872B2 (en) Method for producing branched oligosaccharide syrup
EP0127291B1 (en) Production of dextrose and maltose syrups using an enzyme derived from rice
US4217413A (en) Novel maltulose-containing syrups and process for making the same
JPH0292296A (en) Production of high-purity maltose and reduced material thereof
JP2000189161A (en) Immobilized maltogenic alpha-amylase and use thereof in producing syrup rich in maltose
JPH0427818B2 (en)
JP3062264B2 (en) Method for producing high purity maltose aqueous solution
JPH04237497A (en) Production of slightly digestible dextrin
JPH0242997A (en) Production of powdery maltose and powdery maltitol
JP3697671B2 (en) Panose liquid manufacturing method
JP2002125692A (en) METHOD FOR PRODUCING ETHYL-alpha-D-GLUCOSIDE
JPH057999B2 (en)
JPH03187390A (en) Production of branched oligosaccharide
JPH0223881A (en) Production of maltose having low oligosaccharide content and its reduction product