JPH0427694B2 - - Google Patents

Info

Publication number
JPH0427694B2
JPH0427694B2 JP56124869A JP12486981A JPH0427694B2 JP H0427694 B2 JPH0427694 B2 JP H0427694B2 JP 56124869 A JP56124869 A JP 56124869A JP 12486981 A JP12486981 A JP 12486981A JP H0427694 B2 JPH0427694 B2 JP H0427694B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
wiring
conductivity type
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56124869A
Other languages
Japanese (ja)
Other versions
JPS5799781A (en
Inventor
Masanori Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12486981A priority Critical patent/JPS5799781A/en
Publication of JPS5799781A publication Critical patent/JPS5799781A/en
Publication of JPH0427694B2 publication Critical patent/JPH0427694B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor device.

従来半導体集積回路においては所定の回路素子
が形成された半導体基体上に絶縁層が形成され、
その絶縁層上にアルミニウム等の金属層を、ある
いはこの絶縁層の開孔内にシリコン等の半導体層
を蒸着、スパツタリング、気相成長等により形成
し、しかる後写真蝕刻法で配線路となるべき部分
の金属層を残し、他の部分を除去することにより
配線を形成していた。
Conventionally, in semiconductor integrated circuits, an insulating layer is formed on a semiconductor substrate on which predetermined circuit elements are formed.
A metal layer such as aluminum is formed on the insulating layer, or a semiconductor layer such as silicon is formed in the openings of this insulating layer by vapor deposition, sputtering, vapor deposition, etc., and then a wiring path is formed by photolithography. Wiring was formed by leaving some parts of the metal layer and removing other parts.

従来この半導体装置では少なくとも配線路を形
成してから封止するまでの製造工程に於いて配線
路の側面が露出しており、さらに装置完成後も配
線路上を被覆する絶縁層を有しないものは勿論、
絶縁層を有するものでも熱酸化法以外では完全に
強固で緻密な絶縁層が得難い為、この配線路の側
面から汚れが侵入し素子の安定性を損ね、半導体
装置の信頼性が低下した。
Conventionally, in this semiconductor device, the side surfaces of the wiring paths are exposed at least during the manufacturing process from forming the wiring paths to sealing them, and even after the device is completed, there are devices that do not have an insulating layer covering the wiring paths. Of course,
Even in devices that have an insulating layer, it is difficult to obtain a completely strong and dense insulating layer using methods other than thermal oxidation, so dirt enters from the sides of the wiring path, impairing the stability of the device and reducing the reliability of the semiconductor device.

また多結晶シリコンの選択酸化によつて配線層
を作ることも提案されているが(特願昭45−
63338号、特公昭49−32635号)、選択酸化後の多
結晶シリコン配線層の導電度については何ら配慮
されておらず、また半導体基板内の素子領域と多
結晶シリコン配線層の導電形との関係についても
考慮されておらず、実用的でないものである。
It has also been proposed to create wiring layers by selective oxidation of polycrystalline silicon (Japanese Patent Application No. 1973-
63338, Japanese Patent Publication No. 49-32635), no consideration was given to the conductivity of the polycrystalline silicon wiring layer after selective oxidation, and there was no consideration given to the conductivity type of the element region in the semiconductor substrate and the polycrystalline silicon wiring layer. Relationships are not taken into consideration either, making it impractical.

この発明の目的は信頼性の高い配線・電極構造
を有する実用的な半導体装置の製造方法を提供す
るにある。
An object of the present invention is to provide a practical method for manufacturing a semiconductor device having a highly reliable wiring/electrode structure.

本発明の特徴は、第1の導電型の半導体基板に
該第1の導電型とは逆の導電型の第2の導電型の
第1の不純物領域が形成された該半導体基板上に
該第1の不純物領域が一部露出する開孔を有する
絶縁層を形成する工程と、前記開孔内および前記
絶縁層上に連続的に不純物が導入されていない半
導体層を形成する工程と、前記半導体層上にシリ
コン窒化膜を選択的に形成する工程と、熱酸化す
ることにより前記シリコン窒化膜に被われていな
い前記半導体層を酸化物層に変換する工程と、残
余せる半導体層の上面より前記第2の導電型の不
純物を該半導体層および前記開孔を通して前記半
導体基板に導入して前記第1の不純物領域に接続
する該第2の導電型の第2の不純物領域を該開孔
下の該半導体基板に形成する工程とを含む半導体
装置の製造方法にある。
A feature of the present invention is that a first impurity region of a second conductivity type, which is a conductivity type opposite to the first conductivity type, is formed on the semiconductor substrate of the first conductivity type. a step of forming an insulating layer having an opening through which a portion of the impurity region of No. 1 is exposed; a step of forming a semiconductor layer into which no impurity is continuously introduced within the opening and on the insulating layer; a step of selectively forming a silicon nitride film on the layer; a step of converting the semiconductor layer not covered with the silicon nitride film into an oxide layer by thermal oxidation; A second impurity region of the second conductivity type is introduced into the semiconductor substrate through the semiconductor layer and the opening, and is connected to the first impurity region. A method of manufacturing a semiconductor device includes a step of forming the semiconductor device on the semiconductor substrate.

かかる本発明の製造方法によれば、熱酸化工程
後に不純物を導入するから、半導体層による電
極、配線路を所定の低抵抗値にすることができ
る。
According to the manufacturing method of the present invention, since impurities are introduced after the thermal oxidation step, the electrodes and wiring paths formed by the semiconductor layer can be made to have a predetermined low resistance value.

すなわち、熱酸化工程前に半導体層に含まれる
不純物量は熱酸化工程後に初期の値を維持しない
こともあり、また多量の不純物を含有する半導体
層の酸化層は表面保護膜として特性上好ましくな
い場合もあるが、本発明では熱酸化後に不純物を
導入するので所望の導電率を得ることができる。
また電極・配線路としての形状決定後に不純物を
導入するのでそれとコンタクトして形成される基
板内の素子領域の導電型と同じ導電型を自由に選
択できる。さらに熱酸化後に導入する不純物はこ
の半導体層を通して半導体基板へ所定の不純物領
域を形成することができる。又、開孔を通しての
不純物の導入により第2の不純物領域を形成する
から、第1の不純物領域との接続が確実のものと
なる。
In other words, the amount of impurities contained in the semiconductor layer before the thermal oxidation process may not maintain its initial value after the thermal oxidation process, and an oxidized layer of the semiconductor layer containing a large amount of impurities is not suitable as a surface protective film due to its characteristics. However, in the present invention, since impurities are introduced after thermal oxidation, desired conductivity can be obtained.
Further, since the impurity is introduced after the shape of the electrode/wiring path is determined, the same conductivity type as that of the element region in the substrate formed in contact with the impurity can be freely selected. Furthermore, impurities introduced after thermal oxidation can form a predetermined impurity region in the semiconductor substrate through this semiconductor layer. Furthermore, since the second impurity region is formed by introducing impurities through the opening, the connection with the first impurity region is ensured.

次に第1図に本発明と関係の深い技術を示す。 Next, FIG. 1 shows a technology closely related to the present invention.

第1図において同一符号は同一のものを表わ
し、N型単結晶シリコン基体1の素子形成区域内
の一主表面にp型の拡散領域であるソース領域2
とドレイン領域3とが形成される。これ等領域が
形成されて基体1の主平面上に熱酸化により二酸
化シリコン層4が形成される。この二酸化シリコ
ン層は素子形成区域外は厚いフイールド層であ
り、素子形成区域内ではうすい層となる。ソース
領域2とドレイン領域3とにオーミツクな接蝕を
取る為に標準の写真蝕刻法によるマスクとエツチ
ング技術を用いて二酸化シリコン層4中に第1図
Aに示すように開孔を穿つた後、この上に約1ミ
クロンのP型シリコン層5を蒸着、スパツタリン
グ、気相成長等により形成した。次にこの上に非
酸化性絶縁膜としてシリコン窒化膜6を気相成長
により形成した後、標準の写真蝕刻法により配線
路となるべきシリコン層5上のシリコン窒化膜6
を除いて他の部分を除去した。
In FIG. 1, the same reference numerals represent the same elements, and a source region 2, which is a p-type diffusion region, is located on one main surface in the element formation area of an N-type single crystal silicon substrate 1.
and drain region 3 are formed. These regions are formed and a silicon dioxide layer 4 is formed on the main plane of the substrate 1 by thermal oxidation. This silicon dioxide layer is a thick field layer outside the device forming area, and is a thin layer inside the device forming area. After drilling holes in the silicon dioxide layer 4 as shown in FIG. 1A using standard photolithographic masking and etching techniques to provide ohmic corrosion to the source region 2 and drain region 3. A P-type silicon layer 5 of about 1 micron was formed thereon by vapor deposition, sputtering, vapor phase growth, or the like. Next, a silicon nitride film 6 is formed as a non-oxidizing insulating film thereon by vapor phase growth, and then a silicon nitride film 6 on the silicon layer 5 which is to become a wiring path is formed by standard photolithography.
The other parts were removed except for.

更に熱酸化を行なうことにより、第1図Bに示
すようにシリコン窒化膜6で被われている部分を
除いて他の部分のシリコン層5を二酸化シリコン
層10に変えて残つたシリコン層5よりなる配線
路(ソース電極7、ゲート電極8、ドレイン電極
9)を形成した。この二酸化シリコン層10の厚
さは約2.4ミクロンであつたのでその1.4ミクロン
をエツチングで除いて二酸化シリコン層10及び
配線路7,8,9を同一表面としてからシリコン
窒化膜6を除去した。次に熱酸化して、第1図C
に示すように半導体装置表面を二酸化シリコン1
1で被覆した。このように素子領域に接続されフ
イールド絶縁膜上を延在する半導体層の電極配線
となる。
By further performing thermal oxidation, as shown in FIG. A wiring path (source electrode 7, gate electrode 8, drain electrode 9) was formed. Since the thickness of this silicon dioxide layer 10 was about 2.4 microns, 1.4 microns of this thickness was removed by etching to make the silicon dioxide layer 10 and wiring paths 7, 8, and 9 on the same surface, and then the silicon nitride film 6 was removed. Next, by thermal oxidation,
As shown in Figure 1, the surface of the semiconductor device is coated with silicon dioxide 1.
1. In this way, the electrode wiring of the semiconductor layer is connected to the element region and extends over the field insulating film.

第2図は本発明の実施例を示す断面図であり、
第1図の工程と同様に熱酸化工程によつてシリコ
ン層を選択的に酸化して電極配線路7,8,9を
形成した後この配線路の抵抗を下げる為に不純物
の導入を行うものである。単結晶シリコン基体1
中の拡散領域(ソース領域2、ドレイン領域3)
上の絶縁層4中に開孔を穿つた際に、この開孔の
位置が完全に領域2,3上内に入つていず多少は
み出していても、配線路7,8,9の抵抗を下げ
る為の拡散を行う時に、単結晶シリコン基体1中
にも不純物が拡散して領域17,18が出来、こ
れ等領域17,18が首尾よくオーミツクな接蝕
が取れた。このため本発明の半導体装置の配線で
は拡散領域と配線路とのオーミツクな接蝕を取る
為の位置決定の余裕度が大きくなり、又拡散領域
の面積が必要最小限に小さく出来、配線路の抵抗
を制御性よく低い値とするとこができ、また配線
路下の半導体基板に不純物領域が所定の値に形成
されることとなる。
FIG. 2 is a sectional view showing an embodiment of the present invention,
Similar to the process shown in Figure 1, the silicon layer is selectively oxidized by a thermal oxidation process to form electrode wiring paths 7, 8, and 9, and then impurities are introduced to lower the resistance of these wiring paths. It is. Single crystal silicon substrate 1
Middle diffusion region (source region 2, drain region 3)
When a hole is made in the upper insulating layer 4, even if the position of the hole is not completely within the area 2, 3 and extends slightly, the resistance of the wiring paths 7, 8, 9 can be reduced. During the diffusion to lower the impurities, the impurities were also diffused into the single crystal silicon substrate 1 to form regions 17 and 18, and these regions 17 and 18 were successfully etched. Therefore, in the wiring of the semiconductor device of the present invention, there is a large degree of latitude in determining the position for ensuring ohmic corrosion between the diffusion region and the wiring path, and the area of the diffusion region can be reduced to the minimum necessary, and the wiring path can be The resistance can be set to a low value with good controllability, and an impurity region can be formed at a predetermined value in the semiconductor substrate under the wiring path.

上述の実施例は単に例示の為のものであつて、
本発明はこれ等に限定されるもので無く、例えば
上記実施例では絶縁ゲート型電界効果トランジス
タに本発明を適用したが、一般に電界効果型半導
体装置、電界効果型半導体集積回路装置等のユニ
ポーラ型半導体装置やバイポーラ型半導体装置
等、いわゆるプレーナ型半導体装置の何れにでも
適用可能である。又単結晶シリコンの代りに、ゲ
ルマニウム、ガリウム砒素等の半導体材料を用い
ることが出来、絶縁層4としては熱酸化による二
酸化シリコンの代りに熱酸化、蒸着、スパツタリ
ング、気相成長等により形成した一酸化シリコ
ン、二酸化シリコン、シリコン窒化膜、アルミ
ナ、リンガラス等を用いることも出来る。更に配
線層として用いるシリコン層の代りにゲルマニウ
ム、ガリウム砒素等の半導体層を蒸着、スパツタ
リング、気相成長等により形成したものを用いる
ことも出来る。又半導体装置各部の寸法や導電型
の選定も自由である。更に本発明の配線構造と従
来の配線構造とを一つの半導体装置内で部分的に
組み合わせて用いることも可能である。また実施
例のシリコン配線層に対して表面絶縁膜11に設
けた開孔を介してアルミニウム配線路をコンタク
トさせて多層構造としたり、同様の開孔を介して
シリコン層の選択酸化による配線層を設けて多層
配線とすることもできる。
The embodiments described above are for illustrative purposes only, and
The present invention is not limited to these. For example, although the present invention is applied to an insulated gate field effect transistor in the above embodiment, it is generally applicable to unipolar type field effect semiconductor devices, field effect semiconductor integrated circuit devices, etc. The present invention can be applied to any so-called planar semiconductor device, such as a semiconductor device or a bipolar semiconductor device. Further, instead of single crystal silicon, semiconductor materials such as germanium and gallium arsenide can be used, and as the insulating layer 4, instead of silicon dioxide formed by thermal oxidation, silicon dioxide formed by thermal oxidation, vapor deposition, sputtering, vapor phase growth, etc. can be used. Silicon oxide, silicon dioxide, silicon nitride film, alumina, phosphorus glass, etc. can also be used. Further, instead of the silicon layer used as the wiring layer, a semiconductor layer of germanium, gallium arsenide, etc. formed by vapor deposition, sputtering, vapor phase growth, etc. can also be used. Furthermore, the dimensions and conductivity type of each part of the semiconductor device can be freely selected. Furthermore, it is also possible to use a partial combination of the wiring structure of the present invention and the conventional wiring structure within one semiconductor device. Further, an aluminum wiring path may be brought into contact with the silicon wiring layer of the embodiment through the opening provided in the surface insulating film 11 to form a multilayer structure, or a wiring layer formed by selective oxidation of the silicon layer may be formed through the same opening. It is also possible to provide multilayer wiring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に関係のある技術の製造工程を
示す断面模型図、第2図は本発明の実施例を示す
断面模型図である。 1……半導体基体、2……ソース領域、3……
ドレイン領域、4……絶縁層、5……半導体層、
7,8,9……配線、10……熱酸化絶縁物。
FIG. 1 is a cross-sectional model diagram showing a manufacturing process of a technology related to the present invention, and FIG. 2 is a cross-sectional model diagram showing an embodiment of the present invention. 1... Semiconductor base, 2... Source region, 3...
Drain region, 4... Insulating layer, 5... Semiconductor layer,
7, 8, 9... Wiring, 10... Thermal oxidation insulator.

Claims (1)

【特許請求の範囲】[Claims] 1 第1の導電型の半導体基板に該第1の導電型
とは逆の導電型の第2の導電型の第1の不純物領
域が形成された該半導体基板上に該第1の不純物
領域が一部露出する開孔を有する絶縁層を形成す
る工程と、前記開孔内および前記絶縁層上に連続
的に不純物が導入されていない半導体層を形成す
る工程と、前記半導体層上にシリコン窒化膜を選
択的に形成する工程と、熱酸化することにより前
記シリコン窒化膜に被われていない前記半導体層
を酸化物層に変換する工程と、残余せる半導体層
の上面より前記第2の導電型の不純物を該半導体
層および前記開孔を通して前記半導体基板に導入
して前記第1の不純物領域に接続する該第2の導
電型の第2の不純物領域を該開孔下の該半導体基
板に形成する工程とを含むことを特徴とする半導
体装置の製造方法。
1. A first impurity region of a second conductivity type, which is an opposite conductivity type to the first conductivity type, is formed on a semiconductor substrate of a first conductivity type. a step of forming an insulating layer having a partially exposed opening, a step of forming a semiconductor layer into which impurities are not introduced continuously in the opening and on the insulating layer, and a step of forming a silicon nitride layer on the semiconductor layer. a step of selectively forming a film; a step of converting the semiconductor layer not covered with the silicon nitride film into an oxide layer by thermal oxidation; introducing an impurity into the semiconductor substrate through the semiconductor layer and the opening to form a second impurity region of the second conductivity type connected to the first impurity region in the semiconductor substrate under the opening. A method for manufacturing a semiconductor device, comprising the steps of:
JP12486981A 1981-08-10 1981-08-10 Manufacture of semiconductor device Granted JPS5799781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12486981A JPS5799781A (en) 1981-08-10 1981-08-10 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12486981A JPS5799781A (en) 1981-08-10 1981-08-10 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP654177A Division JPS5284989A (en) 1977-01-24 1977-01-24 Production of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5799781A JPS5799781A (en) 1982-06-21
JPH0427694B2 true JPH0427694B2 (en) 1992-05-12

Family

ID=14896105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12486981A Granted JPS5799781A (en) 1981-08-10 1981-08-10 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5799781A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932635A (en) * 1972-07-21 1974-03-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932635A (en) * 1972-07-21 1974-03-25

Also Published As

Publication number Publication date
JPS5799781A (en) 1982-06-21

Similar Documents

Publication Publication Date Title
US3849270A (en) Process of manufacturing semiconductor devices
JPS598065B2 (en) MOS integrated circuit manufacturing method
JPH04275436A (en) Soimos transistor
JPH0427694B2 (en)
JP2672596B2 (en) Method for manufacturing semiconductor device
JPH0511668B2 (en)
JPS59168675A (en) Manufacture of semiconductor device
JPS6113383B2 (en)
JPS61135136A (en) Manufacture of semiconductor device
JPS5954257A (en) Semiconductor device
JPS6161539B2 (en)
JPH04112532A (en) Manufacture of semiconductor integrated circuit
KR960006339B1 (en) Fabricating method of semiconductor device
JPS6137782B2 (en)
JPS60121769A (en) Manufacture of mis semiconductor device
JPH02170569A (en) Mos type semiconductor integrated circuit
JPS623583B2 (en)
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS6150385B2 (en)
JPS6159664B2 (en)
JPS5810857A (en) Complementary type mos semiconductor device
JPS58116753A (en) Semiconductor device
JPS6132579A (en) Manufacture of semiconductor device
JPS623593B2 (en)
JPS62131572A (en) Manufacture of semiconductor device