JPH04277098A - Method and device for treating waste water - Google Patents

Method and device for treating waste water

Info

Publication number
JPH04277098A
JPH04277098A JP3037574A JP3757491A JPH04277098A JP H04277098 A JPH04277098 A JP H04277098A JP 3037574 A JP3037574 A JP 3037574A JP 3757491 A JP3757491 A JP 3757491A JP H04277098 A JPH04277098 A JP H04277098A
Authority
JP
Japan
Prior art keywords
treatment chamber
anaerobic
wastewater
water
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3037574A
Other languages
Japanese (ja)
Inventor
Shuhei Kono
秀平 河野
Katsumi Nishimura
勝己 西村
Takamasa Tsuji
辻 隆正
Yoshinori Takezaki
義則 竹崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP3037574A priority Critical patent/JPH04277098A/en
Publication of JPH04277098A publication Critical patent/JPH04277098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)

Abstract

PURPOSE:To efficiently reduce BOD and nitrogen concn. in a finally treated water by a method wherein waste water is treated in anaerobic and aerobic treating chambers and the water residence time in the anaerobic treating chamber is set at 3-8 hours in a waste water treating process for circulating a part of aerobic treating water. CONSTITUTION:The total digestion rate beta is obtained by extrapolating the minimum nitrogen removal rate alpha of a purifying tank devoid of a partial circulation process from the removal rate in a waste water treating device having a circulating process. The total digestion rate betabecomes greater with the decreasing concn. gamma of decomposable total organic carbon(TOC) at the exit of the anaerobic treating chamber and that become almost equal to each other within certain values. Accordingly, the total digestion rate alpha of the device and the decomposable TOC concn. gamma are required to be within a desirable range not exceeding the certain values. From the relationship between the decomposable TOC concn. gamma and the residence time T of the waste water in the anaerobic treating chamber, the residence time of about 3-8 hours within the range not exceeding the certain values of the decomposable TOC concn. gamma is obtained. Although the residence time T in the anaerobic treating chamber is related to the amt. of inflow waste water, the cirulation water amount and the effective volume, the circulation water amount is obtained by substituting the residence time T and the amt. of the water discharged and the decomposable TOC concn. gamma is reduced effectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、好気性処理室から嫌気
性処理室への還流量を調整し、経済的運転を確保しなが
ら、最終処理水中のBOD濃度や窒素濃度を効果的に低
減できる排水処理方法及び排水処理装置に関する。
[Industrial Application Field] The present invention adjusts the flow rate from the aerobic treatment chamber to the anaerobic treatment chamber, effectively reducing the BOD concentration and nitrogen concentration in the final treated water while ensuring economical operation. The present invention relates to a wastewater treatment method and a wastewater treatment device that can be used.

【0002】0002

【従来の技術】本出願人は、先に、特願平1−1218
4号において、上記を目的とした浄化槽を開示した。
[Prior Art] The present applicant previously filed Japanese Patent Application No. 1-1218
In No. 4, a septic tank for the above purpose was disclosed.

【0003】即ち、同浄化槽は、図5に概念的に示すよ
うに、浄化槽本体50内に嫌気性処理室51と好気性処
理室52とを並設状態に配設し、好気性処理室52内の
処理水を嫌気性処理室51内に一部還流管53を介して
一部還流可能な構成を有する。
That is, as conceptually shown in FIG. 5, the septic tank has an anaerobic treatment chamber 51 and an aerobic treatment chamber 52 arranged side by side in a septic tank main body 50. It has a configuration that allows part of the treated water inside to be returned to the anaerobic treatment chamber 51 via a return pipe 53.

【0004】かかる構成によって、一部還流管53を通
して、好気性処理室52内の微生物反応によってNH4
 + から発生したNO2 − やNO3 − を嫌気
性処理室に還流して嫌気性処理水と共に微生物反応させ
、N2ガスやCO2 ガスとして外部に取り出すことが
でき、好気性処理室52から外部に取り出す最終処理水
は、好気性処理水を還流しない従来の浄化槽と比較した
場合、BOD濃度や窒素濃度を効果的に低減できる。
With this configuration, NH4 is partially passed through the reflux pipe 53 and generated by the microbial reaction in the aerobic treatment chamber 52.
The NO2 − and NO3 − generated from + are returned to the anaerobic treatment chamber and reacted with microorganisms together with the anaerobically treated water, and can be taken out as N2 gas and CO2 gas. The treated water can effectively reduce the BOD concentration and nitrogen concentration when compared with a conventional septic tank that does not recirculate aerobic treated water.

【0005】[0005]

【発明が解決しようとする課題】しかし、かかる浄化槽
は、未だ、以下の解決すべき課題を有していた。
[Problems to be Solved by the Invention] However, such septic tanks still have the following problems to be solved.

【0006】即ち、上記した浄化槽において、好気性処
理室52からの一部還流量は何ら理論的に考察されてお
らず、専ら、試行錯誤的に行われている。従って、最終
処理水中のBOD濃度や窒素濃度を十分に低下すること
ができず、或いは、低下できた場合であっても、著しく
不経済な運転を行うことになっていた。
That is, in the above-mentioned septic tank, the partial return amount from the aerobic treatment chamber 52 has not been theoretically considered at all, and is determined solely by trial and error. Therefore, the BOD concentration and nitrogen concentration in the final treated water cannot be sufficiently reduced, or even if they can be reduced, the operation is extremely uneconomical.

【0007】本発明は、経済的運転を確保しながら、最
終処理水中のBOD濃度や窒素濃度を効果的に低減でき
る排水処理方法を提供することを目的とする。
An object of the present invention is to provide a wastewater treatment method that can effectively reduce the BOD concentration and nitrogen concentration in the final treated water while ensuring economical operation.

【0008】[0008]

【課題を解決するための手段】本発明は、排水を嫌気性
処理室内で嫌気性処理した後、嫌気性処理後水を好気性
処理室内に供給して好気性処理を行い、かつ、好気性処
理室から好気性処理水を外部に取り出すとともに、同好
気性処理水の一部を嫌気性処理室内に還流し窒素還元処
理等を行う排水処理方法において、嫌気性処理室内の排
水の滞留時間を、3〜8時間としたことを特徴とする排
水処理方法に係るものである。
[Means for Solving the Problems] The present invention provides a method for anaerobically treating wastewater in an anaerobic treatment chamber, and then supplying the anaerobically treated water to an aerobic treatment chamber to perform aerobic treatment. In a wastewater treatment method in which aerobically treated water is taken out from the treatment chamber and a portion of the aerobically treated water is returned to the anaerobic treatment chamber for nitrogen reduction treatment, etc., the residence time of the wastewater in the anaerobic treatment chamber is This relates to a wastewater treatment method characterized in that the treatment time is 3 to 8 hours.

【0009】また、本発明は、流入排水を嫌気性処理す
る嫌気性処理室と、同嫌気性処理室に並設し、嫌気性処
理後水を好気性処理する好気性処理室と、好気性処理室
から好気性処理水の一部を嫌気性処理室内に還流する一
部還流路となる排水処理装置において、嫌気性処理室の
容量、嫌気性処理室への排水流入量及び一部還流量を考
慮し、嫌気性処理室内の排水の滞留時間が3〜8時間に
なるように設定したことを特徴とする排水処理装置に係
るものである。
The present invention also provides an anaerobic treatment chamber for anaerobically treating inflow wastewater, an aerobic treatment chamber installed in parallel with the anaerobic treatment chamber for aerobically treating water after the anaerobic treatment, and an aerobic treatment chamber for aerobically treating water after the anaerobic treatment. In a wastewater treatment device that serves as a partial return path for returning a portion of aerobically treated water from the treatment chamber to the anaerobic treatment chamber, the capacity of the anaerobic treatment chamber, the amount of wastewater flowing into the anaerobic treatment chamber, and the amount of partial return This invention relates to a wastewater treatment apparatus characterized in that the residence time of wastewater in an anaerobic treatment chamber is set to be 3 to 8 hours in consideration of the above.

【0010】0010

【実施例】以下、本発明を、添付図に示す実施例に基づ
いて、具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below based on embodiments shown in the accompanying drawings.

【0011】先ず、図1に示す概念的構成図を用いて、
本発明に係る排水処理方法に用いることができる排水処
理装置としての浄化槽Aの構成を説明する。
First, using the conceptual configuration diagram shown in FIG.
The configuration of a septic tank A as a wastewater treatment device that can be used in the wastewater treatment method according to the present invention will be explained.

【0012】図1において、10は排水流入口11を具
備する嫌気性処理室であり、嫌気性処理を行うための嫌
気性濾床10a を具備する。排水流入口11は排水供
給管20に接続されており、必要に応じ、同排水供給管
20には流量調整弁21を取付ける。
In FIG. 1, 10 is an anaerobic treatment chamber equipped with a waste water inlet 11, and is equipped with an anaerobic filter bed 10a for carrying out anaerobic treatment. The wastewater inlet 11 is connected to a wastewater supply pipe 20, and a flow rate regulating valve 21 is attached to the wastewater supply pipe 20 as required.

【0013】嫌気性処理室10の側方には処理水取出口
12を具備する好気性処理室13が並設されており、同
好気性処理室13内には、好気性処理を行う好気性濾床
13a が配設されている。
On the side of the anaerobic treatment chamber 10, an aerobic treatment chamber 13 equipped with a treated water outlet 12 is arranged. A floor 13a is provided.

【0014】嫌気性処理室10と好気性処理室13とは
、嫌気性処理水移送管14及び一部還流管15とによっ
て連絡されており、嫌気性処理水移送管14を通して、
嫌気性処理水を好気性処理室13に移送できるとともに
、好気性処理室13から好気性処理水の一部を嫌気性処
理室10に還流することができる。
The anaerobic treatment chamber 10 and the aerobic treatment chamber 13 are connected by an anaerobic treated water transfer pipe 14 and a partial reflux tube 15, and through the anaerobic treated water transfer pipe 14,
Anaerobically treated water can be transferred to the aerobic treatment chamber 13, and a portion of the aerobically treated water can be returned from the aerobic treatment chamber 13 to the anaerobic treatment chamber 10.

【0015】また、一部還流管15の中途には、一部還
流用ポンプ16が取付けられており、好気性処理室13
内には散気管17a を具備する曝気装置17が配設さ
れている。
In addition, a partial reflux pump 16 is installed in the middle of the partial reflux pipe 15, and the aerobic treatment chamber 13
An aeration device 17 equipped with an aeration pipe 17a is disposed inside.

【0016】さらに、上記した流量調整弁21と一部還
流ポンプ16には制御装置Cに接続されている。これら
の流量調整弁21と一部還流ポンプ16は、操作盤22
からの運転スイッチ信号や、嫌気性処理室10と好気性
処理室13内にそれぞれ取付けた水位センサS1、S2
の検出出力に基づいて作動し、それぞれ、嫌気性処理室
10内に流入する排水量と、好気性処理室13から嫌気
性処理室10に還流する一部還流量を調整することがで
きる。
Furthermore, the above-mentioned flow rate regulating valve 21 and partial reflux pump 16 are connected to a control device C. These flow rate adjustment valve 21 and partial reflux pump 16 are connected to the operation panel 22.
and water level sensors S1 and S2 installed in the anaerobic treatment chamber 10 and aerobic treatment chamber 13, respectively.
It is possible to adjust the amount of wastewater flowing into the anaerobic processing chamber 10 and the amount of partial recirculation flowing back from the aerobic processing chamber 13 to the anaerobic processing chamber 10, respectively.

【0017】以下、上記構成を有する浄化槽Aによる、
家庭の便所や厨房からの排水の浄化処理方法について、
第1図を参照して説明する。
[0017] Hereinafter, by using the septic tank A having the above configuration,
How to purify wastewater from home toilets and kitchens.
This will be explained with reference to FIG.

【0018】排水流入口11から嫌気性処理室10内に
流入した処理水及び同処理水中に含まれている水及び有
機物( 炭水化物、蛋白質、脂質、尿素等を成分とする
) は、嫌気性濾床10a を通過する間に、同濾床1
0a の濾材の表面に付着した嫌気性菌によって嫌気分
解を受ける。
The treated water flowing into the anaerobic treatment chamber 10 from the wastewater inlet 11 and the water and organic matter (components such as carbohydrates, proteins, lipids, urea, etc.) contained in the treated water are filtered through an anaerobic filter. While passing through the bed 10a, the filter bed 1
0a undergoes anaerobic decomposition by anaerobic bacteria attached to the surface of the filter medium.

【0019】即ち、まず、酸生成菌によって処理水中の
有機物を低分子化して酢酸(CH3COOH) やプロ
ピオン酸(CH3CH2COOH)等の有機酸に変え、
その後、メタン菌等の嫌気性菌によって、有機酸を分解
して、メタン(CH4) や二酸化炭素(CO2) を
生成して、これらの気体を浄化槽A外に放出するともに
、蛋白質や尿素のチッソ分の分解物であるアンモニア態
窒素 (NH4 + −N)を含んだ処理水を生成する
That is, first, organic substances in the treated water are reduced in molecular weight by acid-producing bacteria and converted into organic acids such as acetic acid (CH3COOH) and propionic acid (CH3CH2COOH).
After that, anaerobic bacteria such as methane bacteria decompose the organic acid to generate methane (CH4) and carbon dioxide (CO2), and release these gases outside of septic tank A. This produces treated water containing ammonia nitrogen (NH4 + -N), which is a decomposition product of water.

【0020】このような嫌気性処理を行うことによって
、処理水から有機物を効果的に除去することができ、そ
の結果、嫌気性処理後の処理水は、アンモニア態窒素 
(NH4 + −N)及び少量の未処理有機物を含んだ
状態で、嫌気性処理室10から好気性処理室13に嫌気
性処理水移送管14を通して、移送されることになる。
[0020] By performing such anaerobic treatment, organic matter can be effectively removed from the treated water, and as a result, the treated water after the anaerobic treatment contains ammonia nitrogen.
(NH4 + -N) and a small amount of untreated organic matter is transferred from the anaerobic treatment chamber 10 to the aerobic treatment chamber 13 through the anaerobic treated water transfer pipe 14.

【0021】次に、好気性処理室13内における浄化処
理について説明すると、好気性処理室13中では、曝気
装置17の散気管17a から処理水中にエアが吹き込
まれており、同エア中の酸素を利用する硝化菌等の好気
性菌による酸化分解が行われて、処理水中のアンモニア
態窒素 (NH4 + −N)は、硝酸態窒素(NO3
 −−N)や亜硝酸態窒素(N02− −N)に酸化分
解される。
Next, the purification process in the aerobic treatment chamber 13 will be explained. In the aerobic treatment chamber 13, air is blown into the treated water from the aeration pipe 17a of the aeration device 17, and oxygen in the air is blown into the treated water. Ammonia nitrogen (NH4 + -N) in the treated water is converted into nitrate nitrogen (NO3
--N) and nitrite nitrogen (N02--N).

【0022】さらに、本実施例では、上記嫌気性処理及
び好気性処理を行った処理水の全部を、そのまま浄化槽
A外に放流することなく、好気性処理室13中で好気分
解処理中の処理水の一部を、一部還流用ポンプ16を駆
動して、一部還流管15を通して、嫌気性処理室10に
返送するようにしている。
Furthermore, in this embodiment, all of the treated water that has been subjected to the anaerobic treatment and aerobic treatment is not directly discharged to the outside of the septic tank A, but is instead subjected to aerobic decomposition treatment in the aerobic treatment chamber 13. A part of the treated water is partially returned to the anaerobic treatment chamber 10 through a reflux pipe 15 by driving a reflux pump 16 .

【0023】しかして、硝酸態窒素 (NO3 − −
N)や亜硝酸態窒素(N02− −N)を含んだ処理水
が嫌気性処理室10に流入すると、嫌気性処理室10内
に存在する脱窒菌は、これら無機化合物の酸素を利用し
、嫌気性処理室10内に流入する有機物を分解して生存
のためのエネルギを得る。 結果として、無機化合物は還元されて分子状窒素(N2
)や亜酸化窒素(N2O) となり、有機物の炭素は分
解されて二酸化炭素(CO2) となり、浄化槽A外に
放出されることになる。
[0023] Therefore, nitrate nitrogen (NO3 − −
When treated water containing N) and nitrite nitrogen (N02- -N) flows into the anaerobic treatment chamber 10, the denitrifying bacteria present in the anaerobic treatment chamber 10 utilize the oxygen of these inorganic compounds, Organic matter flowing into the anaerobic treatment chamber 10 is decomposed to obtain energy for survival. As a result, inorganic compounds are reduced to molecular nitrogen (N2
) and nitrous oxide (N2O), and the organic carbon is decomposed to become carbon dioxide (CO2), which is released outside of the septic tank A.

【0024】このように、嫌気性処理室10における有
機物の分解処理を、嫌気性処理のみでなく、好気性処理
室13からの一部還流水及びそれに作用する脱窒菌によ
っても行うことができる。
In this manner, the decomposition treatment of organic matter in the anaerobic treatment chamber 10 can be carried out not only by anaerobic treatment but also by partially refluxed water from the aerobic treatment chamber 13 and denitrifying bacteria acting on it.

【0025】従って、嫌気性菌のみで嫌気性処理のみを
行う場合に生じるアンモニア態窒素(NH4 + −N
)の過剰増加( これは嫌気性菌の活性を抑制する方向
に働く) を抑えることができ、また、かかる抑制作用
によって、嫌気性菌の活性を常時好適状態に維持するこ
とができることになり、嫌気性処理室10における有機
物の分解処理を向上することができる。
Therefore, ammonia nitrogen (NH4 + -N
) (which works in the direction of suppressing the activity of anaerobic bacteria) can be suppressed, and this suppressing effect makes it possible to maintain the activity of anaerobic bacteria in a suitable state at all times. The decomposition treatment of organic matter in the anaerobic treatment chamber 10 can be improved.

【0026】また、このような有機物の分解処理能力の
向上によって、嫌気性処理室10から好気性処理室13
に移送する処理水中に含まれる未処理有機物も大幅に低
減することができ、同未処理有機物に起因する好気性処
理室13内の汚泥の発生も可及的に低減することができ
る。
[0026] Furthermore, due to the improved ability to decompose organic matter, the anaerobic treatment chamber 10 can be
The untreated organic matter contained in the treated water transferred to can also be significantly reduced, and the generation of sludge in the aerobic treatment chamber 13 caused by the untreated organic matter can also be reduced as much as possible.

【0027】一方、好気性処理室13における処理水中
の硝酸態窒素 (NO3 − −N)や亜硝酸態窒素(
N02− −N)の濃度も、処理水の一部を嫌気性処理
室10に還流して、それらのイオンを脱窒菌によって分
子状窒素(N2)や亜酸化窒素(N2O) に分解する
ことができるので可及的に低減することができる。
On the other hand, nitrate nitrogen (NO3 − -N) and nitrite nitrogen (
The concentration of N02- -N) can also be determined by returning a portion of the treated water to the anaerobic treatment chamber 10 and decomposing these ions into molecular nitrogen (N2) and nitrous oxide (N2O) by denitrifying bacteria. Therefore, it can be reduced as much as possible.

【0028】そして、好気分解処理を終えた処理水は、
処理水流出口12を通して、図示しない処理水排出管路
の下流側に流出されることになる。
[0028] The treated water after the aerobic decomposition treatment is
The treated water is discharged through the treated water outlet 12 to the downstream side of a treated water discharge pipe (not shown).

【0029】このようにして、家庭の便所や厨房等から
の処理水を浄化処理して処理水排水管路の下流側に放流
した最終処理水は、前述したように、好気性処理室a3
中の処理水の一部を還流する構成としているので、BO
D濃度や窒素濃度を低減することができる。
In this way, the final treated water purified from the toilets, kitchens, etc. of the home and discharged to the downstream side of the treated water drainage pipe is transferred to the aerobic treatment room a3, as described above.
Since the structure is such that a part of the treated water inside is refluxed, the BO
D concentration and nitrogen concentration can be reduced.

【0030】ところで、嫌気性処理室10に流入する排
水量をQ1, 好気性処理室10から嫌気性処理室13
への好気性処理水一部還流量をQ4、好気性処理室13
からの最終処理水量をQ3とすれば、嫌気性処理室10
から好気性処理室13に移送される嫌気性処理水量Q2
は、Q2=Q1+Q4で表される。なお、当然、Q1=
Q3である。
By the way, the amount of wastewater flowing into the anaerobic treatment chamber 10 is Q1, and the amount of water flowing from the aerobic treatment chamber 10 to the anaerobic treatment chamber 13 is
Partial return amount of aerobically treated water to Q4, aerobic treatment room 13
If the final amount of water to be treated is Q3, then the anaerobic treatment room 10
Quantity of anaerobically treated water Q2 transferred from to the aerobic treatment chamber 13
is expressed as Q2=Q1+Q4. Of course, Q1=
It is Q3.

【0031】しかして、従来、上記各量Q1, Q2,
 Q4間の相関関係については、殆ど研究されていない
。即ち、最小処理時間で最大処理能力を上げるために必
要な排水の最適処理については何ら顧慮されていなかっ
た。
[0031] Conventionally, the above quantities Q1, Q2,
Little research has been done on the correlation between Q4. That is, no consideration was given to the optimal treatment of wastewater necessary to increase the maximum treatment capacity in the minimum treatment time.

【0032】本発明は、以下に説明する考察の結果、嫌
気性処理室10に流入する排水量Q1の嫌気性処理室1
0での滞留時間を3〜8時間、好ましくは4〜5.5 
時間とした場合に、処理能力と経済性の観点から排水の
最適処理を行うことができることを知得したものである
As a result of the considerations described below, the present invention has been developed so that the anaerobic treatment chamber 1 has an amount of wastewater Q1 flowing into the anaerobic treatment chamber 10.
Residence time at 0 is 3 to 8 hours, preferably 4 to 5.5 hours.
We have learned that it is possible to perform optimal treatment of wastewater from the viewpoint of treatment capacity and economic efficiency when considering the amount of time.

【0033】(考察1)現状の浄化槽 (嫌気性処理の
後に好気性処理室を行うが、一部還流処理は行わない浄
化槽) における最低窒素除去率αを25%とし、この
値を、本発明の排水処理装置に外挿すると、図2に示す
ように、最低許容窒素除去率αが25%における排水処
理装置全体のトータル硝化率βは約32.5%になる。
(Consideration 1) The minimum nitrogen removal rate α in the current septic tank (a septic tank that performs an aerobic treatment room after anaerobic treatment but does not partially perform reflux treatment) is 25%, and this value is set as 25%. When extrapolated to the wastewater treatment equipment, as shown in FIG. 2, the total nitrification rate β of the entire wastewater treatment equipment when the minimum allowable nitrogen removal rate α is 25% is approximately 32.5%.

【0034】(考察2)次に、かかる排水処理装置全体
のトータル硝化率βと、嫌気性処理室10の出口の分解
性TOC( 全有機態炭素)濃度γとの関係を調べると
、図3に示すように、トータル硝化率βを32.5%以
上とするためには、分解性TOC濃度γを6.3 以下
にする必要がある。
(Consideration 2) Next, when examining the relationship between the total nitrification rate β of the entire wastewater treatment equipment and the decomposable TOC (total organic carbon) concentration γ at the outlet of the anaerobic treatment chamber 10, it is found that FIG. As shown in Figure 2, in order to make the total nitrification rate β 32.5% or more, the degradable TOC concentration γ needs to be 6.3 or less.

【0035】また、図3からトータル硝化率βは分解性
TOC濃度γの減少とともに大きくなるが、分解性TO
C濃度γが約3.2 以下になると、トータル硝化率β
は略同じである。
Furthermore, from FIG. 3, the total nitrification rate β increases as the degradable TOC concentration γ decreases, but the
When the C concentration γ becomes approximately 3.2 or less, the total nitrification rate β
are almost the same.

【0036】従って、分解性TOC濃度γを約6.3 
以下、好ましくは約3.2 以下の範囲とすることが、
処理能力のみならず、経済性も考慮した場合、望ましい
ことになる。
Therefore, the degradable TOC concentration γ is approximately 6.3
Hereinafter, the range is preferably about 3.2 or less,
This is desirable when considering not only processing capacity but also economic efficiency.

【0037】(考察3)次に、嫌気性処理室10の出口
の分解性TOC濃度γと、排水の嫌気性処理室滞留時間
Tとの関係を調べると、図4に示すように、分解性TO
C濃度γを約6.3以下の範囲とするためには、嫌気性
処理室滞留時間Tを、2.85時間以上とする必要があ
る。しかし、図4から明らかなように、嫌気性処理室滞
留時間Tを3.8 時間以上としてもいまだ有効に分解
性TOC濃度γを効果的に低減でき、一方、図4におけ
る変曲域aを越えてからは、時間が経過しても、分解性
TOC濃度γは緩い勾配でしか低減しない。
(Consideration 3) Next, when examining the relationship between the degradable TOC concentration γ at the outlet of the anaerobic treatment chamber 10 and the residence time T of the wastewater in the anaerobic treatment chamber, as shown in FIG. T.O.
In order to keep the C concentration γ in the range of about 6.3 or less, the residence time T in the anaerobic treatment chamber needs to be 2.85 hours or more. However, as is clear from FIG. 4, it is still possible to effectively reduce the degradable TOC concentration γ even when the residence time T in the anaerobic treatment chamber is 3.8 hours or more; on the other hand, the inflection region a in FIG. After exceeding this point, the degradable TOC concentration γ decreases only at a gentle slope even if time passes.

【0038】従って、嫌気性処理室滞留時間Tを、約 
3〜約8時間の範囲、好ましくは、屈曲点aの前後の一
定幅、即ち、4〜5.5 時間に設定すれば、経済性を
伴いながら分解性TOC濃度γを効果的に低減できるこ
とがわかる。
Therefore, the residence time T in the anaerobic treatment chamber is approximately
If it is set in the range of 3 to about 8 hours, preferably a certain width before and after the inflection point a, that is, 4 to 5.5 hours, it is possible to effectively reduce the degradable TOC concentration γ while being economical. Recognize.

【0039】(考察4)上記考察1〜3においては、各
量Q1,Q1, Q4間の相関関係に基づき、経済性を
伴いながら分解性TOC濃度γを効果的に低減するに必
要な嫌気性処理室滞留時間Tを求めたが、以下、図1を
参照して、具体的事例をあげて、嫌気性処理室滞留時間
Tを3時間とした場合に要する好気性処理水一部還流量
Q4を求める。
(Consideration 4) In the above considerations 1 to 3, based on the correlation between each quantity Q1, Q1, and Q4, the anaerobic properties necessary to effectively reduce the degradable TOC concentration γ while being economical. The treatment chamber residence time T was determined, and below, with reference to FIG. 1, a specific example will be given and the aerobic treated water partial recirculation amount Q4 required when the anaerobic treatment chamber residence time T is 3 hours. seek.

【0040】一般に、嫌気性処理室滞留時間Tは、次の
式で表される。
Generally, the residence time T in the anaerobic treatment chamber is expressed by the following formula.

【0041】[0041]

【数1】[Math 1]

【0042】今、浄化槽Aを標準家庭 (5人) 用と
すると、屎尿浄化槽構造基準の算定によれば、嫌気性処
理室10の容量V1は1.5 m3、嫌気性処理室10
に流入する排水量Q1は1.25 m3/day とな
る。
Now, if the septic tank A is used for a standard household (5 people), the capacity V1 of the anaerobic treatment chamber 10 is 1.5 m3, and the capacity V1 of the anaerobic treatment chamber 10 is 1.5 m3, according to the calculation of the human waste septic tank structure standard.
The amount of wastewater Q1 flowing into the area is 1.25 m3/day.

【0043】これらの数値を上記式に代入すると、以下
の如くなる。
Substituting these values into the above equation yields the following.

【0044】[0044]

【数2】[Math 2]

【0045】これより、 Q4 = 10.75 (m
3/day) となる。即ち、10.75 (m3/d
ay)又はそれより少ない量で、好気性処理水を一部還
流すれば、嫌気性処理室滞留時間を3時間又はそれ以上
に保持でき、分解性TOC濃度γを効果的に低減して、
排水の最適処理を行うことができる。
From this, Q4 = 10.75 (m
3/day). That is, 10.75 (m3/d
If a part of the aerobically treated water is refluxed with ay) or a smaller amount, the residence time in the anaerobic treatment chamber can be maintained at 3 hours or more, effectively reducing the degradable TOC concentration γ,
Optimal treatment of wastewater can be carried out.

【0046】次に、嫌気性処理室滞留時間Tを最適時間
幅 (4〜5.5時間) とした場合における好気性処
理水一部還流量Q4を求める。
Next, the partial recirculation amount Q4 of the aerobic treated water is determined when the residence time T in the anaerobic treatment chamber is set to the optimum time width (4 to 5.5 hours).

【0047】[0047]

【数3】[Math 3]

【0048】これより、 5.30 ≦Q4≦7.75
 (m3/day) となる。即ち、好気性処理水一部
還流量Q4を上記範囲に設定すれば、嫌気性処理室滞留
時間を最適時間幅 (4〜5.5時間) に保持でき、
分解性TOC濃度γをさらに効果的に低減して、排水の
最適処理を行うことができる。
From this, 5.30≦Q4≦7.75
(m3/day). That is, by setting the aerobically treated water partial recirculation amount Q4 within the above range, the residence time in the anaerobic treatment chamber can be maintained within the optimum time range (4 to 5.5 hours).
The degradable TOC concentration γ can be further effectively reduced, and wastewater can be optimally treated.

【0049】かかる好気性処理水一部還流量Q4の調整
は、排水流入口11と一部還流管15にそれぞれ取付け
た流量センサS1、S2の検出出力に基づいて制御装置
Cが駆動信号を一部還流ポンプ16に送ることによって
容易に行うことができる。
Adjustment of the aerobically treated water partial recirculation amount Q4 is performed by the control device C outputting a drive signal based on the detection outputs of the flow rate sensors S1 and S2 attached to the wastewater inlet 11 and the partial recirculation pipe 15, respectively. This can be easily done by sending the part to the reflux pump 16.

【0050】また、必要であれば、流量センサS1、S
2の検出出力に基づいて制御装置Cが駆動信号を流量調
整弁21に送り、排水量を調整することによっても行う
ことができる。
[0050] If necessary, flow rate sensors S1, S
This can also be done by the control device C sending a drive signal to the flow rate adjustment valve 21 based on the detection output of No. 2 to adjust the amount of water discharged.

【0051】[0051]

【効果】以上説明してきたように、本発明は、以下の効
果を奏する。
[Effects] As explained above, the present invention has the following effects.

【0052】即ち、本発明では、排水を嫌気性処理室内
で嫌気性処理した後、嫌気性処理後水を好気性処理室内
に供給して好気性処理を行い、かつ、好気性処理室から
好気性処理水を外部に取り出すとともに、同好気性処理
水の一部を嫌気性処理室内に還流し窒素還元処理等を行
う排水処理方法において、嫌気性処理室内の排水の滞留
時間を、3〜8時間としたことを特徴とする。このよう
にすることによって、経済性を伴いながら嫌気性処理水
の分解性TOC濃度γを効果的に低減でき、ひいては、
浄化槽の浄化能力を常時最適状態に保持することができ
る。従って、最終処理水中のBOD濃度や窒素濃度を効
果的に低減することができる。
That is, in the present invention, after the wastewater is anaerobically treated in the anaerobic treatment chamber, the water after the anaerobic treatment is supplied into the aerobic treatment chamber to perform aerobic treatment, and the water is then purified from the aerobic treatment chamber. In a wastewater treatment method in which aerobic treated water is taken outside and a part of the aerobic treated water is returned to the anaerobic treatment chamber for nitrogen reduction treatment, etc., the residence time of the wastewater in the anaerobic treatment chamber is set to 3 to 8 hours. It is characterized by the following. By doing this, it is possible to effectively reduce the decomposable TOC concentration γ of the anaerobically treated water while being economical, and as a result,
The purification capacity of the septic tank can be maintained at an optimal state at all times. Therefore, the BOD concentration and nitrogen concentration in the final treated water can be effectively reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る排水処理装置の概念的構成説明図
である。
FIG. 1 is a conceptual diagram illustrating the configuration of a wastewater treatment device according to the present invention.

【図2】本発明に係る排水処理装置のトータル硝化率と
窒素除去率との相関関係を示すグラフである。
FIG. 2 is a graph showing the correlation between the total nitrification rate and the nitrogen removal rate of the wastewater treatment device according to the present invention.

【図3】上記トータル硝化率と嫌気性処理室出口の分解
性TOC濃度との相関関係を示すグラフである。
FIG. 3 is a graph showing the correlation between the total nitrification rate and the decomposable TOC concentration at the outlet of the anaerobic treatment chamber.

【図4】上記嫌気性処理室出口の分解性TOC濃度と嫌
気性処理室滞留時間との相関関係を示すグラフである。
FIG. 4 is a graph showing the correlation between the degradable TOC concentration at the outlet of the anaerobic treatment chamber and the residence time in the anaerobic treatment chamber.

【図5】従来の排水処理装置の概念的構成説明図である
FIG. 5 is an explanatory diagram of a conceptual configuration of a conventional wastewater treatment device.

【符号の説明】[Explanation of symbols]

A  浄化槽 10  嫌気性処理室 13  好気性処理室 15  好気性処理水一部還流管 16  一部還流ポンプ A Septic tank 10 Anaerobic treatment room 13 Aerobic treatment room 15 Partial return pipe for aerobic treated water 16 Partial reflux pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】排水を嫌気性処理室内で嫌気性処理した後
、嫌気性処理後水を好気性処理室内に供給して好気性処
理を行い、かつ、好気性処理室から好気性処理水を外部
に取り出すとともに、同好気性処理水の一部を嫌気性処
理室内に還流し窒素還元処理等を行う排水処理方法にお
いて、嫌気性処理室内の排水の滞留時間を、3〜8時間
としたことを特徴とする排水処理方法。
Claim 1: After anaerobically treating wastewater in an anaerobic treatment chamber, the anaerobically treated water is supplied into an aerobic treatment chamber to perform aerobic treatment, and the aerobically treated water is discharged from the aerobic treatment chamber. In a wastewater treatment method in which a part of the aerobically treated water is taken out to the outside and returned to the anaerobic treatment chamber for nitrogen reduction treatment, etc., the residence time of the wastewater in the anaerobic treatment chamber is set to 3 to 8 hours. Characteristic wastewater treatment method.
【請求項2】流入排水を嫌気性処理する嫌気性処理室と
、同嫌気性処理室に並設し、嫌気性処理後水を好気性処
理する好気性処理室と、好気性処理室から好気性処理水
の一部を嫌気性処理室内に還流する一部還流路となる排
水処理装置において、嫌気性処理室の容量、嫌気性処理
室への排水流入量及び一部還流量を、嫌気性処理室内の
排水の滞留時間が3〜8時間になるように設定したこと
を特徴とする排水処理装置。
Claim 2: An anaerobic treatment chamber for anaerobically treating inflow wastewater; an aerobic treatment chamber installed in parallel with the anaerobic treatment chamber for aerobically treating water after anaerobic treatment; In a wastewater treatment equipment that serves as a partial return path for returning part of the aerobic treated water to the anaerobic treatment chamber, the capacity of the anaerobic treatment chamber, the amount of wastewater flowing into the anaerobic treatment chamber, and the amount of partial return to the anaerobic treatment chamber are A wastewater treatment device characterized in that the residence time of wastewater in the treatment chamber is set to be 3 to 8 hours.
JP3037574A 1991-03-04 1991-03-04 Method and device for treating waste water Pending JPH04277098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3037574A JPH04277098A (en) 1991-03-04 1991-03-04 Method and device for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3037574A JPH04277098A (en) 1991-03-04 1991-03-04 Method and device for treating waste water

Publications (1)

Publication Number Publication Date
JPH04277098A true JPH04277098A (en) 1992-10-02

Family

ID=12501306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3037574A Pending JPH04277098A (en) 1991-03-04 1991-03-04 Method and device for treating waste water

Country Status (1)

Country Link
JP (1) JPH04277098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108288A (en) * 1993-10-15 1995-04-25 Kirin Brewery Co Ltd Purification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108288A (en) * 1993-10-15 1995-04-25 Kirin Brewery Co Ltd Purification device

Similar Documents

Publication Publication Date Title
US4132637A (en) Ozone disinfection in waste water treatment with recycling of ozonation off gas
JP3531481B2 (en) Wastewater treatment method and apparatus
CA1307059C (en) Method of treating waste water and equipment therefor
CA2635278C (en) Method and system for nitrifying and denitrifying wastewater
KR101371220B1 (en) Method for simultaneous removal of nitrogend and organic in the waste water using membrane bioreactor
EP0428537A1 (en) Process and plant for the biological purification of waste water.
JPS637839B2 (en)
Aboutboul et al. Anaerobic treatment of intensive fish culture effluents: volatile fatty acid mediated denitrification
TWI429600B (en) A denitrification treatment method and a denitrification treatment apparatus
JPH04277098A (en) Method and device for treating waste water
JP2007007620A (en) Method for treating nitrogen-containing liquid waste
JPH0716595A (en) Operation control method in modified method for circulating active sludge
JP3134145B2 (en) Wastewater biological denitrification method
JPH047099A (en) Waste water treatment apparatus for simultaneously removing organic matter, nitrogen and phosphorus
JPS602917B2 (en) Biological treatment method for wastewater
JPH08108195A (en) Method and apparatus for removing nitrogen in water
JPH05277475A (en) Treatment method for water containing organic substance
JP3803883B2 (en) Purification device operation method
JPH02303598A (en) Treatment of organic matter-containing water
JP3497542B2 (en) Operation of septic tank
JPH04298290A (en) Waste water treating device
JP2003340485A (en) Method for treating organic waste water and apparatus therefor
JP3303475B2 (en) Operation control method of activated sludge circulation method
JPS638840B2 (en)
JPH0731996A (en) Waste water treating method