JPH0427600B2 - - Google Patents

Info

Publication number
JPH0427600B2
JPH0427600B2 JP58128882A JP12888283A JPH0427600B2 JP H0427600 B2 JPH0427600 B2 JP H0427600B2 JP 58128882 A JP58128882 A JP 58128882A JP 12888283 A JP12888283 A JP 12888283A JP H0427600 B2 JPH0427600 B2 JP H0427600B2
Authority
JP
Japan
Prior art keywords
vehicle
contact
resistance
voltage
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58128882A
Other languages
Japanese (ja)
Other versions
JPS6020300A (en
Inventor
Naoshi Noguchi
Eiichi Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12888283A priority Critical patent/JPS6020300A/en
Publication of JPS6020300A publication Critical patent/JPS6020300A/en
Publication of JPH0427600B2 publication Critical patent/JPH0427600B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)

Description

【発明の詳細な説明】 本発明は抵抗接点方式の踏板を用いた車種判別
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle type identification device using a resistive contact type footboard.

有料道路は一般に、普通車、大型車、特大車な
どの車種別に通行料金が異なる料金体系を用いて
いる場合が多い。また、高速道路などのように多
区間の有料道路では、更に利用区間毎に定めた料
金を徴収する。
Toll roads generally use a toll system in which tolls vary depending on vehicle type, such as regular cars, large cars, and extra large cars. In addition, on multi-section toll roads such as expressways, tolls determined for each section of use are collected.

このような有料道路システムでは、入口インタ
ーチエンジの入口ゲートにおいて、入口インター
チエンジ名や番号および入口進入年月日、時刻、
更には上記分類による車種の車種コードなどの必
要なデータを記入した通行券を発行し、これを出
口インターチエンジの出口ゲートにおいて受け取
り、この受け取つた通行券の前記データを処理装
置の読取機で読取つて出口インターチエンジまで
の利用区間に対応する車種別料金を求め、これを
表示して係員がその表示料金を利用者より徴収す
ることになる。
In such a toll road system, at the entrance gate of the entrance interchange, the name and number of the entrance interchange, the date and time of entry,
Furthermore, a pass is issued with necessary data such as the vehicle model code according to the above classification, and this is received at the exit gate of the exit interchange, and the data on the received pass is read by the reader of the processing device. Then, the vehicle type-specific toll corresponding to the section of use up to the exit interchange is calculated, displayed, and the staff collects the displayed toll from the user.

ところが有料道路業務は昼夜を通して行わなく
てはならず、有料道路網も拡大の一途を辿るなど
の係員も多人数必要であることなどから有料道路
のインターチエンジにおける出入口ゲートの無人
化が望まれている。
However, toll road operations must be carried out throughout the day and night, and as the toll road network continues to expand, a large number of staff are required.Therefore, there is a desire for unmanned entrance and exit gates at toll road interchanges. There is.

この有料道路システムにおける入口の無人化を
図る方法として通行車両の車種(例えば、普通
車、大型車、大型車の種別)を自動判別し、
当該車両に相当する通行券を発行することが考え
られている。
As a way to make the entrance to this toll road system unmanned, the type of vehicle passing by (for example, regular car, large car, large car type) is automatically determined,
Consideration is being given to issuing a toll ticket equivalent to the vehicle in question.

車種を自動判別するためのパラメータとして、
通過車両毎に輪距(トレツド)、タイヤ幅(ダブ
ルタイヤか、シングルタイヤかの判別用)、軸数
などを測定し、これらの情報より判別することが
考えられているが、これらのうち、輪距の測定方
法の1つとして例えば抵抗線とこの抵抗線の対峙
させてその上方側に弾力正のある上部接点を配し
た抵抗接点を用いた踏板式のものがある。
As a parameter for automatically identifying the car model,
The idea is to measure the wheel distance (tread), tire width (for determining whether it is a double tire or single tire), number of axles, etc. of each passing vehicle, and to make a determination based on this information. Among these, One method of measuring wheel distance is, for example, a treadle type method that uses a resistance wire and a resistance contact that is placed opposite the resistance wire and has a resilient upper contact above the resistance wire.

この抵抗接点を用いた踏板の構成を第1図に、
またこの踏板による輪距測定原理を第2図に示
す。
The configuration of a treadle using this resistance contact is shown in Figure 1.
The principle of wheel distance measurement using this treadle is shown in Fig. 2.

第1図は抵抗接点を有する軸輪検知型踏板10
の構造を示したものであり、長手方向を路面の横
断方向に向けて設置される。第1図のaは平面図
を示すもので、11,12は抵抗接点であり、通
行車両の輪数、輪距(トレツド)、タイヤ幅を測
定する。これらの抵抗接点11,12は車両の進
行方向に順に並べられ、一方は路面の左半分を、
また13は平型接点であり、通行車両の軸数を測
定する。この平型接点13は抵抗接点11,12
の間にこれらに平行に2組設けられ、これらは路
面を横断して路葉合にほぼ一杯に配される。ま
た、抵抗接点11,12位置には路面の残り半分
をカバーするように平型接点13と同じ構造の平
型接点13′をそれぞれ設けてある。なお、これ
ら平型接点13,13′はその動作パターンより
車両の前後進判別を行うために設けられるもので
ある。14はリード線である。第1図のbは、抵
抗接点11,12の構造を示したものであり、1
5は上部接点、16はこの上部接点15の下方に
位置さて所定寸法の短い複数の接点を等間隔で水
平位置に配置させた下部接点であり、下部接点1
6には各隣接する接点の間には、それぞれ抵抗値
が同一の固定抵抗17が接続されている。接点材
料はステンレス等の材質で構成され、車両が通過
することにより、上部接点15のタイヤ踏圧を受
けた部分が弾性変形し、弾性変形した個所が下部
接点16に接触して、円形した個所のみ短絡状態
となり、下部接点16の両端の抵抗値が変化す
る。第1図のcは平型接点13の構造を示したも
のであり、18は上部接点、19は下部接点を示
したものでステンレス等の材質で構成され、車両
が通過することにより弾性変形を起して接触す
る。
Figure 1 shows an axle-wheel detection type treadle 10 with resistance contacts.
This figure shows the structure of the vehicle, which is installed with its longitudinal direction facing the transverse direction of the road surface. A in FIG. 1 shows a plan view, and 11 and 12 are resistance contacts, which measure the number of wheels, tread, and tire width of passing vehicles. These resistance contacts 11 and 12 are arranged in order in the direction of travel of the vehicle, one of which covers the left half of the road surface,
Further, 13 is a flat contact point, which measures the number of axes of passing vehicles. This flat contact 13 is the resistance contact 11, 12
Two sets are provided parallel to these between them, and these are arranged almost completely at the road intersection across the road surface. Additionally, flat contacts 13' having the same structure as the flat contact 13 are provided at the positions of the resistance contacts 11 and 12, respectively, so as to cover the remaining half of the road surface. These flat contacts 13, 13' are provided to determine whether the vehicle is moving forward or backward based on their operation patterns. 14 is a lead wire. 1b shows the structure of the resistance contacts 11 and 12, and 1
5 is an upper contact; 16 is a lower contact located below this upper contact 15, in which a plurality of short contacts of a predetermined size are arranged horizontally at equal intervals;
A fixed resistor 17 having the same resistance value is connected between each adjacent contact point 6 . The contact material is made of a material such as stainless steel, and when a vehicle passes by, the part of the upper contact 15 that receives tire pressure is elastically deformed, and the elastically deformed part contacts the lower contact 16, and only a circular part is formed. A short circuit occurs, and the resistance values at both ends of the lower contact 16 change. Figure 1c shows the structure of the flat contact 13, 18 is the upper contact, and 19 is the lower contact, which are made of a material such as stainless steel, and are elastically deformed when a vehicle passes by. Wake up and make contact.

なお通過車両1台毎に分離して検出できるよう
踏板は車両通過路をはさんで対向する投受光器を
垂直方向に複数対積重した光電式の車両分離器の
光軸下に敷設し、この車両分離器の光軸がしや断
されている間に得られる踏板の出力をもつて通過
車両の輪距の情報を得ることにより他の車両の情
報と区別できるようにしてある。
In order to separate and detect each passing vehicle, the treadle is placed under the optical axis of a photoelectric vehicle separator, which has multiple pairs of emitters and receivers stacked vertically across the vehicle passageway. By using the output of the treadle obtained while the optical axis of the vehicle separator is cut off, information on the wheel width of a passing vehicle can be obtained so that it can be distinguished from information on other vehicles.

第2図は、車輪検知型踏板10の動作原理を説
明するための図であり、図中の21,23は前述
の抵抗接点の上部接点15を、また、22並びに
24は下部接点16及び固定抵抗17を示したも
ので、以後は抵抗体と呼ぶことにする。抵抗接点
11,12は、前述の所定の位置に配置され、ま
た抵抗接点11,12はそれぞれa、b、cと
a′、b′、c′の端子を有している。これらのうち端
子a、a′は上部接点21,23の片端に接続さ
れ、またb、b′は抵抗体22,24の一方の端部
に、またc、c′は抵抗体22,24の他方の端部
に接続される。
FIG. 2 is a diagram for explaining the operating principle of the wheel detection type treadle 10. In the figure, 21 and 23 are the upper contacts 15 of the resistance contacts mentioned above, and 22 and 24 are the lower contacts 16 and the fixed This shows a resistor 17, which will be referred to as a resistor from now on. The resistance contacts 11 and 12 are arranged at the predetermined positions mentioned above, and the resistance contacts 11 and 12 are a, b, and c, respectively.
It has terminals a', b', and c'. Of these, terminals a and a' are connected to one end of the upper contacts 21 and 23, b and b' are connected to one end of the resistors 22 and 24, and c and c' are connected to one end of the resistors 22 and 24. connected to the other end.

ここで、この軸輪検知型踏板10による通過車
両の輪数、輪距、タイヤ幅の測定原理を説明して
おく。
Here, the principle of measuring the number of wheels, wheel distance, and tire width of a passing vehicle using this axle wheel detection type step board 10 will be explained.

今、輪距がLなる長さを有し、タイヤ幅がlな
る車輪Aを装着した車両が、軸輪検知型踏板10
上にさしかかり、抵抗接点11,12を踏圧した
とする。
Now, a vehicle is equipped with a wheel A having a wheel length L and a tire width l.
Suppose that you approach the top and press the resistance contacts 11 and 12.

抵抗接点11は一車線分の幅の車両通過路の中
央より右側に、また抵抗接点12は左側に配設さ
れているため車両の右側車輪は抵抗接点11を、
また、左側車輪は、抵抗接点12を踏圧する。
The resistance contact 11 is placed on the right side of the center of the vehicle passageway, which is the width of one lane, and the resistance contact 12 is placed on the left side, so the right wheel of the vehicle connects the resistance contact 11 with the resistance contact 11.
Further, the left wheel presses the resistance contact 12.

すると、この抵抗接点11では、その抵抗接点
体21は踏圧を受けた部分が下方にへこみ、下部
の抵抗体22に接触する。また、同様に、抵抗接
点12では左側車輪により踏圧を受けた部分が下方
にへこみ、下部の抵抗体24に接触する。
Then, in the resistive contact 11, the portion of the resistive contact body 21 that receives the pedal pressure is depressed downward and comes into contact with the resistive body 22 at the lower part. Similarly, the portion of the resistance contact 12 that receives pressure from the left wheel is depressed downward and comes into contact with the resistor 24 at the bottom.

この抵抗体22,24における上部接点体2
1,23との接触部と非接触部とを区別すると抵
抗体22側では、タイヤ幅lの対応の幅で中央に
接触部分が、そしてその両脇に非接触の部分が生
じ、また、抵抗体24側ではタイヤ幅l対応の幅
で、中央に接触部分が、またその両脇に非接触部
分が生ずる。
Upper contact body 2 in these resistors 22 and 24
Distinguishing between contact areas and non-contact areas with 1 and 23, on the resistor 22 side, there is a contact area at the center with a width corresponding to the tire width l, and non-contact areas on both sides of the contact area. On the side of the body 24, a contact portion is formed in the center with a width corresponding to the tire width l, and non-contact portions are formed on both sides of the contact portion.

これらのうち、タイヤ幅lに対応する接触部分
区間の抵抗体抵抗値r2及びr5とし、その両脇部分
の非接触区間の抵抗体抵抗値をそれぞれr1r3、r4
r6とすると、それぞれの抵抗体22,24の両端
子b、c及びb′、c′各々の端子間抵抗値R1′、
R2′は、各々の抵抗体22,24の本来の抵抗値
をR1、R2とすると、このR1、R2から各々の上部
接点体21,23の接触による短絡区間部分の抵
抗値r2、r5を差し引いた抵抗値、即ち R1′=R1−r2、R2′=R2−r5 となつて、踏圧を受けた際、それぞれR1から
R1′、R2からR2′へと抵抗値が変化する。この抵抗
値の変化を車両のタイヤ通過毎に測定比較すれ
ば、当該車両のタイヤ幅が計測できる。
Among these, the resistor resistance values of the contact section corresponding to the tire width l are r 2 and r 5 , and the resistor resistance values of the non-contact sections on both sides are r 1 r 3 , r 4 ,
If r 6 , then the resistance value R 1 ' between both terminals b, c and b', c' of each resistor 22, 24,
R 2 ' is the resistance value of the short circuit section due to contact between the upper contact bodies 21 and 23 from these R 1 and R 2 , assuming that the original resistance values of the respective resistors 22 and 24 are R 1 and R 2 The resistance value after subtracting r 2 and r 5 , that is, R 1 ′ = R 1r 2 , R 2 ′ = R 2 − r 5 , is the resistance value when receiving pedal pressure, respectively from R 1.
The resistance value changes from R 1 ′ and R 2 to R 2 ′. By measuring and comparing the change in resistance value each time a vehicle passes a tire, the tire width of the vehicle can be measured.

一方、抵抗接点11,12の端子a、b及び
a′、b′それぞれ区間の抵抗値は抵抗接点11側で
は上部接点21に接触しない左側部分の抵抗値
r1、また抵抗接点12側では、上部接点23に接
触しない右側部分の抵抗値r6を示すことになる。
On the other hand, terminals a, b and
The resistance value of each section a' and b' is the resistance value of the left side that does not contact the upper contact 21 on the resistance contact 11 side.
r 1 , and on the resistance contact 12 side, the resistance value r 6 of the right side portion not in contact with the upper contact 23 is shown.

前述したように、抵抗接点11,12の車両通
過路面上における設定位置は路面の横断方向に沿
い、中央よりそれぞれ右及び左の路肩方向へ伸び
る所定の位置であり、従つてa、b端子間抵抗及
びa′、b′端子間抵抗を加えた値は、車両の輪距に
密接な関係を示す値となる。従つて、抵抗接点1
1,12に電圧を加えて端子a、b及びa′、b′間
の抵抗値をそれぞれ電圧信号として取り出し加算
すると、この加算値は輪距に対応したものとなる
ことからこれより輪距を測定することができる。
As described above, the resistance contacts 11 and 12 are set at predetermined positions on the road surface where the vehicle passes along the transverse direction of the road surface, extending from the center toward the right and left road shoulders, respectively, and therefore between terminals a and b. The sum of the resistance and the resistance between terminals a' and b' is a value that is closely related to the wheel width of the vehicle. Therefore, resistive contact 1
If voltage is applied to terminals 1 and 12 and the resistance values between terminals a, b and a', b' are extracted and added as voltage signals, this added value will correspond to the wheel width, so from this, the wheel distance can be calculated. can be measured.

ところが、このタイヤ位置検知のための電圧の
実際の変化は、第5図a1,b1,c1に示すように
種々のパターンがある。第5図a1は車両が踏板の
敷設方向に対しをぼ直角に進入し、従つて第2図
に示すr5をシヨートする様に同時に抵抗接点を踏
み同時に離れた場合を示す。ここでa1の4Vの電
圧は第2図のr6に相当する電圧の例である。また
第5図b1は、ほぼ直角に進入したがタイヤ中央部
がまず抵抗接点を踏み、次に両側へ広がり最後は
中央部を残しながら通過する状態である。これは
偏平率の低いタイヤの場合起りやすい。第5図c1
は、車両が踏板に対して直角に通過しなかつた場
合、すなわち、斜めに進入した場合で、このとき
は高い電圧が入力され次第に低くなつて行く。
However, the actual change in voltage for tire position detection has various patterns as shown in FIG. 5, a 1 , b 1 , and c 1 . FIG. 5 a 1 shows a case where the vehicle enters at a nearly right angle to the direction in which the treadle is installed, and therefore simultaneously depresses the resistive contact and leaves at the same time, as shown in FIG. 2 to shoot r 5 . Here, the voltage of 4V at a1 is an example of the voltage corresponding to r6 in FIG. In addition, Fig. 5b1 shows a state in which the tire enters at a nearly right angle, but the center part of the tire first hits the resistance contact, then spreads to both sides and finally passes through, leaving the center part intact. This is more likely to occur with tires that have a low profile. Figure 5 c 1
is a case where the vehicle does not pass at right angles to the treadle, that is, when the vehicle approaches the tread at an angle; in this case, a high voltage is input and gradually decreases.

これらの電圧変化により、タイヤ位置を認識す
る回路においてこの電圧値は最大値を保持するピ
ークホールド回路を経由するため第5図a1の場合
は問題ないが、第5図b1おびび第5図c1の場合測
定誤差を生じることとなる。
Due to these voltage changes, in the circuit that recognizes the tire position, this voltage value goes through a peak hold circuit that holds the maximum value, so there is no problem in the case of Figure 5 a 1 , but in Figure 5 b 1 and 5. In the case of Figure c1 , a measurement error will occur.

以上のことから、輪距の測定値は最大でタイヤ
幅の2倍の誤差を生じる場合があり、トレツドに
よる車種区分を行う上で誤判別の原因となる。こ
のためより正確に輪距に関連する情報を測定する
ことのできる車種判別装置が望まれる。
As a result of the above, the measured value of the wheel distance may have an error of up to twice the tire width, which may cause misclassification when classifying vehicle types based on tread. Therefore, there is a need for a vehicle type identification device that can more accurately measure information related to wheel distance.

本発明は上記事情に鑑みて成されたもので、少
なくとも通過車両の輪距に関連する情報を用いて
車種判別を行う車種判別装置において、車両通過
路に埋設され、該車両通過路の横断方向に配した
抵抗体を有してこの抵抗体に対する通過車両の車
輪の踏圧作用幅に応じた電気抵抗変化を得て、こ
れにより同車両のタイヤ幅、輪距などの情報を得
る踏板装置と、この踏板装置より得た輪距及びタ
イヤ幅の情報を加算してその最大値より車輪の外
側間距離を求め、これを輪距に関連する情報とし
て得る手段とより構成し、タイヤ幅と輪距の情報
を加算してその最大値を得ると、前記踏板装置に
対し、通過車両が直角方向に横切つてた場合で
も、或いは斜め方向に横切つた場合でも、また、
車輪の状態が異つた場合でも該加算情報の最大値
は変らないことに着目し、該加算情報の最大値を
用いて上記通過車両の車輪外側間の距離を得、こ
れを輪距に関連する情報として出力するようにし
てこれにより常に正しい輪距に関連する情報を得
られるようにして高精度に車種判別を行えるよう
にした車種判別装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and includes a vehicle type discrimination device that discriminates the vehicle type using at least information related to the wheel width of a passing vehicle. A treadle device having a resistor arranged on the resistor to obtain a change in electrical resistance according to the width of the pedal pressure of a wheel of a passing vehicle on the resistor, thereby obtaining information such as the tire width and wheel width of the vehicle; The wheel width and tire width information obtained from this treadle device are added together, and the distance between the outer sides of the wheels is determined from the maximum value, and this is obtained as information related to the wheel width. When the maximum value is obtained by adding up the information of
Focusing on the fact that the maximum value of the additional information does not change even if the condition of the wheels changes, the maximum value of the additional information is used to obtain the distance between the outside wheels of the passing vehicle, and this is related to the wheel distance. To provide a vehicle type discriminating device capable of highly accurate vehicle type discrimination by outputting information and thereby always obtaining information related to correct wheel width.

第3図は本発明装置の構成を示すブロツク図で
ある。図中11,12は第2図の踏板10の抵抗
接点である。そして21,23は踏板における
各々抵抗接点11,12の前記上部接点体、2
2,24は抵抗体である。a、b、c、a′、b′、
c′は抵抗接点11,12における第2図で説明し
た前記端子、31,32,36,37は抵抗値を
電圧値に変換する抵抗−電圧変換回路である。こ
れらのうち31は前記端子a、b間に接続され、
また32はc、b間に、36はa′、b′間に、そし
て37はc′、b′間に接続され各々の接続された端
子間の示す抵抗値を電圧値に変換して出力する。
33及び38は2つの電圧信号を加算する回路
で、これらのうち33は、前記抵抗−電圧変換回
路31の出力と同じく抵抗−電圧変換回路32の
出力との加算を行う。又38は前記抵抗−電圧変
換回路36の出力と同じく抵抗−電圧変換回路3
7の出力との加算を行う。34,39は電圧変化
のピーク値を記憶する電圧変化記憶回路で、これ
らのうち34は、前記加算回路33に接続されそ
の出力電圧値を受け、そのピーク値を抽出して記
憶し、また39は前記加算回路38に接続され、
その出力を受け、そのピーク値を抽出して記憶す
る。35,310はアナログ信号をデジタル信号
に変換するアナログ−デジタル変換回路であり、
35は34の出力を、また310は39の出力を
デジタル信号に変換して出力するものである。
FIG. 3 is a block diagram showing the configuration of the apparatus of the present invention. In the figure, reference numerals 11 and 12 are resistance contacts of the footboard 10 shown in FIG. 21 and 23 are the upper contact bodies of the resistance contacts 11 and 12, respectively, on the footboard;
2 and 24 are resistors. a, b, c, a', b',
C' is the terminal described in FIG. 2 at the resistance contacts 11 and 12, and 31, 32, 36, and 37 are resistance-voltage conversion circuits that convert resistance values into voltage values. 31 of these are connected between the terminals a and b,
Also, 32 is connected between c and b, 36 is connected between a' and b', and 37 is connected between c' and b', and the resistance value shown between each connected terminal is converted into a voltage value and output. do.
33 and 38 are circuits that add two voltage signals, and 33 of these circuits adds the output of the resistance-voltage conversion circuit 32 as well as the output of the resistance-voltage conversion circuit 31. Similarly to the output of the resistance-voltage conversion circuit 36, 38 is the resistance-voltage conversion circuit 3.
Perform addition with the output of 7. Reference numerals 34 and 39 are voltage change memory circuits for storing peak values of voltage changes; is connected to the adder circuit 38,
Upon receiving the output, the peak value is extracted and stored. 35 and 310 are analog-to-digital conversion circuits that convert analog signals to digital signals;
35 converts the output of 34, and 310 converts the output of 39 into a digital signal and outputs the converted signal.

311は演算処理回路で、前記アナログ−デジ
タル変換回路35及び310からの出力を受け、
踏圧を受けた左右抵抗接点の物理的位置を考慮し
て通過車両の輪距を演算するものである。
311 is an arithmetic processing circuit that receives outputs from the analog-to-digital conversion circuits 35 and 310;
The wheel distance of a passing vehicle is calculated by taking into consideration the physical positions of the left and right resistance contacts that have received pedal pressure.

この演算処理回路311の輪距測定値は図示し
ない車種判別手段に与えられる。
The wheel distance measurement value of this arithmetic processing circuit 311 is provided to a vehicle type discriminating means (not shown).

次に上記構成の本装置の作用について説明す
る。本装置は図示しないが、前記車両分離器の出
力により通過車両1台分毎の通過期間情報を得、
その間における踏板10の出力をもつて輪距測定
を行なうものである。
Next, the operation of this device having the above configuration will be explained. Although not shown, this device obtains passing period information for each passing vehicle from the output of the vehicle separator,
The wheel distance is measured using the output of the treadle 10 during that time.

すなわち、車両が進入して来て車両分離器の位
置に差しかかると車体が車両分離器の光軸をしや
断する。そして、次に車輪が踏板10を踏む。す
ると、抵抗接点11,12の上部接点21,23
の車輪踏圧位置がへこみ、その部分が抵抗体2
2,24に接し、各々接した部分の抵抗がシヨー
トされて抵抗値が変わる。この変化は端子a、
b、c、a′、b′、c′に接続された抵抗−電圧変換
回路31,32,36,37によりそれぞれ電圧
値に変換される。
That is, when a vehicle approaches the vehicle separator, the vehicle body quickly cuts off the optical axis of the vehicle separator. Then, the wheel steps on the treadle 10. Then, the upper contacts 21, 23 of the resistance contacts 11, 12
The wheel pressure position is depressed, and that part is the resistance element 2.
2 and 24, and the resistances of the respective contacting portions are shot and the resistance value changes. This change is caused by terminal a,
Resistor-voltage conversion circuits 31, 32, 36, and 37 connected to b, c, a', b', and c' convert them into voltage values, respectively.

すなわち、前述したように端子a、b間とa′、
b′間との抵抗値の合計は輪距の情報を示し、また
端子b、c間及びb′、c′間の抵抗値はそれぞれタ
イヤ幅の情報を示している。
That is, as mentioned above, between terminals a and b and a',
The total resistance value between terminals b' and terminals b' indicates wheel width information, and the resistance values between terminals b and c and between terminals b' and c' each indicate tire width information.

そして、これらの情報の電圧値変換御の出力は
各々対応する加算回路38,38で加算され、そ
して各々対応する電変化値記憶回路34,39に
送られて各々電圧変化のピーク値が記憶される。
このピーク値はアナログ−デジタル変換回路3
5,310に送られデジタル化され、演算処理回
路311に送られてここでこのデジタル化された
データをもとに左右の抵抗接点の物理的位置を考
慮して通過車両の輪距を演算する。
The outputs of the voltage value conversion control of these pieces of information are added by corresponding adder circuits 38 and 38, respectively, and sent to corresponding voltage change value storage circuits 34 and 39, where the peak values of voltage changes are stored. Ru.
This peak value is the analog-to-digital conversion circuit 3
5, 310, where it is digitized, and sent to an arithmetic processing circuit 311, where the wheel distance of the passing vehicle is calculated based on this digitized data, taking into consideration the physical positions of the left and right resistance contacts. .

ここで、輪距の情報とタイヤ幅の情報を加算し
て輪距を求める理由について少し詳しく説明す
る。
Here, the reason why the wheel distance is determined by adding the wheel distance information and the tire width information will be explained in a little more detail.

第4図は片側の抵抗接点について、その上をタ
イヤが踏圧する場合の状況を示したものである。
Suは上部接点、S1〜Soは検知最小単位の寸法に
作られた下部接点であり、rは各下部接点間に設
置された同一抵抗値の固定抵抗である。a、b、
cはそれぞれ上部接点、下部接点の路肩側とその
反対側の端子を示す。
FIG. 4 shows the situation when a tire presses the resistance contact on one side.
Su is an upper contact, S 1 to S o are lower contacts made to the dimensions of the minimum detection unit, and r is a fixed resistor with the same resistance value installed between each lower contact. a, b,
c indicates the terminals on the road shoulder side and the opposite side of the upper and lower contacts, respectively.

又第5図は、タイヤの状態や通過状態による
種々の信号出力のあらわれ方を示しa1,b1,c1
4図のa端子とb端子間の抵抗変化を電圧変化に
したものであり、又a2,b2,c2は同図のc端子と
b端子間の抵抗変化を電圧変化に変換したもので
ある。更にa3,b3,c3は、それぞれa1とa2,b1
b2,c1とc2を加算したものである。この電圧値
は、第4図の固定抵抗r−ケ分の変化電圧をVと
して表わしている。
Also, Figure 5 shows how various signal outputs appear depending on the condition of the tire and the passing conditions. Also, a 2 , b 2 , and c 2 are the resistance changes between the c terminal and the b terminal in the figure converted into voltage changes. Furthermore, a 3 , b 3 , c 3 are a 1 , a 2 , b 1 and
It is the sum of b 2 , c 1 and c 2 . This voltage value is expressed as V, which is the voltage change corresponding to the fixed resistor r− in FIG.

ここで4接点分のタイヤ幅をもつタイヤが下部
接点s7を中心とする位置を通過する場合について
述べる。
Here, a case will be described in which a tire having a tire width equivalent to four contact points passes through a position centered on the lower contact point s7 .

まず、通過開始時に同時に上部接点Suが下部
接点S5〜S9に接触し、通過終了時に同時に上部接
点Suが下部接点S5〜S9から離れる様な通過状態
を考える。この場合タイヤ位置の信号電圧の変化
は第5図a1様なものとなる。この電圧波形は最初
からタイヤ位置s5を表わす電圧4Vとなり最後ま
で同じ電圧4Vとなる。一方タイヤ幅の信号電圧
の変化は、第5図a2の様なものとなり、踏み始
めから踏み終りまで一定の電圧値4Vを表すもの
となる。このタイヤ幅電圧をタイヤ位置電圧に加
算したものが第5図a3で一定の電圧値8Vを表わ
す波形となる。
First, consider a passing state in which the upper contact Su contacts the lower contacts S 5 to S 9 simultaneously at the start of passing, and the upper contact Su separates from the lower contacts S 5 to S 9 simultaneously at the end of passing. In this case, the change in the signal voltage at the tire position will be as shown in Figure 5a1 . This voltage waveform starts with a voltage of 4V representing the tire position s5 and remains the same voltage of 4V until the end. On the other hand, the change in the signal voltage of the tire width is as shown in Figure 5 a2, and represents a constant voltage value of 4V from the start to the end of the step. The addition of this tire width voltage to the tire position voltage results in a waveform representing a constant voltage value of 8V as shown in Figure 5a3 .

次に通過開始時に、タイヤの中央部がまず踏圧
し上部接点Suが下部接点S7に接触し、次に両側
へ広がつて、下部接点S6,S8更に下部接点S5,S9
と接触して行き下部接点S5〜S9のすべての位置で
接触する様になり、通過終了時にはタイヤの両側
(下部接点S5、S9)から離れ、最後に中央(下部
接点S7)が離れる様な通過状態を考える。この場
合タイヤ位置信号の電圧変化は第5図b1の様なも
のになる。すなわち、最初はタイヤ中央の下部接
点S7(6V)を表わす電圧となり途中でタイヤ外側
の下部接点S5を表わす電圧4Vとなり最後にまた
下部接点S7を表わす電圧6Vとなる。一方タイヤ
幅信号の電圧変化は第5図b2の様なものとする。
すなわち、踏み始めから次第に増加し途中で最大
4Vとなり、以後減少する。このタイヤ幅電圧を
タイヤ位置電圧と加算したものが第5図b3とな
り、途中に最大値8Vのある電圧波形となる。
Next, at the start of passing, the center of the tire first presses, and the upper contact Su contacts the lower contact S 7 , then spreads to both sides, and then the lower contacts S 6 , S 8 , and the lower contacts S 5 , S 9.
It comes into contact with all positions of the lower contact points S5 to S9 , and when it finishes passing, it leaves both sides of the tire (lower contact points S5 , S9 ), and finally the center (lower contact point S7 ). Consider a transit state in which the In this case, the voltage change of the tire position signal will be as shown in FIG. 5b1 . That is, at first the voltage represents the lower contact S 7 (6V) at the center of the tire, halfway through the voltage represents the lower contact S 5 on the outside of the tire, it becomes 4V, and finally the voltage represents the lower contact S 7 again, 6V. On the other hand, the voltage change of the tire width signal is as shown in Fig. 5b2 .
In other words, it gradually increases from the beginning of the step and reaches a maximum in the middle.
It becomes 4V and decreases thereafter. The sum of this tire width voltage and tire position voltage is Figure 5b3 , which is a voltage waveform with a maximum value of 8V in the middle.

更に、通過タイヤが踏板に対して直角に進行せ
ず、次第に路肩へ寄る様な斜めの通過をした場
合、通過開始時には上部接点Suが下部接点S9に接
触し、下部接点S8、S7、S6、S5と順に接触部分が
広がり、下部接触点S5〜S9のすべての位置で接触
する様になり、通過終了時には、上部接点Suが下
部接点S9から離れ、下部接点S8、S9、S6、S5と順
に接触部分が広がり、下部接点S5〜S9のすべての
位置で接触する様になり、通過終了時には上部接
点Suが下部接点S9から離れ、下部接点S8、S9
S6、S5と順に離れて通過完了となる様な通過状態
を考える。この場合、タイヤ位置信号の電圧変化
は第5図c1の様なものとなる。すなわち、最初は
車線の中央側の下部接点S98Vを表わす電圧とな
り順に電圧は低下し、タイヤの路肩側の下部接点
S54Vを表わす電圧で一定となる。一方タイヤ幅
信号の電圧変化は第5図c2の様なものとなる。す
なわち、踏み始めから次第に増加し途中で最大
4Vとなり以後減少する。このタイヤ幅電圧をタ
イヤ位置電圧と加算したものが第5図c3となり、
最初に最大8Vのあらわれる電圧波形となる。こ
こで斜めの通過が逆に車線中央へ寄る様な場合に
は第5図c1,c2,c3は左右対称にした波形とな
る。
Furthermore, if the passing tire does not proceed at right angles to the tread, but gradually approaches the shoulder of the road, the upper contact point S u contacts the lower contact point S 9 at the beginning of passing, and the lower contact points S 8 , S 7 , S 6 , and S 5 , the contact area expands in order and comes into contact with all of the lower contact points S 5 to S 9 . At the end of the passage, the upper contact S u separates from the lower contact S 9 and the lower contact point S The contact area expands in the order of contacts S 8 , S 9 , S 6 , and S 5 until it comes into contact with all positions of the lower contacts S 5 to S 9 , and at the end of the passage, the upper contact S u separates from the lower contact S 9 . Away, bottom contacts S 8 , S 9 ,
Consider a passing state in which passing is completed by leaving S 6 and S 5 in order. In this case, the voltage change of the tire position signal will be as shown in Fig. 5 c1 . In other words, at first the voltage represents the lower contact S 9 8V on the center side of the lane, and the voltage gradually decreases, and then the voltage represents the lower contact S 9 8V on the road shoulder side of the tire.
S 5 It becomes constant at a voltage representing 4V. On the other hand, the voltage change of the tire width signal is as shown in Fig. 5 c2 . In other words, it gradually increases from the beginning of the step and reaches a maximum in the middle.
It becomes 4V and decreases after that. The sum of this tire width voltage and tire position voltage is Figure 5 c 3 ,
At first, a voltage waveform of maximum 8V appears. If the vehicle passes diagonally toward the center of the lane, c 1 , c 2 , and c 3 in FIG. 5 become symmetrical waveforms.

この様に、3種類の通過方向において、従来の
計測方法であれば第5図a1,b1,c1に示す如くそ
の最大値は異なり通過毎に計測誤差が生じること
がわかる。しかるにタイヤ幅を加算した第5図
a3,b3,c3においては、この3種類のどの場合で
その最大値は、一定となり、通過毎に計算誤差が
生じないことがわかる。ここで、第5図a3,b3
c3はタイヤの車線中央側の位置となり、左右の位
置からはタイヤ内側の距離を計測することとなる
がタイヤ幅が計測されているため、このタイヤの
内側の距離にタイヤ幅1ケ分を加算すれば左右タ
イヤの各中心距離(一般的に使用するトレツドと
称するもの)となり、更に、タイヤ幅2ケ分を加
算するとタイヤの外側の距離となる。
In this manner, it can be seen that in the three types of passing directions, if the conventional measurement method is used, the maximum values are different as shown in FIG . However, Figure 5 shows the tire width added.
It can be seen that for a 3 , b 3 , and c 3 , the maximum values are constant in all three cases, and no calculation error occurs for each pass. Here, Fig. 5 a 3 , b 3 ,
c 3 is the position of the tire on the center side of the lane, and from the left and right positions, the distance on the inside of the tire is measured, but since the tire width is measured, add one tire width to this distance on the inside of the tire. Adding them together will give you the distance between the centers of the left and right tires (generally called the tread), and adding the two tire widths will give you the distance on the outside of the tires.

従つて、これによりタイヤの外側間の距離を得
ることによつて踏板装置を通過する車両の走行状
態(直進か斜めに横切つたか)やタイヤの状態に
左右されることなく必ず正確なタイヤ外側間距離
情報が得られることなり、輪距測定において問題
となつていた誤差の発生が防止でき、従つて、輪
距に関連する情報を車種判別の要素として用いる
車種判別装置においてより正確な車種判別が行え
るようになる。
Therefore, by obtaining the distance between the outsides of the tires, it is possible to always obtain accurate tires regardless of the driving condition of the vehicle passing the tread plate device (whether it is going straight or crossing diagonally) or the condition of the tires. By obtaining outside distance information, it is possible to prevent the occurrence of errors that have been a problem in wheel distance measurement, and therefore, more accurate vehicle type can be achieved in vehicle type discrimination devices that use information related to wheel distance as an element for vehicle type discrimination. Be able to make a distinction.

以上詳述したように本発明は少なくとも通過車
両の輪距に関連する情報を用いて車種判別を行う
車種判別装置において、車両通過路に埋設され、
該車両通過路の横断方向に配した抵抗体を有して
この抵抗体に対する通過車両の車輪の踏圧作用幅
に応じた電気抵抗変化を得て、これにより同車両
のタイヤ幅、車距などの情報を得る踏板装置と、
この踏板装置より得た輪距及びタイヤ幅の情報を
加算してその最大値より車輪の外側間距離を求
め、これを輪距に関連する情報として得る手段と
より構成し、タイヤ幅と輪距の情報を加算してそ
の最大値を得ると、前記踏板装置に対し、通過車
両が直角方向に横切つてた場合でも、或いは斜め
方向に横切つた場合でも、また、車輪の状態や種
類が異つた場合でも該加算情報の最大値は変らな
いことに着目し、該加算情報の最大値を用いて上
記通過車両の車輪該側間の距離を得、これを輪距
に関連する情報として出力するようにしたので、
これより通過車両の通過状態や車輪の状態に左右
されることなく、常に高精度で輪距に関連する情
報を得ることができるようになり、従つて、高精
度な車種判別を行うことができる車種判別装置を
提供することができる。
As described in detail above, the present invention provides a vehicle type discrimination device that discriminates the vehicle type using at least information related to the wheel width of a passing vehicle, which is embedded in a vehicle passing path, and includes:
A resistor is arranged in the transverse direction of the vehicle passageway, and the electrical resistance changes in accordance with the width of the pressure applied by the wheels of the passing vehicle on the resistor, thereby changing the tire width, vehicle distance, etc. of the vehicle. a stepboard device for obtaining information;
The wheel width and tire width information obtained from this treadle device are added together, and the distance between the outer sides of the wheels is determined from the maximum value, and this is obtained as information related to the wheel width. When the maximum value is obtained by adding up the information of Focusing on the fact that the maximum value of the addition information does not change even if the addition information is different, the distance between the wheels of the passing vehicle is obtained using the maximum value of the addition information, and this is output as information related to the wheel distance. I decided to do this, so
This makes it possible to always obtain information related to the wheel width with high accuracy, regardless of the passing conditions of passing vehicles or the condition of the wheels, and therefore, it is possible to perform highly accurate vehicle type discrimination. A vehicle type discrimination device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は踏板装置の構成を説明するための図、
第2図はその動作原理を説明するための図、第3
図は本発明の一実施例を示すブロツク図、第4図
は抵抗接点の動作状況を説明するための図、第5
図は抵抗接点から得られた出力パターンと加算パ
ターンとの関係を示す図である。 10……踏板装置、11,12……抵抗接点、
21,23……上部接点、22,24……抵抗
体、31,32,36,37……抵抗−電圧変換
回路、33,38……加算回路、34,39……
電圧変化値記憶回路、35,310……アナロ
グ・デジタル変換回路、311……演算処理回
路。
FIG. 1 is a diagram for explaining the configuration of the footboard device,
Figure 2 is a diagram for explaining its operating principle, Figure 3
The figure is a block diagram showing one embodiment of the present invention, FIG. 4 is a diagram for explaining the operating status of the resistance contact, and FIG.
The figure is a diagram showing the relationship between the output pattern obtained from the resistance contact and the addition pattern. 10...Treadboard device, 11, 12...Resistance contact,
21, 23... Upper contact, 22, 24... Resistor, 31, 32, 36, 37... Resistance-voltage conversion circuit, 33, 38... Addition circuit, 34, 39...
Voltage change value storage circuit, 35, 310...Analog-to-digital conversion circuit, 311...Arithmetic processing circuit.

Claims (1)

【特許請求の範囲】 1 少なくとも通過車両の輪距に関連する情報を
用いて車種判別を行う車種判別装置において、 車両通過路に埋設され、該車両通過路の横断方
向に配した抵抗体を有してこの抵抗体に対する通
過車両の車輪の踏圧作用幅に応じた電気抵抗変化
を得て、これにより、同車両のタイヤ幅、輪距等
の情報を得る踏板装置と、 この踏板装置より得た輪距およびタイヤ幅の情
報を加算してその最大値より車輪の外側間距離を
求め、これを前記輪距に関連する情報として得る
手段と を具備してなる車種判別装置。
[Scope of Claims] 1. A vehicle type discrimination device that discriminates the vehicle type using at least information related to the wheel length of a passing vehicle, which includes a resistor buried in a vehicle passing path and arranged in a transverse direction of the vehicle passing path. A treadle device that obtains electrical resistance changes in accordance with the width of the tread pressure action of the wheels of a passing vehicle with respect to this resistor, and thereby obtains information such as the tire width and wheel width of the vehicle; A vehicle type discriminating device comprising means for adding information on wheel width and tire width, determining the distance between the outer sides of the wheels from the maximum value thereof, and obtaining this as information related to the wheel width.
JP12888283A 1983-07-15 1983-07-15 Vehicle type discriminator Granted JPS6020300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12888283A JPS6020300A (en) 1983-07-15 1983-07-15 Vehicle type discriminator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12888283A JPS6020300A (en) 1983-07-15 1983-07-15 Vehicle type discriminator

Publications (2)

Publication Number Publication Date
JPS6020300A JPS6020300A (en) 1985-02-01
JPH0427600B2 true JPH0427600B2 (en) 1992-05-12

Family

ID=14995683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12888283A Granted JPS6020300A (en) 1983-07-15 1983-07-15 Vehicle type discriminator

Country Status (1)

Country Link
JP (1) JPS6020300A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925953A (en) * 1972-06-27 1974-03-07
JPS5149221A (en) * 1974-10-25 1976-04-28 Nippon Muki Zairyo Kk frc saibono seizohoho

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4925953A (en) * 1972-06-27 1974-03-07
JPS5149221A (en) * 1974-10-25 1976-04-28 Nippon Muki Zairyo Kk frc saibono seizohoho

Also Published As

Publication number Publication date
JPS6020300A (en) 1985-02-01

Similar Documents

Publication Publication Date Title
US3748443A (en) Wheel sensing apparatus
KR100234985B1 (en) Apparatus and method for discriminating the tire width and tread of a vehicle
JPH0427600B2 (en)
JPH0468680B2 (en)
JPS5985906A (en) Apparatus for judging type of vehicle
US5373128A (en) Wheel sensing treadle matrix switch assembly for roadways
JP3140651B2 (en) Vehicle type identification device
JPS6150013A (en) Vehicle-type judging apparatus
JPS58129700A (en) Vehicle type discriminator
KR20030030683A (en) Apparatus for classifyng car type using laser sensor and method thereof
KR100433293B1 (en) Car-sensor using conductive rubber and apparatus for classifying car type thereof
JPH035995Y2 (en)
KR100597000B1 (en) Pressing switch used in vehicle discrimination device
JPH039096Y2 (en)
JPS6342316B2 (en)
JP3684822B2 (en) Passing vehicle detection device
JPS5812317Y2 (en) Vehicle identification detector
JPS61166688A (en) Car type discriminator
JPH0795359B2 (en) Vehicle type identification device
JPS5948440B2 (en) Vehicle identification device processing circuit
JPH039510B2 (en)
JPS62196800A (en) Vehicle type discriminator
JPS5816443B2 (en) How to measure vehicle tread
JPS6027996A (en) Illegal passage preventor for toll road
JPS5834311A (en) Length discriminator for moving body