JPH01227929A - Thermal infrared sensor - Google Patents

Thermal infrared sensor

Info

Publication number
JPH01227929A
JPH01227929A JP5561288A JP5561288A JPH01227929A JP H01227929 A JPH01227929 A JP H01227929A JP 5561288 A JP5561288 A JP 5561288A JP 5561288 A JP5561288 A JP 5561288A JP H01227929 A JPH01227929 A JP H01227929A
Authority
JP
Japan
Prior art keywords
infrared
film
absorbing film
pyroelectric
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5561288A
Other languages
Japanese (ja)
Other versions
JP2531231B2 (en
Inventor
Yasushi Tanaka
靖士 田中
Kazuhiro Inokuchi
和宏 井ノ口
Nobue Ito
伊藤 信衛
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP63055612A priority Critical patent/JP2531231B2/en
Publication of JPH01227929A publication Critical patent/JPH01227929A/en
Application granted granted Critical
Publication of JP2531231B2 publication Critical patent/JP2531231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the output sensitivity of the title sensor in an intermediate infrared band by forming the infrared ray absorbing film of the sensor of a precious-metal film provided with numerous projections of precious-metal particles whose diameters and intervals are within prescribed value ranges. CONSTITUTION:This thermal infrared sensor is provided with an infrared detecting body 1 which absorbs the light energy of infrared rays as heat energy and generates an electric output corresponding to the heat energy and an infrared ray absorbing film 4 formed on the light receiving surface side of the detecting body 1. The film 4 is constituted of a precious-metal film provided with numerous projection of precious-metal particles on its surface on the light receiving side, with the diameters of the projections being set to 0.1-5.0mum and intervals between each particle being set to 0.1-1.5mum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熟型受光素子、特に赤外光を検知する熱型赤
外線センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a mature light receiving element, and particularly to a thermal infrared sensor that detects infrared light.

[従来の枝j4ニア 1 赤外線センサは、その検出原理により、種々のものかあ
り、一般に熱望と量子型の2種類に大別される。熱型赤
外線センサには、焦電型赤外線センサ、導電型赤外線セ
ンサ、熱起電力型赤外線センサ、熱膨張型赤外線センサ
などかあり、量子型赤外線センサ(こは、光起電力型赤
外線センサ、光導電型赤外線センサ、光電磁型赤外線セ
ンサなどがある。
[Conventional branch j4 near 1 There are various types of infrared sensors depending on their detection principles, and they are generally divided into two types: aspirational and quantum types. Thermal infrared sensors include pyroelectric infrared sensors, conductive infrared sensors, thermoelectromotive infrared sensors, and thermal expansion infrared sensors. There are conductive infrared sensors, photoelectromagnetic infrared sensors, etc.

熱型赤外線センサは、赤外線の熱線作用による素子自体
の温度変化を利用するものであり、量子型赤外線センサ
は、赤外線を光としてとらえ光電効果によるキャリア(
電子)の励起を利用するものである。
Thermal infrared sensors utilize the temperature change of the element itself due to the heat ray action of infrared rays, while quantum infrared sensors treat infrared rays as light and convert them into carriers (based on the photoelectric effect).
It utilizes the excitation of electrons.

熱型赤外線センサと量子型赤外線センサの特徴を比較す
ると、熱型赤外線センサは比較的感度は低いが、感度の
波長依存性がないことや、常温作動が可能等実用−1−
の利点か多い。
Comparing the characteristics of a thermal infrared sensor and a quantum infrared sensor, the thermal infrared sensor has relatively low sensitivity, but its sensitivity does not depend on wavelength, and it can be operated at room temperature, etc., making it practical -1-
There are many advantages.

焦電型赤外線センサは熱型赤外線センサの一つであり、
熱型赤外線センサ中、員も感度か高いので、例えば、高
温物体の非接触温度計測、家庭用調理器(電子レンジ、
オーブン等)侵入名警報装置等、様々な用途か期待され
ている。
A pyroelectric infrared sensor is a type of thermal infrared sensor.
Thermal infrared sensors have high sensitivity, so they can be used, for example, for non-contact temperature measurement of high-temperature objects, household cooking devices (microwave ovens,
It is expected to be used in a variety of applications, including intrusion alarms (e.g., ovens).

以下、焦電型赤外線センサについて説明する。The pyroelectric infrared sensor will be explained below.

焦電型赤外線センサは、赤外線検出体である焦電体が自
発分極を有しており、定常状悪ではその表面に浮遊電荷
を捕獲して電気的中性を保っている。ここGこ赤外線か
照射されると赤外光エイ・ルギーが熱エネルギーとして
吸収され、焦電体自身の温度か上昇して焦電体内部の自
発分極が変化する。
In a pyroelectric infrared sensor, a pyroelectric body, which is an infrared detection body, has spontaneous polarization, and under steady state, it captures floating charges on its surface and maintains electrical neutrality. When infrared light is irradiated here, the infrared light is absorbed as thermal energy, the temperature of the pyroelectric body rises, and the spontaneous polarization inside the pyroelectric body changes.

このとき、表面電荷はこの変化に素早く対応できないた
め、焦電体の両面に電極を形成しておけば、焦電体表面
で自発分極が変化した分だけの電荷を赤外光信号として
取出すことができる。
At this time, the surface charge cannot quickly respond to this change, so if electrodes are formed on both sides of the pyroelectric material, the charge corresponding to the change in spontaneous polarization on the pyroelectric material surface can be extracted as an infrared light signal. Can be done.

ところで、上述した原理かられかるように、赤外線セン
サの出力感度を向旧させろためには入射する赤外線に対
し十分な吸収があることが重要であり、従来より、焦電
体表面に、金、プラチナ等よりなる赤外線吸収膜を形成
することが行われている。持に、最近では素子を複数個
配置したイメージセンサとして焦電体薄膜を用いた薄膜
焦電型赤外線センサが開発されてきているが、この薄膜
焦電型赤外線センサにおいては、焦電体が薄くなる分、
赤外光の透過光量が大きくなり、吸収が低減するので、
赤外線吸収膜の役割が重要となる。
By the way, as can be seen from the above-mentioned principle, in order to improve the output sensitivity of an infrared sensor, it is important that there is sufficient absorption of incident infrared rays. Formation of an infrared absorbing film made of platinum or the like has been carried out. Recently, a thin film pyroelectric infrared sensor using a pyroelectric thin film has been developed as an image sensor with multiple elements arranged. As it turns out,
As the amount of transmitted infrared light increases and the absorption decreases,
The role of the infrared absorbing film is important.

[発明が解決しようとする課題] 従来の赤外線吸収膜を構成する貴金属膜は、近赤外域の
吸収率は高いが、中赤外域の光に対する反射率が大きい
という特性を有する。それゆえ、高温物体の非接触温度
計測、すなわち1〜2μm前後の近赤外域の感知におい
ては優れた効果が得られているが、調理用機器(電子レ
ンジ、オーブン)等の比軸的低温度用(、こ用いらtし
ろセンサ、または炎検知、および人体検知など3〜15
μn1程度の中赤外域におけろ感度が低いという問題点
があった。
[Problems to be Solved by the Invention] A noble metal film constituting a conventional infrared absorbing film has a characteristic that it has a high absorption rate in the near-infrared region, but a high reflectance for light in the mid-infrared region. Therefore, excellent results have been obtained in non-contact temperature measurement of high-temperature objects, that is, sensing in the near-infrared region of around 1 to 2 μm, but the specific temperature of cooking equipment (microwaves, ovens), etc. For use (3 to 15 such as front sensor, flame detection, human body detection, etc.)
There was a problem in that the sensitivity was low even in the mid-infrared region of about μn1.

本発明は、上記問題点を解決するためになされたもので
、3〜1.5 It m程度の中赤外域において優れた
出力感度を有する熱型赤外線センサを提供することを目
11勺とする。
The present invention has been made to solve the above problems, and its eleventh objective is to provide a thermal infrared sensor having excellent output sensitivity in the mid-infrared region of about 3 to 1.5 It m. .

[課題を解決するための手段] 本発明の構成を第1図で説明すると、熱型赤外線センサ
は、赤外光エネルギーを熱エネルN−とじて吸収し、こ
の熱エネルギーに対応した電気出力を発生する赤外線検
出体1と、赤外線検出体の受光面側に形成された赤外線
吸収膜4とを具備する。
[Means for Solving the Problems] The configuration of the present invention will be explained with reference to FIG. 1. A thermal infrared sensor absorbs infrared light energy as thermal energy N-, and generates an electrical output corresponding to this thermal energy. The apparatus includes an infrared detecting body 1 that generates infrared rays, and an infrared absorbing film 4 formed on the light receiving surface side of the infrared detecting body.

上記赤外線吸収膜4は、第3図に示すように、受光側表
面に多数の貴金属粒子の突起・11を形成した貴金属膜
で構成され、かつ該突起の径を01〜5.0μm、各突
起の間隔を0.1〜1.5μmとしである。
As shown in FIG. 3, the infrared absorbing film 4 is composed of a noble metal film in which a large number of projections 11 of noble metal particles are formed on the light-receiving surface, and the diameter of the projections is 01 to 5.0 μm. The interval between them is set to 0.1 to 1.5 μm.

[作用] 従来の赤外線吸収膜4を構成する貴金属膜は、近赤外域
の吸収率は高いか、中赤外域の光に対する反射率が大き
いという特性を有するか、その理由を検討した結果、赤
外線吸収膜4は第4図に示すような表面構造を有するた
め、反射が太きくなることを発見した。そこで、本発明
の赤外線吸収膜4は、表面に多数の突起41を有するな
め(第3図)、反射した光はそのまま離散せず、隣接す
る突起との間で入反射を繰返す。このため、赤外光と赤
外線吸収yA4との吸収機会(接勉機会)が増加し、ま
た、突起41を形成したことにより受光表面積も全体に
増加するので、吸収効率が向上する。
[Function] As a result of examining the reasons for whether the noble metal film constituting the conventional infrared absorbing film 4 has a characteristic of having a high absorption rate in the near-infrared region or a high reflectance for light in the mid-infrared region, it was found that It was discovered that since the absorption film 4 has a surface structure as shown in FIG. 4, the reflection becomes thicker. Therefore, since the infrared absorbing film 4 of the present invention has a large number of protrusions 41 on its surface (FIG. 3), the reflected light is not dispersed as it is, but is repeatedly injected and reflected between adjacent protrusions. Therefore, the absorption opportunities (interaction opportunities) of infrared light and infrared absorption yA4 increase, and the formation of the protrusions 41 also increases the light-receiving surface area as a whole, so that the absorption efficiency is improved.

従って、焦電型赤外線センサはもちろん、赤外光エネル
ギーを熱エネルギーとして吸収し、素子の温度変化を利
用して赤外線を検出する熱型赤外線センサ、例えば、導
電型赤外線センサ、熱起電力型赤外線センサ、熱膨張型
赤外線センサ等においても利用できる。
Therefore, in addition to pyroelectric infrared sensors, thermal infrared sensors that absorb infrared light energy as thermal energy and detect infrared light using changes in the temperature of the element, such as conductive infrared sensors, thermoelectromotive infrared sensors, etc. It can also be used in sensors, thermal expansion type infrared sensors, etc.

「実施例」 第1図、第2図には、本発明をバルク焦電型赤外線セン
サに適用した例を示す。図において、lはバルク型焦電
体よりなる赤外線検出体であり、そのF下面には、金属
膜よりなる上部電極2、上部電極3か形成しである。上
記電極2.3からはそれぞれり−1〜線21.31か延
ひており(第1図)、これらの出力は回路支持基板5上
の回路に入力されて外部へ取出される。
"Example" FIGS. 1 and 2 show an example in which the present invention is applied to a bulk pyroelectric infrared sensor. In the figure, l is an infrared detector made of a bulk type pyroelectric material, and an upper electrode 2 and an upper electrode 3 made of a metal film are formed on the lower surface of F. Lines -1 to 21.31 extend from the electrodes 2.3 (FIG. 1), and their outputs are input to the circuit on the circuit support board 5 and taken out to the outside.

上部電極2の上面には赤外線吸収膜4が形成しである。An infrared absorbing film 4 is formed on the upper surface of the upper electrode 2.

赤外線吸収膜4は、例えばプラチナ、金等の貴金属膜よ
りなり、その上部表面には多数の貴金属粒子の突起41
が形成しである(第3図)。
The infrared absorbing film 4 is made of a noble metal film such as platinum or gold, and has a large number of noble metal particle projections 41 on its upper surface.
is formed (Figure 3).

突起41は、径が0.1〜5.0ノtm、好ましくは0
.3〜1.6ノzm、各突起の間隔が0.1〜1.5μ
m、好ましくは0.2〜0.6Bmの範囲にあることが
重要である。突起41の径が5゜0μmを越える場合や
、径か0.1.ilmより小さく、その間隔が0.1μ
mより小さい場合には、中赤外域の吸収に十分な効果が
得られない。また、径が上記範囲内にあってもその間隔
か1.5μmを越える場合には、突起の苦瓜か非常に小
さいため、所望の効果か得られない。
The protrusion 41 has a diameter of 0.1 to 5.0 knots, preferably 0.
.. 3 to 1.6 nozm, the distance between each protrusion is 0.1 to 1.5μ
m, preferably in the range of 0.2 to 0.6 Bm. When the diameter of the protrusion 41 exceeds 5°0 μm, or when the diameter is 0.1. smaller than ilm, the interval is 0.1μ
If it is smaller than m, a sufficient effect on absorption in the mid-infrared region cannot be obtained. Further, even if the diameter is within the above range, if the distance exceeds 1.5 μm, the protrusions are so small that the desired effect cannot be obtained.

上記表面構造の赤外線吸収膜4は、プラチナ、金等の貴
金属をスパッタ法、またはガス中蒸着等で超微粒子化す
ることで成膜可能である。そして、例えばスパッタ法を
採用した場合、導入カスとしてアルゴン/酸素−1/1
の混合カスを使用し、スパッタガス圧10Pa、混合ガ
ス導入量を0゜4〜0.7Paの範囲に調節することで
上記表面構造の赤外線吸収pA4が得られる。
The infrared absorbing film 4 having the above-mentioned surface structure can be formed by forming noble metals such as platinum and gold into ultrafine particles by sputtering, vapor deposition in gas, or the like. For example, when the sputtering method is adopted, the introduced gas is argon/oxygen -1/1
The infrared absorption pA4 of the above-mentioned surface structure can be obtained by using the mixed dregs of 1 and adjusting the sputtering gas pressure to 10 Pa and the mixed gas introduction amount to a range of 0.4 to 0.7 Pa.

以下に、その製造方法の一例を示す。An example of the manufacturing method is shown below.

焦電体材料として、PbO,ZrO2、TiO2のPZ
T組成にS n O2および5b203を少量添加した
ものを用い、1280°Cで焼成してr)た5n−3b
系PZTセラミツクスバルクを赤外線検出体1とした。
As a pyroelectric material, PZ of PbO, ZrO2, TiO2
5n-3b was obtained by baking at 1280°C using a T composition with a small amount of S n O2 and 5b203 added.
A PZT-based ceramic bulk was used as an infrared detector 1.

焦電体材料としては、PZTII成にNiO2、Nb2
O3を添加したNi−Nb系)) Z ’rセラミック
スを使用してもよい。検出体1の大きさは、径5mm、
厚さ0.1mmで、比誘電率;約340±20、焦電係
数:lO±0.5×10−8C/cJ −degであっ
た。
As a pyroelectric material, NiO2, Nb2 is used for PZTII.
Ni-Nb series)) Z'r ceramics to which O3 is added may also be used. The size of the detection object 1 is 5 mm in diameter,
The thickness was 0.1 mm, the dielectric constant was about 340±20, and the pyroelectric coefficient was 1O±0.5×10 −8 C/cJ −deg.

検出体1の上下面に、スパッタ法により膜厚5000−
6000A、径4ITtlT+のプラチナ金属膜を形成
し、それぞれ上部電極2、下部電極3とした。
A film with a thickness of 5000 mm is applied to the upper and lower surfaces of the detection object 1 by sputtering.
A platinum metal film having a diameter of 6000A and a diameter of 4ITtlT+ was formed to serve as an upper electrode 2 and a lower electrode 3, respectively.

投入電力120〜130W、基板温度600 °C、ス
パッタ時間10分間で、導入ガスはアルゴン100%と
し、スパッタガス圧1.OPaが一定となるように排気
量を調節しながら行なった。
The input power was 120 to 130 W, the substrate temperature was 600 °C, the sputtering time was 10 minutes, the introduced gas was 100% argon, and the sputtering gas pressure was 1. This was done while adjusting the displacement so that OPa remained constant.

実験では、電極材料としてプラチナを用いなが、蒸着法
によるアルミニウム金属膜でもがまわない。
In the experiment, platinum was used as the electrode material, but an aluminum metal film made by vapor deposition may also be used.

次に、プラチナターゲットを用い、スパッタ法により、
上部電極2上にプラチナの超微粒子膜を形成し、赤外線
吸収膜4とした。スパッタ条件は、投入電力170W、
基板温度は室温で一定とし、導入カスはアルゴン/酸素
=1/1の混合ガスを使用した。スパッタガス)EE 
] OP aが一定となるように排気量を調節しながら
、30分間スパッタリングを行なって、径2ITII1
1.膜厚3μmの赤外線吸収膜4を作製した。この時、
カス導入量は0゜4〜0.7Paの範囲で適宜選択され
る。
Next, using a platinum target, by sputtering,
A platinum ultrafine particle film was formed on the upper electrode 2 to form an infrared absorbing film 4. The sputtering conditions were: input power 170W;
The substrate temperature was kept constant at room temperature, and a mixed gas of argon/oxygen = 1/1 was used as the gas introduced. Sputter gas) EE
] Sputtering was performed for 30 minutes while adjusting the exhaust volume so that the OPa remained constant, and the diameter was 2ITII1.
1. An infrared absorbing film 4 having a thickness of 3 μm was produced. At this time,
The amount of waste introduced is appropriately selected within the range of 0°4 to 0.7 Pa.

赤外線吸収Jl!J4作製の際のガス導入量と赤外光吸
収率の関係を第5図に示す。測定用試料としては、第6
図に示すように、ガラス基板(NA−40: )(OY
A株式会社製〉7上に金属反射膜としてアルミニウム金
属膜6を蒸着し、その−上面に赤外線吸収膜4を形成し
たものを用いた。アルミニウム金属11Q6の膜厚は1
μmとし、赤外線吸収膜4は、上記した条件でガス導入
量を(、)、34〜1゜6Paの範囲で変化させ、それ
ぞれの吸収率を測定した。
Infrared absorption Jl! FIG. 5 shows the relationship between the amount of gas introduced and the infrared light absorption rate during the production of J4. As a measurement sample, the 6th
As shown in the figure, a glass substrate (NA-40: ) (OY
An aluminum metal film 6 was vapor-deposited as a metal reflection film on 7 made by A Co., Ltd., and an infrared absorption film 4 was formed on the upper surface of the aluminum metal film 6. The film thickness of aluminum metal 11Q6 is 1
[mu]m, and the infrared absorbing film 4 was measured under the above-mentioned conditions, with the amount of gas introduced being varied in the range of 34 to 1°6 Pa, and the respective absorption rates were measured.

測定はフーリエ変換分光光度計(FT−IR)を用い反
射法で実施した。リファレンスとしてガラス基板7−ヒ
にアルミニウム金属膜6のみを蒸着したものを用い、こ
の反射率を100%、すなわち吸収率O%と仮定した。
The measurement was carried out by a reflection method using a Fourier transform spectrophotometer (FT-IR). As a reference, a glass substrate 7-1 on which only the aluminum metal film 6 was deposited was used, and the reflectance was assumed to be 100%, that is, the absorption rate was 0%.

また、このリファレンスの校正を標準鏡を用いて行った
ところ、反射率はほぼ100%の値か得られた。試料の
吸収率(%)は、 試料の反射光量・・赤外線吸収膜表面での反射光−に−
ト赤外線吸収膜と金属膜の接合 面での反射光量 と定義し、FT−I丁(の測定波長域2.5〜25μm
における吸収率の平均値を採用した。また、カス導入量
は、スパッタ装置5PF21011 (tl電アネルバ
株式会社製)を使用し、メインバルクを全開にした排気
時において、アルゴン/酸素−171の混合ガスを導入
し、シュルツ真空計により測定したチャンバー内ガス圧
で表わした。
Further, when this reference was calibrated using a standard mirror, a reflectance value of approximately 100% was obtained. The absorption rate (%) of the sample is determined by the amount of light reflected by the sample...the light reflected on the surface of the infrared absorbing film.
It is defined as the amount of reflected light at the joint surface of the infrared absorbing film and the metal film, and the measurement wavelength range of FT-I (2.5 to 25 μm)
The average value of the absorption rate was adopted. In addition, the amount of sludge introduced was measured using a Schulz vacuum gauge using a sputtering device 5PF21011 (manufactured by TL Dens Anelva Co., Ltd.) by introducing a mixed gas of argon/oxygen-171 during exhaust with the main bulk fully open. Expressed in chamber gas pressure.

第5図から明らかなように、吸収率は0.56Pa付近
にピークを持ち、0.4〜0.7Paの範囲て高い値を
示すことかわかる。
As is clear from FIG. 5, the absorption rate has a peak near 0.56 Pa and shows high values in the range of 0.4 to 0.7 Pa.

また、吸収膜の膜厚が薄いと吸収機会か減少し、逆に膜
厚が厚いと、吸収膜自体の熱容量と熱伝導の関係から所
望の効果か得られず膜厚としては1〜5μmで実用上問
題はないことかわかった。
In addition, if the thickness of the absorbing film is thin, the absorption opportunity will decrease, and if the film is thick, the desired effect cannot be obtained due to the relationship between the heat capacity and heat conduction of the absorbing film itself. It turns out that there are no practical problems.

次に、カス導入u 0 、4 P a 、0 、54 
P 21.0.56Pa、0.6Pa、0.7P 21
の条件で作製した5つの試料について赤外線吸収膜4の
表面を走査型電子顕微鏡(SEM)により赤外線吸収膜
40表面観察を行ない写真を撮影した。第7図に示すよ
うに赤外線吸収膜・1の表面には、粒子か%vl積)4
4した突起か所定間隔で並び、凹凸のある表面精造を有
することがわかった。一方、1゜Of−)εIの条件で
作製した試料について同様の表面観察を行なったところ
、第8図に示すように、赤外線吸収膜4は粒子が密に積
重なった表面梧造を有していた。これらの比較から、突
起の有無が吸収率の向上に大きく関わっていることが明
らかとなった。
Next, waste introduction u 0 , 4 P a , 0 , 54
P 21.0.56Pa, 0.6Pa, 0.7P 21
The surface of the infrared absorbing film 4 was observed using a scanning electron microscope (SEM) for five samples prepared under the following conditions, and photographs were taken. As shown in Figure 7, on the surface of the infrared absorbing film 1, there are particles (%vl product) 4
It was found that the four protrusions were lined up at predetermined intervals and had an uneven surface. On the other hand, a similar surface observation of a sample prepared under the condition of 1°Of-)εI revealed that the infrared absorbing film 4 had a surface structure in which particles were densely stacked, as shown in FIG. was. From these comparisons, it became clear that the presence or absence of protrusions was significantly involved in improving the absorption rate.

さらに、上記5つの試料についてSEMff;真より、
突起の径、および各突起の間隔の分布を調べた。SEM
写真は5つの試料について各々任意の位置を選ひ、真上
からIii影したものを採用した。
Furthermore, for the above five samples, SEMff; from the truth,
The diameter of the protrusions and the distribution of the spacing between each protrusion were investigated. SEM
The photographs were taken at arbitrary positions for each of the five samples and taken from directly above.

突起の径は、突起の断面形状の面積と等しい面積の円の
直径として表わした。高速カラー画像・解析装置5PI
CCA([1木アビオニクス株式会社製)を用いて画像
処理を行ない、突起の径、および各突起の間隔の分布を
測定した結果、径は0゜1〜5.0Bm、各突起の間隔
は0.1〜1.5μm(7)範囲に分布していることが
確認さitな。なお、特に高い吸収率を示す、ガス導入
量0.54Pa、0 、56 P a 、 0 、6 
P aの3つの試料について同様の測定を行なったとこ
ろ、径0.3〜1.6μm、突起の間隔0.2〜0.6
ノzmであった。
The diameter of the protrusion was expressed as the diameter of a circle with an area equal to the cross-sectional area of the protrusion. High-speed color image/analysis device 5PI
Image processing was performed using CCA (manufactured by Ichiki Avionics Co., Ltd.) to measure the diameter of the protrusions and the distribution of the distance between each protrusion. It was confirmed that the particles were distributed in the range of .1 to 1.5 μm (7). Note that gas introduction amounts of 0.54 Pa, 0, 56 Pa, 0, 6 show particularly high absorption rates.
Similar measurements were performed on three samples of P a, and the diameter was 0.3 to 1.6 μm, and the distance between protrusions was 0.2 to 0.6
It was Nozm.

次に、上記した製造方法でバルク型焦電型赤外線センサ
を作製し、その評価を行なった。なお、赤外線吸収膜4
の作製条件はガス導入MO,56Paとした。また、比
較のため、赤外線吸収膜4の作製条件をガス導入量1.
OPaに変えたものをJ止意した。
Next, a bulk type pyroelectric infrared sensor was manufactured using the manufacturing method described above, and its evaluation was performed. Note that the infrared absorbing film 4
The manufacturing conditions were gas introduction MO and 56 Pa. For comparison, the manufacturing conditions for the infrared absorbing film 4 were set to 1.
I decided to change it to OPa.

このようにして作製した2つの焦電型赤外線センサにつ
いて、150■、30分間、分極処理を行なった後、赤
外線吸収膜4の評価を行なった。
The two pyroelectric infrared sensors thus produced were subjected to polarization treatment for 150 cm and 30 minutes, and then the infrared absorbing film 4 was evaluated.

測定系の光源としてはニアL?ム光源を使用し、フィル
ターとして7μmoンク゛パスフィルターを用いて赤外
光の光源とした。出力信号は電極間に1011Ωの負荷
抵抗を接続して電圧信号として検出した。なお、焦電体
材料および負荷抵抗が高インピーダンスであるため、F
ET(K30A、株式会社東芝製)を使用してインピー
タンス変換を行なった。入射光は、焦電型赤外線センサ
が微分型の検出器て゛あることから、周波数を1〜数百
H7の範囲で可変可能なチョッパを通じて照射した。
Near L as a light source for measurement system? A 7 μm cross-pass filter was used as a filter to serve as an infrared light source. The output signal was detected as a voltage signal by connecting a load resistance of 1011Ω between the electrodes. Note that since the pyroelectric material and load resistance have high impedance, F
Impedance conversion was performed using ET (K30A, manufactured by Toshiba Corporation). Since the pyroelectric infrared sensor is a differential type detector, the incident light was irradiated through a chopper whose frequency could be varied in the range of 1 to several hundred H7.

赤外光を照射して得られた出力波形をオシロスコープに
て観察した。測定の結果、カス導入MO456Paの条
件で作製した赤外線吸収膜4を有する焦電型赤外線セン
サは、カス導入量1.OPaの条件で作製したものに比
べ、約2倍の高い出力電圧が得られた。
The output waveform obtained by irradiating with infrared light was observed using an oscilloscope. As a result of the measurement, it was found that the pyroelectric infrared sensor having the infrared absorbing film 4 manufactured under the conditions of a dust introduction MO of 456 Pa had a dust introduction amount of 1. An output voltage approximately twice as high as that produced under OPa conditions was obtained.

以上の結果より、赤外線吸収膜4は、表面に多数の貴金
属粒子の突起を形成するとともに、突起の径および各突
起の間隔を本発明の範囲とすることにより中赤外域の吸
収率が飛躍的に向上すること、その結果、センサの出力
感度が大きく向上することがわかる。
From the above results, the infrared absorbing film 4 has a dramatic absorption rate in the mid-infrared region by forming a large number of noble metal particle protrusions on the surface and setting the diameter of the protrusions and the interval between each protrusion within the range of the present invention. It can be seen that the output sensitivity of the sensor is greatly improved as a result.

上記実施例ではバルク焦重体を用いたバルク焦電型赤外
線センサについて説明したが、第9図、第10図に示す
如く、赤外線検出体1として焦電体薄膜を使用し、基板
S上に下部電極3、赤外線検出体1、上部電極2を順次
積層した構成としてもよい。以下に薄膜焦電型赤外線セ
ンサの製造ツノ法の一例を説明する。
In the above embodiment, a bulk pyroelectric infrared sensor using a bulk pyroelectric body was described, but as shown in FIGS. 9 and 10, a pyroelectric thin film is used as the infrared detecting body 1, and It is also possible to have a structure in which the electrode 3, the infrared detector 1, and the upper electrode 2 are laminated in this order. An example of a method for manufacturing a thin film pyroelectric infrared sensor will be described below.

MgO基板S上にプラチナ金属膜をスパッタ法により作
製して下部電極3とした。基板8の大きさは4.5/4
mr+1′、スパッタ条件は、投入電力20W、基板温
度600°C1導入ガスはアルゴン100%とした。ス
パッタガス圧0.5Paが一定となるように排気量を調
節し、スバ・ツタ時間40分間で、膜厚1000〜20
0OAの金属膜を成膜した。このとき、金属膜は基板8
上にエピタキシャル成長するようにした。
A platinum metal film was formed on the MgO substrate S by sputtering to form the lower electrode 3. The size of the board 8 is 4.5/4
mr+1', the sputtering conditions were an input power of 20 W, a substrate temperature of 600° C., and an introduced gas of 100% argon. The exhaust volume was adjusted so that the sputtering gas pressure was constant at 0.5 Pa, and the film thickness was 1,000 to 20 mm with a sputtering time of 40 minutes.
A metal film of 0OA was formed. At this time, the metal film is
epitaxial growth was performed on top.

下部電極3の一上面には、Pb010%過剰の5n−3
b系P Z ’Fセラミックスのスパッタリングターゲ
ットを用い、スパッタ法により、膜厚8000〜100
00大の焦電体薄膜を形成して赤外線検出体lとした。
On one upper surface of the lower electrode 3, 5n-3 with 10% excess Pb
Using a b-based PZ'F ceramic sputtering target, a film thickness of 8,000 to 100 mm was formed by sputtering.
A 00 size pyroelectric thin film was formed to serve as an infrared detector 1.

スパッタ条件は、投入電力100W、基板温度600°
C1導入カスとしてアルゴン/酸素−1/1の混合カス
を使用し、スバ・ツタガス圧0.3Paか一定となるよ
うに排気量を調節しながら行なった。スパッタ時間は1
20分間とした。さらに、成rIAf&、900°C1
2時間、Pb雰囲気中でアニールを実施しな。
Sputtering conditions are input power 100W, substrate temperature 600°.
A mixture of argon/oxygen (1/1) was used as the C1 introduction gas, and the exhaust amount was adjusted so that the sorrel-ivy gas pressure remained constant at 0.3 Pa. Sputtering time is 1
The duration was 20 minutes. Furthermore, formation rIAf&, 900°C1
Annealing was performed in a Pb atmosphere for 2 hours.

赤外線検出体1の上面には、膜厚10000Aのアルミ
ニウム電極を蒸着にて形成し、アルミニウム電極の上面
には、上記実施例と同様にして膜厚3μmの赤外線吸収
膜4を形成し、同一基板上に複数個の素子を形成した。
On the upper surface of the infrared detector 1, an aluminum electrode with a film thickness of 10,000 A is formed by vapor deposition, and on the upper surface of the aluminum electrode, an infrared absorbing film 4 with a film thickness of 3 μm is formed in the same manner as in the above embodiment. A plurality of elements were formed thereon.

次いで、5■、30分間の分極処理を行ない薄膜焦電型
赤外線センサとした。この場合も上記実施例同様、従来
に比し高い出力感度が得られた。
Next, a polarization treatment was performed for 5 seconds and 30 minutes to obtain a thin film pyroelectric infrared sensor. In this case as well, as in the above embodiment, higher output sensitivity than before was obtained.

[発明の効果] 本発明の熱型赤外線センサは、赤外線吸収膜を、受光側
表面に多数の貴金属粒子の突起を形成した貴金属膜で構
成し、かつ突起の径を0.1〜5゜0μm、各突起の間
隔を0.1〜1.5μmとしたことにより、特に3〜1
5μm程度の中赤外域における赤外光の吸収率が飛躍的
に増加する。従って、中赤外域の赤外光に対する出力感
度が向上し、人体検知など常温付近の非接触温度計測に
優れた効果を発揮する。
[Effects of the Invention] In the thermal infrared sensor of the present invention, the infrared absorbing film is composed of a noble metal film in which a large number of projections of noble metal particles are formed on the light-receiving surface, and the diameter of the projections is 0.1 to 5°0 μm. , by setting the interval between each protrusion to 0.1 to 1.5 μm, especially 3 to 1 μm.
The absorption rate of infrared light in the mid-infrared region of about 5 μm increases dramatically. Therefore, the output sensitivity to infrared light in the mid-infrared region is improved, and excellent effects are exhibited in non-contact temperature measurement near room temperature, such as human body detection.

従って、焦電型赤外線センサはもちろん赤外光エネルギ
ーを熱エネルギーとして吸収し、素子の温度変化を利用
して赤外光を検出する熱型赤外線センサ、例えば導電型
赤外線センサ、熱起電力型赤外線センサ、熱膨張型赤外
線センサ等においても利用できる。
Therefore, in addition to pyroelectric infrared sensors, thermal infrared sensors that absorb infrared light energy as thermal energy and detect infrared light using changes in the temperature of the element, such as conductive infrared sensors, thermoelectromotive infrared sensors, etc. It can also be used in sensors, thermal expansion type infrared sensors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例を示し、第1図はバ
ルク焦電型赤外線センサの概略図、第2図は第1図の部
分拡大断面図、第3図は赤外線吸収膜表面の拡大断面図
であり、第4図は従来の赤外線吸収膜表面の拡大断面図
、第5図はガス導入量に対する吸収率の変化を示す図、
第6図は赤外線吸収膜の吸収率測定に用いた試料の断面
図、第7図は本発明の赤外線吸収膜の粒子構造を示す電
子顕微鏡写真、第8図は従来の赤外線吸収膜の粒子構造
を示す電子顕微鏡写真であり、第9図は本発明の他の実
施例を示す薄膜焦電型赤外線センサの概略図、第10図
は第9図のA部拡大断面図である。 1・・・・・・赤外線検出体 4・・・・・・赤外線吸収膜 41・・・・・・突起 第1図 第4図 第3図 !J!、5図 第6図 第7R □)−□へ し 第8図 prn
Figures 1 to 3 show one embodiment of the present invention, Figure 1 is a schematic diagram of a bulk pyroelectric infrared sensor, Figure 2 is a partially enlarged sectional view of Figure 1, and Figure 3 is an infrared absorption FIG. 4 is an enlarged sectional view of the surface of the membrane, FIG. 4 is an enlarged sectional view of the surface of a conventional infrared absorbing membrane, and FIG. 5 is a diagram showing the change in absorption rate with respect to the amount of gas introduced.
Figure 6 is a cross-sectional view of the sample used to measure the absorption rate of the infrared absorbing film, Figure 7 is an electron micrograph showing the particle structure of the infrared absorbing film of the present invention, and Figure 8 is the grain structure of a conventional infrared absorbing film. FIG. 9 is a schematic diagram of a thin film pyroelectric infrared sensor showing another embodiment of the present invention, and FIG. 10 is an enlarged sectional view of section A in FIG. 9. 1... Infrared detector 4... Infrared absorbing film 41... Protrusion Figure 1 Figure 4 Figure 3! J! , 5 Figure 6 Figure 7R □)-□Heshi Figure 8 prn

Claims (2)

【特許請求の範囲】[Claims] (1)赤外光エネルギーを熱エネルギーとして吸収し、
この熱エネルギーに対応した電気出力を発生する赤外線
検出体と、赤外線検出体の受光面側に形成された赤外線
吸収膜とを具備する熱型赤外線センサであって、上記赤
外線吸収膜を、受光側表面に多数の貴金属粒子の突起を
形成した貴金属膜で構成し、かつ突起の径を0.1〜5
.0μm、各突起の間隔を0.1〜1.5μmとしたこ
とを特徴とする熱型赤外線センサ。
(1) Absorbs infrared light energy as thermal energy,
A thermal infrared sensor comprising an infrared detector that generates an electrical output corresponding to this thermal energy, and an infrared absorbing film formed on the light receiving surface side of the infrared detector, the infrared absorbing film being formed on the light receiving surface side. It is composed of a noble metal film with many noble metal particle protrusions formed on its surface, and the diameter of the protrusions is 0.1 to 5.
.. A thermal infrared sensor characterized in that the distance between each projection is 0.1 to 1.5 μm.
(2)上記赤外線検出体は、少なくとも一対の電極を両
面に有する焦電型赤外線検出素子から成り、上記赤外線
吸収膜は上記焦電型赤外線検出素子の受光面側の電極に
隣接して形成されている請求項1記載の熱型赤外線セン
サ。
(2) The infrared detector comprises a pyroelectric infrared detecting element having at least one pair of electrodes on both sides, and the infrared absorbing film is formed adjacent to the electrode on the light receiving surface side of the pyroelectric infrared detecting element. The thermal infrared sensor according to claim 1.
JP63055612A 1988-03-09 1988-03-09 Thermal infrared sensor Expired - Lifetime JP2531231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63055612A JP2531231B2 (en) 1988-03-09 1988-03-09 Thermal infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63055612A JP2531231B2 (en) 1988-03-09 1988-03-09 Thermal infrared sensor

Publications (2)

Publication Number Publication Date
JPH01227929A true JPH01227929A (en) 1989-09-12
JP2531231B2 JP2531231B2 (en) 1996-09-04

Family

ID=13003588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63055612A Expired - Lifetime JP2531231B2 (en) 1988-03-09 1988-03-09 Thermal infrared sensor

Country Status (1)

Country Link
JP (1) JP2531231B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337224A (en) * 2005-06-03 2006-12-14 Ushio Inc Microchip inspection device
JP2012163347A (en) * 2011-02-03 2012-08-30 Nissan Motor Co Ltd Infrared detecting device
JP2014139545A (en) * 2013-01-21 2014-07-31 Panasonic Corp Infrared detector
WO2014199583A1 (en) * 2013-06-10 2014-12-18 パナソニックIpマネジメント株式会社 Infrared sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337224A (en) * 2005-06-03 2006-12-14 Ushio Inc Microchip inspection device
JP4635728B2 (en) * 2005-06-03 2011-02-23 ウシオ電機株式会社 Microchip inspection device
JP2012163347A (en) * 2011-02-03 2012-08-30 Nissan Motor Co Ltd Infrared detecting device
JP2014139545A (en) * 2013-01-21 2014-07-31 Panasonic Corp Infrared detector
WO2014199583A1 (en) * 2013-06-10 2014-12-18 パナソニックIpマネジメント株式会社 Infrared sensor
JPWO2014199583A1 (en) * 2013-06-10 2017-02-23 パナソニックIpマネジメント株式会社 Infrared sensor
US10119865B2 (en) 2013-06-10 2018-11-06 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor having improved sensitivity and reduced heat generation

Also Published As

Publication number Publication date
JP2531231B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
KR100983818B1 (en) Resistive materials for bolometer, bolometer for infrared detector using the materials, and method for preparing the same
Watton et al. Induced pyroelectricity in sputtered lead scandium tantalate films and their merit for IR detector arrays
Jose et al. Role of grain boundaries on the electrical conductivity of nanophase zinc oxide
JPH01227929A (en) Thermal infrared sensor
WO2002039508A1 (en) Bolometer material, bolometer thin film, method for manufacturing bolometer thin film and infrared detecting element using the same
Cheneau et al. Mixed oxide provides an efficient solution to near infrared detection
JPS6138427A (en) Infrared detection element
Shaw et al. A SURF beamline for synchrotron source-based absolute radiometry
JPS6073448A (en) Atmosphere sensor
JPH02114576A (en) Superconducting electromgnetic-wave detection element
JP2720173B2 (en) Pyroelectric material
Teshima et al. Extension for Short Wavelength Detection Limit of Filter-Free Fluorescence Sensor by using Indium Tin Oxide Photogate
JPH07218460A (en) Nox gas detecting semiconductor and its manufacture
JP3344606B2 (en) NOx gas sensing element and method of manufacturing the same
JP3112496B2 (en) Method for producing transparent photoconductive metal oxide laminated film
JPS63270354A (en) Sintered pyroelectric ceramics
JPS63182532A (en) Temperature sensor and temperature detector using the same
JP2727327B2 (en) Pyroelectric material
JPH05156439A (en) Production of transparent conductive film and measuring instrument
JPS63270357A (en) Sintered pyroelectric ceramics
Kao et al. Thickness-dependent leakage current of (polyvinylidene fluoride/lead titanate) pyroelectric detectors
KR100295992B1 (en) Volimeter-type infrared sensor composition
Lane et al. Ceramic material for pyroelectric devices and devices incorporating such material
JPS6246218A (en) Pyroelectric infrared array element
JPS6197539A (en) Infrared linear array element