JPH04276520A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JPH04276520A
JPH04276520A JP3857091A JP3857091A JPH04276520A JP H04276520 A JPH04276520 A JP H04276520A JP 3857091 A JP3857091 A JP 3857091A JP 3857091 A JP3857091 A JP 3857091A JP H04276520 A JPH04276520 A JP H04276520A
Authority
JP
Japan
Prior art keywords
measuring
natural frequency
tube
measuring tube
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3857091A
Other languages
Japanese (ja)
Other versions
JP2910273B2 (en
Inventor
Yoshinori Matsunaga
松永 義則
Toshitsugu Ueda
敏嗣 植田
Nagaoki Kayama
長興 嘉山
Kenichi Kuromori
黒森 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3857091A priority Critical patent/JP2910273B2/en
Publication of JPH04276520A publication Critical patent/JPH04276520A/en
Application granted granted Critical
Publication of JP2910273B2 publication Critical patent/JP2910273B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To realize a flowmeter wherein there is no obstacle in a measuring pipe, pressure loss is small and vibration resistance is excellent. CONSTITUTION:A flowmeter has a measuring pipe 11 wherein fluid to be measured flows through the inside and at least one end is fixed, a circular-motion driving device 13 which drives the pipe 11 so that the device is turned so as to draw a circle with a reference shaft 14 of the measuring pipe 11 as the center at the natural frequency of the measuring pipe 11 under the state wherein a part of the measuring pipe 11 is curved, a displacement measuring device 15 for detecting the natural frequency caused by the turning of the measuring pipe 11 and an operating circuit for operating the flow speed of the fluid to be measured based on the natural frequency detected with the displacement measuring device 15.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

【0001】本発明は、測定管内に障害物がなく、圧損
が小さく、耐振性の良好な流量計に関するものである。
[0001] The present invention relates to a flow meter that has no obstructions in the measuring tube, has low pressure loss, and has good vibration resistance.

【0002】0002

【従来の技術】従来の微小サイズ用流量計としては、容
積式、面積式等がある。これらは、内部に歯車又は浮子
の様な、流れを遮る物がある為、圧損が大きい、内部の
部品が摩耗するなどの欠点を持っている。一方、電磁流
量計やコリオリ流量計は、流れを遮る物はないが、それ
ぞれ導電性流体しか測定出来ない、振動に弱いといった
欠点がある。
2. Description of the Related Art Conventional flowmeters for minute sizes include volumetric type, area type, etc. These have drawbacks such as large pressure loss and wear of internal parts because there are objects inside that block the flow, such as gears or floats. On the other hand, electromagnetic flowmeters and Coriolis flowmeters have no obstructions to the flow, but each has drawbacks such as being able to measure only conductive fluids and being susceptible to vibrations.

【0003】第14図は従来より一般に使用されている
従来例の構成説明図で、コリオリ質量流量計に使用せる
例で、例えば、米国特許4,491,025号、発明の
名称「PARALLEL PATH CORIOLIS
 MASS FLOW RATE METER 」19
82年11月3日出願、1985年1月1日特許に示さ
れている。図において、1は配管Aに、両端が取付けら
れたU字形の測定管である。2は管路Aへの測定管1の
取付けフランジである。3はU字形をなす測定管1の先
端に設けられた振動子である。4,5は測定管1の両側
にそれぞれ設けられた変位検出センサである。
FIG. 14 is an explanatory diagram of the configuration of a conventional example that has been commonly used in the past, and is an example that can be used in a Coriolis mass flowmeter.
MASS FLOW RATE METER”19
It is shown in the application filed on November 3, 1982 and the patent dated January 1, 1985. In the figure, 1 is a U-shaped measurement tube attached to piping A at both ends. 2 is a flange for attaching the measuring tube 1 to the conduit A. Reference numeral 3 denotes a vibrator provided at the tip of the U-shaped measuring tube 1. 4 and 5 are displacement detection sensors provided on both sides of the measuring tube 1, respectively.

【0004】以上の構成において、測定管1に測定流体
が流され、振動子3が駆動される。振動子3の振動方向
の角速度『ω』、測定流体の流速『V』(以下『』で囲
まれた記号はベクトル量を表す。)とすると、Fc=―
2m『ω』×『V』 のコリオリ力が働く、コリオリ力に比例した振動の振幅
を測定すれば、質量流量が測定出来る。しかし、一般に
は、コリオリ力に比例した振動の振幅は、加振による振
動の振幅より極めて小さく、コリオリ力に比例した振動
の振幅を直接検出することが出来ない。
[0004] In the above configuration, the measurement fluid is flowed through the measurement tube 1, and the vibrator 3 is driven. Assuming that the angular velocity of the vibrator 3 in the vibration direction is "ω" and the flow velocity of the fluid to be measured is "V" (hereinafter, symbols enclosed in "" represent vector quantities), Fc=-
The mass flow rate can be measured by measuring the amplitude of the vibration that is proportional to the Coriolis force of 2m ``ω'' x ``V''. However, in general, the amplitude of vibration proportional to Coriolis force is extremely smaller than the amplitude of vibration due to excitation, and it is not possible to directly detect the amplitude of vibration proportional to Coriolis force.

【0005】今、図15のZ視の方向から見ると、振動
子3の加振により、振動方向をα、βに別けて考えると
、流速『V』の向きによって、図15(A)、(B)に
示す如く、コリオリ力の方向が異なるので、逆相となり
、測定管1が捩れながら振動する。これを変位検出セン
サ4,5、例えば磁気センサで変位を検出し、変位検出
センサ4,5の変位の位相差が、(コリオリ力に比例し
た振動の振幅)/(加振による振動の振幅)に比例する
ので質量流量を求める事ができる。位相差は波形がゼロ
をクロスする時間の差Δtとして測定出来るので、結果
としてコリオリ力が測定出来る。
Now, when viewed from the Z direction in FIG. 15, the vibration directions are divided into α and β due to the vibration of the vibrator 3, and depending on the direction of the flow velocity “V”, the vibration directions shown in FIG. As shown in (B), since the directions of the Coriolis force are different, the phases are reversed, and the measuring tube 1 vibrates while being twisted. The displacement is detected by the displacement detection sensors 4 and 5, for example, a magnetic sensor, and the phase difference between the displacements of the displacement detection sensors 4 and 5 is (amplitude of vibration proportional to Coriolis force)/(amplitude of vibration due to excitation) Since it is proportional to , the mass flow rate can be determined. Since the phase difference can be measured as the difference Δt in time at which the waveform crosses zero, the Coriolis force can be measured as a result.

【0006】図16は従来より一般に使用されている他
の従来例の構成説明図である。本従来例では、更に、ノ
イズを低減し、信号を大きくとるために、測定管1を、
2管式にし、ノイズを打消すようにしたものである。
FIG. 16 is a diagram illustrating the configuration of another conventional example that has been commonly used. In this conventional example, in order to further reduce noise and increase the signal, the measurement tube 1 is
It is a two-tube system designed to cancel out noise.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この様
な装置においては、振動の大きさを測定しているので、
外部振動ノイズに対して弱い欠点を有する。本発明は、
この問題点を解決するものである。本発明の目的は、測
定管内に障害物がなく、圧損が小さく、耐振性の良好な
流量計を提供するにある。
[Problem to be solved by the invention] However, in such a device, since the magnitude of vibration is measured,
It has the disadvantage of being weak against external vibration noise. The present invention
This problem is solved. An object of the present invention is to provide a flowmeter that has no obstacles in the measuring tube, has low pressure loss, and has good vibration resistance.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明は、測定流体が内部を流れ少なくとも一端が
固定された測定管と、該測定管の固有振動数で測定管の
一部が湾曲したまま該測定管の基本軸を中心に円を描い
て回動するように駆動する円運動駆動装置と、前記測定
管の回動による固有振動数を検出する変位測定装置と、
該変位測定装置が検出した固有振動数から測定流体の流
速を演算する演算回路とを具備したことを特徴とする流
量計を構成したものである。
In order to achieve this object, the present invention provides a measuring tube through which a measuring fluid flows and which is fixed at least at one end, and a part of the measuring tube at the natural frequency of the measuring tube. a circular motion drive device that drives the measurement tube so that it rotates in a circle around the basic axis of the measurement tube while being curved; a displacement measurement device that detects the natural frequency due to the rotation of the measurement tube;
The present invention constitutes a flowmeter characterized by comprising a calculation circuit that calculates the flow velocity of the measured fluid from the natural frequency detected by the displacement measuring device.

【0009】[0009]

【作用】以上の構成において、測定管に測定流体が流れ
ない状態では、円運動駆動装置を駆動する事により、測
定管の固有振動数で、測定管の一部が湾曲したまま、測
定管の基本軸を中心に円を描いて回動する。測定管に測
定流体が流れている状態では、測定管と測定流体との固
有振動数で測定管の一部が湾曲したまま、測定管の基本
軸を中心に、円を描いて回動する。変位測定装置で、測
定管の回動による固有振動数を検出する。演算回路で、
変位測定装置が検出した固有振動数から、測定流体の流
速を演算する。以下、実施例に基づき詳細に説明する。
[Function] In the above configuration, when the measurement fluid does not flow into the measurement tube, by driving the circular motion drive device, the measurement tube remains partially bent at the natural frequency of the measurement tube. Rotates in a circle around the basic axis. When the measurement fluid is flowing through the measurement tube, a part of the measurement tube remains curved due to the natural frequency of the measurement tube and the measurement fluid, and rotates in a circle around the basic axis of the measurement tube. A displacement measurement device detects the natural frequency due to the rotation of the measurement tube. In the arithmetic circuit,
The flow velocity of the measured fluid is calculated from the natural frequency detected by the displacement measuring device. Hereinafter, a detailed explanation will be given based on examples.

【0010】0010

【実施例】図1は、本発明の一実施例の要部構成説明図
、図2は、図1のA−A断面図である。11は、測定流
体が内部を流れ、両端が、ケ―ス12に固定された測定
管である。13は、測定管11の固有振動数で、測定管
11の一部が湾曲したまま、測定管11の基本軸14を
中心に、円を描いて回動するように、駆動する円運動駆
動装置である。ここで、測定管11の基本軸14とは、
測定管11が湾曲し無い状態での中心軸を言うとする。 15は、測定管11の回動による固有振動数を検出する
変位測定装置である。16は、変位測定装置15が検出
した固有振動数から、測定流体の流速を演算する演算回
路である。演算回路16については後述する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of the main part of an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA in FIG. Reference numeral 11 denotes a measuring tube through which a measuring fluid flows, and both ends of which are fixed to the case 12. Reference numeral 13 indicates the natural frequency of the measuring tube 11, and a circular motion drive device drives the measuring tube 11 so that it rotates in a circle around the basic axis 14 of the measuring tube 11 while keeping a part of the measuring tube 11 curved. It is. Here, the basic axis 14 of the measurement tube 11 is
It is assumed that this is the central axis when the measuring tube 11 is not bent. 15 is a displacement measuring device that detects the natural frequency due to the rotation of the measuring tube 11. 16 is an arithmetic circuit that calculates the flow velocity of the measurement fluid from the natural frequency detected by the displacement measuring device 15. The arithmetic circuit 16 will be described later.

【0011】図3に図1の電気回路のブロック図を示す
。13は駆動装置、15は変位測定装置である。変位測
定装置15は、測定管11の変位に比例した電圧を出力
する。16は、周波数測定回路で、変位測定装置15の
周期的な変化を周波数に変換する。17は、スイッチで
あり、ゼロ点を記録する場合にオンとなり、常時はオフ
である。18は、メモリ―で、スイッチ17がオンの状
態での周波数を記録する。19は、メモリ―18の出力
と周波数測定回路16の出力から流量を測定する演算回
路である。21は、円運動駆動装置13に電流を供給す
る駆動回路である。
FIG. 3 shows a block diagram of the electrical circuit of FIG. 13 is a drive device, and 15 is a displacement measuring device. The displacement measuring device 15 outputs a voltage proportional to the displacement of the measuring tube 11. 16 is a frequency measuring circuit that converts periodic changes in the displacement measuring device 15 into a frequency. A switch 17 is turned on when recording the zero point, and is normally turned off. A memory 18 records the frequency when the switch 17 is on. 19 is an arithmetic circuit that measures the flow rate from the output of the memory 18 and the output of the frequency measurement circuit 16. 21 is a drive circuit that supplies current to the circular motion drive device 13.

【0012】以上の構成において、 (1)測定管11に測定流体が流れない状態では、円運
動駆動装置13を駆動する事により、測定管11の固有
振動数で、測定管11の一部が湾曲したまま、測定管1
1の基本軸14を中心に円を描いて回動する。すなわち
、図4に示す如く、円運動駆動装置13は、測定管11
を半径方向に外側に力Fで引付ける。而して、力FはF
1、F2、F3、F4と測定管1の回りを順次移動して
回転して行く。結局、力Fは測定管1を引付けながら、
測定管1のまわりを回転している。而して、測定管1は
測定管1の固有振動数で回転している。図5に示す如く
、この固有振動数で回転しているとき、測定管1の撓み
剛性Bと遠心力Cが釣合った状態である。測定管1の両
端は、固定されているので、図6の様な回転をしている
ことになる。
In the above configuration, (1) When the measuring fluid does not flow through the measuring tube 11, by driving the circular motion drive device 13, a part of the measuring tube 11 is moved by the natural frequency of the measuring tube 11. Measurement tube 1 remains bent.
It rotates in a circle around the basic axis 14 of 1. That is, as shown in FIG. 4, the circular motion drive device 13
is pulled outward in the radial direction with a force F. Therefore, the force F is F
1, F2, F3, and F4, it sequentially moves and rotates around the measuring tube 1. In the end, while the force F attracts the measuring tube 1,
It rotates around the measuring tube 1. Thus, the measuring tube 1 is rotating at its natural frequency. As shown in FIG. 5, when rotating at this natural frequency, the bending rigidity B of the measuring tube 1 and the centrifugal force C are in balance. Since both ends of the measuring tube 1 are fixed, they rotate as shown in FIG. 6.

【0013】(2)測定管1に測定流体が流れている状
態では、図7に示す如く、測定流体による遠心力Dが加
わり、全体としての遠心力が変化する。このとき、測定
管1は撓み剛性と釣合うように固有振動数が変化する。 結局、測定管1と測定流体との固有振動数で測定管の一
部が湾曲したまま、測定管の基本軸を中心に、円を描い
て回動する。而して、変位測定装置15で、測定管1の
回動による固有振動数を検出する。演算回路15で、変
位測定装置15が検出した固有振動数から測定流体の流
速を演算する。
(2) When the fluid to be measured is flowing through the measuring tube 1, as shown in FIG. 7, a centrifugal force D is applied by the fluid to be measured, and the centrifugal force as a whole changes. At this time, the natural frequency of the measuring tube 1 changes so as to balance the bending rigidity. Eventually, due to the natural frequency of the measurement tube 1 and the fluid to be measured, a part of the measurement tube remains curved and rotates in a circle around the basic axis of the measurement tube. Then, the displacement measuring device 15 detects the natural frequency due to the rotation of the measuring tube 1. The arithmetic circuit 15 calculates the flow velocity of the fluid to be measured from the natural frequency detected by the displacement measuring device 15.

【0014】図8に原理図を示す。この場合の等価的な
運動方程式は、     Mo rω 2=rk―M1 (v 2/R)
                         
   (1)ここで、 Mo rω 2:E方向に回転する事により生じる遠心
力rk:ばねによる復元力 M1 (v 2/R):F方向に流体が流れる事により
生じる遠心力 Mo :測定管1と測定流体の質量 r:撓み部分の回転の半径 ω:角速度 k:定数 M1 :測定流体の質量 v:測定流体の流速 R:撓み部分の曲率半径
FIG. 8 shows a diagram of the principle. The equivalent equation of motion in this case is Mo rω 2=rk−M1 (v 2/R)

(1) Here, Morω 2: Centrifugal force caused by rotation in the E direction rk: Restoring force due to the spring M1 (v 2/R): Centrifugal force caused by the fluid flowing in the F direction Mo: Measuring tube 1 and mass of the measured fluid r: radius of rotation of the bending part ω: angular velocity k: constant M1 : mass of the measurement fluid v: flow velocity of the measurement fluid R: radius of curvature of the bending part

【0015】(1)式より、     ω 2=(k/Mo )―(M1 /(Mo 
r))(v 2/R)            (2)
        =(k/Mo )(1―(M1 /k
)(v 2/(rR)))(2)式でRは1/rに比例
するとすれば、Rr=const であるから、e=1
/Rrとおけば、    ω 2=ω 0 2(1―(
M1 /k)ev 2)              
            (3)(3)式でM1 は密
度に比例し、vは測定流体の流速であるから、ωを測定
する事により、(3)式の関係より、測定管1中を流れ
る流速v又はρv 2を求める事が出来る。ここで、ρ
は密度を表わす。
From equation (1), ω 2 = (k/Mo ) - (M1 / (Mo
r)) (v 2/R) (2)
=(k/Mo)(1-(M1/k
)(v 2/(rR))) If R is proportional to 1/r in equation (2), then Rr=const, so e=1
/Rr, ω 2 = ω 0 2(1-(
M1 /k)ev 2)
(3) In equation (3), M1 is proportional to the density, and v is the flow velocity of the measuring fluid. You can ask for 2. Here, ρ
represents density.

【0016】この結果、 (1)測定流体の流量により、測定管1の固有振動数が
変化するので、この固有振動数を測定する事により、測
定流体の流量測定が容易に出来る。 (2)測定値が固有振動数なので、外乱振動に強い、す
なわち、耐ノイズ特性が良好な流量計が得られる。
As a result, (1) The natural frequency of the measuring tube 1 changes depending on the flow rate of the fluid to be measured, so by measuring this natural frequency, the flow rate of the fluid to be measured can be easily measured. (2) Since the measured value is the natural frequency, a flowmeter that is resistant to disturbance vibrations, that is, has good noise resistance characteristics, can be obtained.

【0017】図9は本発明の他の実施例の要部構成説明
図である。本実施例においては、測定管1の一端側に、
ベロ―ズ21が設けられたもので、測定管1の一端は自
由端として振動する。図10は本発明の他の実施例の要
部構成説明図である。本実施例においては、測定管1と
して曲り管が使用され、両端固定として構成された例で
ある。
FIG. 9 is an explanatory diagram of the main part of another embodiment of the present invention. In this embodiment, at one end of the measuring tube 1,
A bellows 21 is provided, and one end of the measuring tube 1 vibrates as a free end. FIG. 10 is an explanatory diagram of the main part configuration of another embodiment of the present invention. In this embodiment, a bent tube is used as the measurement tube 1, and both ends are fixed.

【0018】図11は本発明の他の実施例の要部構成説
明図である。本実施例においては、測定管1として曲り
管が使用され、測定管1の中央が固定され、両端が自由
端として構成された例である。図12は本発明の他の実
施例の要部構成説明図である。本実施例においては、測
定管1として平行管が使用され、両端固定として構成さ
れた例である。図13は本発明の他の実施例の要部構成
説明図である。本実施例においては、測定管1として平
行管が使用され、測定管1の片側が、自由端として構成
された例である。
FIG. 11 is an explanatory diagram of the main part of another embodiment of the present invention. In this embodiment, a bent tube is used as the measurement tube 1, and the center of the measurement tube 1 is fixed, and both ends are configured as free ends. FIG. 12 is an explanatory diagram of the main part configuration of another embodiment of the present invention. In this embodiment, a parallel tube is used as the measurement tube 1, and both ends are fixed. FIG. 13 is an explanatory diagram of the main part configuration of another embodiment of the present invention. In this embodiment, a parallel tube is used as the measuring tube 1, and one side of the measuring tube 1 is configured as a free end.

【0019】[0019]

【発明の効果】以上説明したように、本発明は、測定流
体が内部を流れ少なくとも一端が固定された測定管と、
該測定管の固有振動数で測定管の一部が湾曲したまま該
測定管の基本軸を中心に円を描いて回動するように駆動
する円運動駆動装置と、前記測定管の回動による固有振
動数を検出する変位測定装置と、該変位測定装置が検出
した固有振動数から測定流体の流速を演算する演算回路
とを具備したことを特徴とする流量計を構成した。
[Effects of the Invention] As explained above, the present invention provides a measuring tube through which a measuring fluid flows and at least one end of which is fixed;
a circular motion drive device that drives a part of the measuring tube to rotate in a circle around the basic axis of the measuring tube while being curved at the natural frequency of the measuring tube; A flowmeter has been constructed, which is characterized by comprising a displacement measuring device that detects a natural frequency, and an arithmetic circuit that calculates the flow velocity of a fluid to be measured from the natural frequency detected by the displacement measuring device.

【0020】この結果、 (1)測定流体の流量により、測定管の固有振動数が変
化するので、この固有振動数を測定する事により、測定
流体の流量測定が容易に出来る。 (2)測定値が固有振動数なので、外乱振動に強い、す
なわち、耐ノイズ特性が良好な流量計が得られる。
As a result, (1) The natural frequency of the measuring tube changes depending on the flow rate of the fluid to be measured, so by measuring this natural frequency, the flow rate of the fluid to be measured can be easily measured. (2) Since the measured value is the natural frequency, a flowmeter that is resistant to disturbance vibrations, that is, has good noise resistance characteristics, can be obtained.

【0021】従って、本発明によれば、測定管内に障害
物がなく、圧損が小さく、耐振性の良好な流量計を実現
することが出来る。
Therefore, according to the present invention, it is possible to realize a flowmeter with no obstructions in the measuring tube, low pressure loss, and good vibration resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 1;

【図3】図1の電気回路ブロック図である。FIG. 3 is a block diagram of the electric circuit in FIG. 1;

【図4】図1の動作説明図である。FIG. 4 is an explanatory diagram of the operation in FIG. 1;

【図5】図1の動作説明図である。FIG. 5 is an explanatory diagram of the operation in FIG. 1;

【図6】図1の動作説明図である。FIG. 6 is an explanatory diagram of the operation in FIG. 1;

【図7】図1の動作説明図である。FIG. 7 is an explanatory diagram of the operation in FIG. 1;

【図8】図1の動作原理説明図である。8 is a diagram illustrating the operating principle of FIG. 1. FIG.

【図9】本発明の他の実施例の要部構成説明図である。FIG. 9 is an explanatory diagram of the main part configuration of another embodiment of the present invention.

【図10】本発明の他の実施例の要部構成説明図である
FIG. 10 is an explanatory diagram of the main part configuration of another embodiment of the present invention.

【図11】本発明の他の実施例の要部構成説明図である
FIG. 11 is an explanatory diagram of the main part configuration of another embodiment of the present invention.

【図12】本発明の他の実施例の要部構成説明図である
FIG. 12 is an explanatory diagram of the main part configuration of another embodiment of the present invention.

【図13】本発明の他の実施例の要部構成説明図である
FIG. 13 is an explanatory diagram of the main part configuration of another embodiment of the present invention.

【図14】従来より一般に使用されている従来例の構成
説明図である。
FIG. 14 is a diagram illustrating the configuration of a conventional example that has been commonly used.

【図15】図14の動作説明図である。FIG. 15 is an explanatory diagram of the operation in FIG. 14;

【図16】従来より一般に使用されている他の従来例の
構成説明図である。
FIG. 16 is a diagram illustrating the configuration of another conventional example that has been commonly used.

【符号の説明】[Explanation of symbols]

11…測定管 12…ケ―ス 13…円運動駆動装置 14…基本軸 15…変位測定装置 16…周波数測定回路 17…スイッチ 18…メモリ 19…演算回路 21…駆動回路 22…ベロ―ズ 11...Measuring tube 12...Case 13...Circular motion drive device 14...Basic axis 15...Displacement measuring device 16...Frequency measurement circuit 17...Switch 18...Memory 19... Arithmetic circuit 21...Drive circuit 22...Bellows

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定流体が内部を流れ少なくとも一端が固
定された測定管と、該測定管の固有振動数で測定管の一
部が湾曲したまま該測定管の基本軸を中心に円を描いて
回動するように駆動する円運動駆動装置と、前記測定管
の回動による固有振動数を検出する変位測定装置と、該
変位測定装置が検出した固有振動数から測定流体の流速
を演算する演算回路とを具備したことを特徴とする流量
計。
Claim 1: A measuring tube in which a measuring fluid flows inside and has at least one end fixed, and a circle is drawn around the basic axis of the measuring tube while a part of the measuring tube is curved at the natural frequency of the measuring tube. a circular motion drive device that rotates the measurement tube; a displacement measurement device that detects the natural frequency due to the rotation of the measuring tube; and a displacement measurement device that calculates the flow velocity of the measurement fluid from the natural frequency detected by the displacement measurement device. A flowmeter characterized by comprising an arithmetic circuit.
JP3857091A 1991-03-05 1991-03-05 Flowmeter Expired - Lifetime JP2910273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3857091A JP2910273B2 (en) 1991-03-05 1991-03-05 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3857091A JP2910273B2 (en) 1991-03-05 1991-03-05 Flowmeter

Publications (2)

Publication Number Publication Date
JPH04276520A true JPH04276520A (en) 1992-10-01
JP2910273B2 JP2910273B2 (en) 1999-06-23

Family

ID=12528955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3857091A Expired - Lifetime JP2910273B2 (en) 1991-03-05 1991-03-05 Flowmeter

Country Status (1)

Country Link
JP (1) JP2910273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300462A (en) * 2000-08-18 2009-12-24 Emerson Electric Co Coriolis mass flow sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300462A (en) * 2000-08-18 2009-12-24 Emerson Electric Co Coriolis mass flow sensor

Also Published As

Publication number Publication date
JP2910273B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US4747312A (en) Double-loop Coriolis type mass flowmeter
AU658876B2 (en) Coriolis-type mass flowmeter
EP0210308B1 (en) Mass flowmeter
US4852409A (en) Signal recovery system for mass flowmeter
US3080750A (en) Oscillating mass flowmeter
EP0421812B1 (en) Improved coriolis-type flowmeter
KR102061724B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
US4972724A (en) Coriolis-type mass flowmeter having a straight measuring tube
KR19980703069A (en) Coriolis Effect Mass Flowmeter Using Concentric Rotor
JP2850556B2 (en) Coriolis mass flowmeter
JP2917051B2 (en) Flow measurement method and device
JPH04276520A (en) Flowmeter
JPH02501090A (en) Convection inertia flow meter
JPH0341319A (en) Coriolis mass flowmeter
US6729192B1 (en) Moving target flow sensor
EP1060364A1 (en) Free standing coriolis driver
JP2712684B2 (en) Coriolis mass flowmeter
US3000223A (en) Gyro integrator
JP2801826B2 (en) Mass flow meter
JPH11108723A (en) Coriolis mass flow meter
JPH0526709A (en) Coriolis mass flowmeter
JP2951456B2 (en) Coriolis mass flowmeter
JPS63100326A (en) Impeller type flow rate measuring instrument
JPH109925A (en) Coriolis flow meter
JP2951460B2 (en) Coriolis mass flowmeter