JPH04276545A - Ozone sensor - Google Patents

Ozone sensor

Info

Publication number
JPH04276545A
JPH04276545A JP3831191A JP3831191A JPH04276545A JP H04276545 A JPH04276545 A JP H04276545A JP 3831191 A JP3831191 A JP 3831191A JP 3831191 A JP3831191 A JP 3831191A JP H04276545 A JPH04276545 A JP H04276545A
Authority
JP
Japan
Prior art keywords
ozone
intermediate layer
sensor
film forming
ozone sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3831191A
Other languages
Japanese (ja)
Inventor
Koichi Tachibana
立花 弘一
Akiyoshi Hattori
章良 服部
Akihiko Yoshida
昭彦 吉田
Kunio Kimura
邦夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3831191A priority Critical patent/JPH04276545A/en
Publication of JPH04276545A publication Critical patent/JPH04276545A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the bonding strength between a response body film and an insulating substrate, to improve thermal shock resistance and to improve stability for a long period in ozone sensor used in ozone generators and ozone utilizing apparatuses. CONSTITUTION:An intermediate layer 3 comprising the same material as a response body 4 is formed between a response body film 4 which is formed by a wet-type film forming method and an insulating substrate 1. The bonding strength between the intermediate layer formed by a dry-type film forming method and the insulating substrate is high. The sensor is resistant against thermal shock. Since both the intermediate layer and the response body are made of the same material, the bonding state is stable, and the characteristics of the sensor are not impaired.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、オゾン発生機やオゾン
利用機器におけるオゾン濃度制御用またはオゾン検知用
に用いるオゾンセンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ozone sensor used for ozone concentration control or ozone detection in ozone generators and ozone utilization equipment.

【0002】0002

【従来の技術】オゾンは強力な酸化作用を示すため、脱
臭、殺菌等の目的で上下水道水処理、医療、食品工業な
ど多くの分野で利用されている。しかしそのような有用
な利用価値がある反面、オゾンはごく微量でも人体に対
して極めて有害であるため、発生量の制御や漏洩オゾン
の検知を確実に行なう必要がある。
BACKGROUND OF THE INVENTION Ozone exhibits a strong oxidizing effect and is therefore used in many fields such as water and sewage water treatment, medical care, and the food industry for purposes such as deodorization and sterilization. However, while it has such useful utility, even a very small amount of ozone is extremely harmful to the human body, so it is necessary to reliably control the amount generated and detect leaked ozone.

【0003】このような状況下においてオゾン濃度の測
定、検知には従来よりもっぱら酸化還元滴定法や吸光光
度法、紫外線吸収スペクトル法等が用いられている。こ
れに対して最近、より簡便なオゾン濃度測定法が望まれ
るようになり、その一方法としてIn2O3等の金属酸
化物を用いた小型のオゾンセンサが提案されている。
Under these circumstances, methods such as redox titration, spectrophotometry, and ultraviolet absorption spectroscopy have conventionally been used to measure and detect ozone concentration. In response to this, recently there has been a demand for a simpler method for measuring ozone concentration, and as one method, a small ozone sensor using a metal oxide such as In2O3 has been proposed.

【0004】0004

【発明が解決しようとする課題】しかしながら従来より
もっぱら利用されている吸光光度法等の場合は、一般に
大がかりな装置、煩雑な操作を必要とし、しかも高価で
あるため簡単には利用できないという欠点を有している
。一方、簡便なオゾン濃度測定法として提案されている
金属酸化物を感応体に用いたオゾンセンサの中で、特に
印刷法等の湿式製膜法によって作製された薄膜型のオゾ
ンセンサは感度や応答性に優れている反面、感応体膜と
基板の接合強度がやや不足するために、熱衝撃等によっ
て感応体膜の剥離を生じることがあるなど、信頼性の面
で課題がある。したがって信頼性に富み、小型軽量かつ
安価なオゾンセンサが強く望まれている。
[Problems to be Solved by the Invention] However, in the case of the spectrophotometric method, which has been used exclusively in the past, it generally requires large-scale equipment and complicated operations, and is expensive, so it cannot be used easily. have. On the other hand, among the ozone sensors that use metal oxides as sensitive bodies, which have been proposed as a simple method for measuring ozone concentration, thin-film ozone sensors made by wet film forming methods such as printing methods have a high sensitivity and response. However, since the bonding strength between the sensitive film and the substrate is somewhat insufficient, there are problems in terms of reliability, such as the sensitive film sometimes peeling off due to thermal shock or the like. Therefore, a highly reliable, small, lightweight, and inexpensive ozone sensor is strongly desired.

【0005】本発明は上記課題を解決するものであり、
熱衝撃に対して優れた強度を有し、かつガス検知特性に
も優れたオゾンセンサを提供することを目的とする。
[0005] The present invention solves the above problems,
It is an object of the present invention to provide an ozone sensor that has excellent strength against thermal shock and also has excellent gas detection characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、絶縁性基板上に形成された1対の電極と、
その電極間に乾式製膜法により形成された中間層とを有
し、その中間層の上に前記中間層と同じ材料からなる感
応体を湿式製膜法により形成したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a pair of electrodes formed on an insulating substrate;
It has an intermediate layer formed by a dry film forming method between the electrodes, and a sensitive body made of the same material as the intermediate layer is formed on the intermediate layer by a wet film forming method.

【0007】[0007]

【作用】したがって本発明によれば、乾式製膜法で形成
された膜状の中間層が基板との接合強度を大きくし、熱
衝撃に対する安定性を高めることができる。また感応体
は湿式製膜法で形成されるにもかかわらず、中間層が感
応体と同じ材料であるため、感応体と中間層の接合状態
は極めて優れている。したがってセンサ特性を損なうこ
となく、機械的強度に優れた信頼性の高いオゾンセンサ
とすることが可能となる。
[Function] Therefore, according to the present invention, the film-like intermediate layer formed by the dry film forming method can increase the bonding strength with the substrate and improve the stability against thermal shock. Furthermore, although the sensitive material is formed by a wet film forming method, since the intermediate layer is made of the same material as the sensitive material, the bonding state between the sensitive material and the intermediate layer is extremely excellent. Therefore, it is possible to provide a highly reliable ozone sensor with excellent mechanical strength without impairing sensor characteristics.

【0008】[0008]

【実施例】以下、本発明の一実施例について図面ととも
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の一実施例におけるオゾンセ
ンサの概略断面図であり、図において、1はアルミナ基
板、2はアルミナ基板1上に形成した白金電極、3はI
nとSnを真空蒸着することによって形成した中間層(
厚さ100Å)、4はInとSnの有機金属化合物を主
体として調製したインクを用いてスクリーン印刷により
形成し、500℃で焼成して作製したIn2O3(95
wt%)とSnO2(5wt%)からなる感応体(厚さ
約800Å)である。
FIG. 1 is a schematic cross-sectional view of an ozone sensor according to an embodiment of the present invention. In the figure, 1 is an alumina substrate, 2 is a platinum electrode formed on the alumina substrate 1, and 3 is an I
An intermediate layer formed by vacuum evaporating n and Sn (
4 was formed by screen printing using an ink prepared mainly from an organometallic compound of In and Sn, and baked at 500°C.
%) and SnO2 (5 wt%) (thickness: approximately 800 Å).

【0010】比較例として、中間層3を形成していない
オゾンセンサ(感応体厚さ約900Å)を作製した。湿
式製膜法により作製した感応体4の厚さ以外、素子構成
要素の形状、寸法、作製条件等は実施例と同じとした。 なお中間層3は感応体4と同じ組成を有する。
As a comparative example, an ozone sensor (sensor thickness: approximately 900 Å) was fabricated without forming the intermediate layer 3. Except for the thickness of the sensitive body 4 produced by the wet film forming method, the shape, dimensions, production conditions, etc. of the element components were the same as in the example. Note that the intermediate layer 3 has the same composition as the sensitive body 4.

【0011】これらのオゾンセンサを用いて、以下に説
明する方法でオゾンに対する応答特性を測定した。まず
オゾンセンサを素子加熱用ヒーターに固定して清浄空気
を満たした測定箱にセットし、ヒーターに通電してセン
サ温度を350℃に設定した。ついで、1ppmのオゾ
ンを測定箱に注入して均一に拡散させてオゾンセンサに
接触させ、オゾンセンサの電気抵抗を測定した。実施例
、比較例それぞれ5個の素子について測定し、その平均
値を図2に示す。なお、電気抵抗は任意目盛りで表わし
た。空気中、オゾン混合空気中のいずれにおいても実施
例のオゾンセンサの電気抵抗が比較例のオゾンセンサの
電気抵抗よりやや小さいという違いはあるが、感度(オ
ゾン混合空気中における電気抵抗を空気中における電気
抵抗で除したもの)は同等であることが明らかとなった
。乾式製膜法により形成した膜(中間層3)は湿式製膜
法により形成した膜(感応体4)よりも緻密な膜となる
ため、実施例の膜(中間層3+感応体4)は全体として
電気抵抗が小さくなったものと考えられる。それに対し
て感度は実質上表面に印刷された膜(感応体4)に支配
されるため、実施例、比較例ともに同等の感度特性を示
すものと考えられる。
Using these ozone sensors, response characteristics to ozone were measured by the method described below. First, the ozone sensor was fixed to a heater for heating the element, set in a measurement box filled with clean air, and the heater was energized to set the sensor temperature at 350°C. Next, 1 ppm of ozone was injected into the measurement box, uniformly diffused, and brought into contact with the ozone sensor, and the electrical resistance of the ozone sensor was measured. Measurements were made for five elements in each of the examples and comparative examples, and the average values are shown in FIG. Note that the electrical resistance was expressed on an arbitrary scale. There is a difference in that the electrical resistance of the ozone sensor of the example is slightly smaller than that of the ozone sensor of the comparative example both in air and in ozone-mixed air. (divided by electrical resistance) were found to be equivalent. Since the film formed by the dry film forming method (intermediate layer 3) is denser than the film formed by the wet film forming method (sensor 4), the film of the example (intermediate layer 3 + sensitive member 4) is It is thought that the electrical resistance has become smaller. On the other hand, since the sensitivity is substantially controlled by the film (sensor 4) printed on the surface, it is considered that both the Examples and Comparative Examples exhibit equivalent sensitivity characteristics.

【0012】次にオゾンセンサの耐熱衝撃性を確認する
ため、以下の方法で試験を行なった。オゾンセンサを電
気炉中に置き、室温〜500℃を約1分で昇・降温させ
、50回毎に室温におけるオゾンセンサの電気抵抗を測
定し、これを計300回行なって電気抵抗の変化の有無
を確認した。その結果を図3に示す。この結果、実施例
のオゾンセンサの電気抵抗は初期からほとんど変化しな
いことが明らかとなった。これに対して、比較例のオゾ
ンセンサの電気抵抗は100回までに大きく増加し、そ
の後も徐々に増加傾向が続くことが明らかとなった。 試験後のオゾンセンサの感応体4とアルミナ基板1の界
面を走査型電子顕微鏡により観察した結果、実施例のオ
ゾンセンサにおいては中間層3とアルミナ基板1の界面
、および中間層3と感応体4の膜の界面いずれの接合状
態にも異常は認められなかった。一方、比較例のオゾン
センサにおいては感応体4の膜とアルミナ基板1の界面
に部分的な剥離が多数認められた。このことが結果的に
オゾンセンサの電気抵抗の増大となって現われたものと
考えられる。真空蒸着によって作製した膜(中間層3)
はアルミナ基板1に対して極めて良好な接合状態を示す
ことが本実施例において確認された。なお、真空蒸着に
限らず、スパッタ等によっても同様に良好な接合が得ら
れる。中間層3と感応体4とは組成的に同じ材料からな
るため、製膜条件が異なるにもかかわらず接合にはなん
ら問題がなく、焼成を含む製膜過程で実質的に一体化す
るものと考えられる。
Next, in order to confirm the thermal shock resistance of the ozone sensor, a test was conducted using the following method. The ozone sensor was placed in an electric furnace, the temperature was raised and lowered from room temperature to 500°C in about 1 minute, and the electrical resistance of the ozone sensor at room temperature was measured every 50 times.This was repeated 300 times in total to determine the change in electrical resistance. I checked to see if it was there. The results are shown in FIG. As a result, it was revealed that the electrical resistance of the ozone sensor of the example hardly changed from the initial stage. On the other hand, it became clear that the electrical resistance of the ozone sensor of the comparative example significantly increased by the 100th test, and continued to gradually increase thereafter. As a result of observing the interface between the sensitive body 4 and the alumina substrate 1 of the ozone sensor after the test using a scanning electron microscope, it was found that in the ozone sensor of the example, the interface between the intermediate layer 3 and the alumina substrate 1, and the interface between the intermediate layer 3 and the sensitive body 4 No abnormality was observed in the bonding state of any of the interfaces of the films. On the other hand, in the ozone sensor of the comparative example, many partial peelings were observed at the interface between the film of the sensitive body 4 and the alumina substrate 1. It is thought that this resulted in an increase in the electrical resistance of the ozone sensor. Film produced by vacuum evaporation (intermediate layer 3)
In this example, it was confirmed that the bonding state of the bonding material to the alumina substrate 1 was extremely good. Note that good bonding can be obtained not only by vacuum evaporation but also by sputtering or the like. Since the intermediate layer 3 and the sensitive body 4 are composed of the same material compositionally, there is no problem in joining them even though the film forming conditions are different, and they are substantially integrated during the film forming process including firing. Conceivable.

【0013】次にセンサ感度の経時変化を測定した。オ
ゾンセンサを450℃の空気雰囲気中に放置しておき、
200時間毎に取り出し、測定箱中で前記同様の方法で
350℃における電気抵抗変化を測定し、センサ感度の
経時変化を求めた。センサ感度はオゾン混合空気中にお
けるオゾンセンサの電気抵抗(RG)を空気中における
オゾンセンサの電気抵抗(RA)で除した値(RG/R
A)で表わした。これを計2000時間行ない、その結
果を図4に示す。中間層3を形成した実施例のオゾンセ
ンサの場合には感度の経時変化がほとんど認められない
が、中間層3を形成していない比較例のオゾンセンサに
おいては感度が次第に低下することが明らかになった。
Next, the change in sensor sensitivity over time was measured. Leave the ozone sensor in an air atmosphere at 450°C.
The sample was taken out every 200 hours, and the change in electrical resistance at 350°C was measured in the same manner as above in the measurement box, to determine the change in sensor sensitivity over time. Sensor sensitivity is the value obtained by dividing the electrical resistance (RG) of the ozone sensor in ozone-mixed air by the electrical resistance (RA) of the ozone sensor in air (RG/R
It is expressed as A). This was carried out for a total of 2000 hours, and the results are shown in FIG. In the case of the ozone sensor of the example in which the intermediate layer 3 was formed, almost no change in sensitivity over time was observed, but in the ozone sensor of the comparative example in which the intermediate layer 3 was not formed, it was clear that the sensitivity gradually decreased. became.

【0014】このように上記実施例によれば、感応体4
を感応体4と同じ組成を有する中間層3を介してアルミ
ナ基板1上に設けているため、極めて耐熱衝撃性に優れ
たオゾンセンサを得ることができる。
As described above, according to the above embodiment, the sensitive body 4
Since it is provided on the alumina substrate 1 via the intermediate layer 3 having the same composition as the sensitive body 4, an ozone sensor with extremely excellent thermal shock resistance can be obtained.

【0015】なお、実施例では、オゾンガスの感応体4
の作製法として印刷法を用いた場合について述べたが、
塗布法やスピンコート法等の様々な湿式製膜法を用いる
ことができ、いずれの場合にも実施例と同様の高表面積
で高活性な感応体4を作製することが可能である。中間
層3の形成方法として本実施例では真空蒸着法を用いた
場合について説明したが、これに限定するものではなく
、スパッタ法その他、材料または形状に適した製膜法を
用いることが可能である。また実施例では感応体4およ
び中間層3としてIn2O3とSnO2の比率が95:
5となる材料を用いた場合について述べたが、その他の
割合になる場合、または他の材料を用いる場合にも同様
の結果を得ることができる。さらに出発材料も実施例に
限らず製膜法に適したものを適宜選択して用いることが
可能である。オゾンセンサ各部の構造や構成または基板
材料や電極材料も発明の主旨に反しない限りにおいて自
由に設計または使用することができる。
In the embodiment, the ozone gas sensitive body 4
We have described the case where a printing method was used as a manufacturing method.
Various wet film forming methods such as a coating method and a spin coating method can be used, and in any case, it is possible to produce a highly active sensitive body 4 with a high surface area similar to that of the example. In this embodiment, a vacuum evaporation method is used as a method for forming the intermediate layer 3, but the method is not limited to this, and it is possible to use a sputtering method or other film forming method suitable for the material or shape. be. Further, in the example, the ratio of In2O3 and SnO2 for the sensitive body 4 and the intermediate layer 3 is 95:
Although the case where a material having a ratio of 5 is used has been described, similar results can be obtained when using other ratios or using other materials. Further, the starting materials are not limited to those in the examples, and materials suitable for the film forming method can be appropriately selected and used. The structure and configuration of each part of the ozone sensor, as well as the substrate material and electrode material, can be freely designed or used as long as they do not go against the spirit of the invention.

【0016】[0016]

【発明の効果】上記実施例より明らかなように本発明の
オゾンセンサは、電極を形成した絶縁性基板上にオゾン
ガスの感応体と同じ組成を有する中間層を乾式製膜法に
より設け、さらにその上に感応体を湿式製膜法により設
けた構成としていることにより、ガス検知特性に優れる
とともに熱的な安定性にも優れるという効果を有する。 さらに小型軽量かつ安価であるため、オゾン発生機やオ
ゾン利用機器においてオゾン濃度の制御やオゾンの検知
等に極めて有用である。
Effects of the Invention As is clear from the above embodiments, the ozone sensor of the present invention comprises forming an intermediate layer having the same composition as the ozone gas sensitive material on an insulating substrate on which electrodes are formed by a dry film forming method. By having a structure in which a sensitive body is provided on the top by a wet film forming method, it has an effect that it has excellent gas detection characteristics and also excellent thermal stability. Furthermore, since it is small, lightweight, and inexpensive, it is extremely useful for controlling ozone concentration and detecting ozone in ozone generators and ozone utilization equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例におけるオゾンセンサの概略
断面図
FIG. 1 A schematic cross-sectional view of an ozone sensor in an embodiment of the present invention.

【図2】実施例および比較例のオゾンセンサの応答特性
を比較する特性図
[Figure 2] Characteristic diagram comparing the response characteristics of ozone sensors of Example and Comparative Example

【図3】空気中における実施例および比較例のオゾンセ
ンサの電気抵抗に対する熱衝撃の影響を示す特性図
[Fig. 3] Characteristic diagram showing the influence of thermal shock on the electrical resistance of the ozone sensors of Examples and Comparative Examples in air

【図
4】実施例および比較例のオゾンセンサの感度の経時変
化を示す特性図
[Figure 4] Characteristic diagram showing changes in sensitivity over time of ozone sensors of Examples and Comparative Examples

【符号の説明】[Explanation of symbols]

1  アルミナ基板(絶縁性基板) 2  電極 3  中間層 4  感応体 1 Alumina substrate (insulating substrate) 2 Electrode 3 Middle class 4. Sensing body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に形成された1対の電極と、
その1対の電極間に乾式製膜法によって形成された金属
酸化物を主体とする材料からなる膜状の中間層と、その
中間層の上に湿式製膜法により形成された前記中間層と
同じ材料からなる膜状の感応体とを有することを特徴と
するオゾンセンサ。
Claim 1: A pair of electrodes formed on an insulating substrate;
A film-like intermediate layer made of a material mainly composed of metal oxide formed between the pair of electrodes by a dry film forming method, and the intermediate layer formed on the intermediate layer by a wet film forming method. An ozone sensor characterized by having a film-like sensitive body made of the same material.
JP3831191A 1991-03-05 1991-03-05 Ozone sensor Pending JPH04276545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3831191A JPH04276545A (en) 1991-03-05 1991-03-05 Ozone sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3831191A JPH04276545A (en) 1991-03-05 1991-03-05 Ozone sensor

Publications (1)

Publication Number Publication Date
JPH04276545A true JPH04276545A (en) 1992-10-01

Family

ID=12521753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3831191A Pending JPH04276545A (en) 1991-03-05 1991-03-05 Ozone sensor

Country Status (1)

Country Link
JP (1) JPH04276545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145148A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Thin-film gas sensor and manufacturing method therefor
CN103592583A (en) * 2013-11-13 2014-02-19 三峡大学 Generator stator bar insulation online detection device based on gas detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145148A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Thin-film gas sensor and manufacturing method therefor
CN103592583A (en) * 2013-11-13 2014-02-19 三峡大学 Generator stator bar insulation online detection device based on gas detection

Similar Documents

Publication Publication Date Title
EP1696229B1 (en) Oxidizing gas sensor and production method thereof
Laville et al. Interdigitated humidity sensors for a portable clinical microsystem
TW201617585A (en) Thin-film resistive-based sensor
Sheng et al. Platinum doped titania film oxygen sensor integrated with temperature compensating thermistor
JPS59202052A (en) Humidity sensitive element
JP2002328109A (en) Element for detecting hydrogen gas, and method of manufacturing the same
Frydrysiak et al. The textile resistive humidity sensor manufacturing via (PVD) sputtering method
Fuenzalida et al. Adsorbed water on hydrothermal BaTiO3 films: work function measurements
JPH04276545A (en) Ozone sensor
JPH0769285B2 (en) Semiconductor for resistive gas sensor with high response speed
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
JPS58221154A (en) Gas sensor element
JP2988016B2 (en) Ozone sensor
Hattori et al. Ozone sensor made by dip coating method
JPH05188036A (en) Capacitance-measuring chamical sensor device
JP3314509B2 (en) NOx gas sensing semiconductor and method of manufacturing the same
JPH0862168A (en) Nitrogen oxide detecting device
JP2962010B2 (en) Ozone sensor
JPS6133376B2 (en)
JPH06213853A (en) Manufacture of gas detecting element
JPH02269948A (en) Sensor for combustion control
RO134520A2 (en) Humidity sensor
JPS6030893B2 (en) How to manufacture the sensor
KR20130086854A (en) Trimethylamine gas sensor and manufacturing method of the same
JPH01227929A (en) Thermal infrared sensor