JPS6342316B2 - - Google Patents

Info

Publication number
JPS6342316B2
JPS6342316B2 JP57044171A JP4417182A JPS6342316B2 JP S6342316 B2 JPS6342316 B2 JP S6342316B2 JP 57044171 A JP57044171 A JP 57044171A JP 4417182 A JP4417182 A JP 4417182A JP S6342316 B2 JPS6342316 B2 JP S6342316B2
Authority
JP
Japan
Prior art keywords
vehicle
signal
phototube
circuit
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044171A
Other languages
Japanese (ja)
Other versions
JPS58161092A (en
Inventor
Naoshi Noguchi
Riichiro Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57044171A priority Critical patent/JPS58161092A/en
Priority to KR1019830001073A priority patent/KR860002210B1/en
Publication of JPS58161092A publication Critical patent/JPS58161092A/en
Publication of JPS6342316B2 publication Critical patent/JPS6342316B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/015Detecting movement of traffic to be counted or controlled with provision for distinguishing between two or more types of vehicles, e.g. between motor-cars and cycles

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Traffic Control Systems (AREA)
  • Sorting Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は有料道路料金所等において進入車両の
車種判別に用いられる車種判別装置に関するもの
である。 〔従来の技術〕 有料道路は一般に普通車、大型車、特大車など
の車種別に通行料金が異なる料金体系を用いてい
る場合が多い。また、高速道路などのように多区
間の有料道路では更に利用区間毎に定めた料金を
微収する。 このような有料道路システムでは入口インター
チエンジの入口ゲートにおいて入口インターチエ
ンジ名や番号および入口進入年月目、時刻、更に
は上記分類による車種の車種コードなどの必要な
データを記入した通行巻を発行し、これを出口イ
ンターチエンジの出口ゲートにおいて受け取り、
この受け取つた通行券の前記データを処理装置の
読取機で読取つて出口インターチエンジまでの利
用区間に対応する車種別料金を求め、これを表示
して係員がその表示料金を利用者より微収するこ
とになる。 ところで、有料道路業務は昼夜を通して行わな
くてはならず、有料道路網も拡大の一途を辿るな
ど係員も多数必要であることなどから有料道路の
インターチエンジにおける出入口ゲートの無人化
が望まれている。 そこで有料道路システムにおける入口の無人化
を図る方法として通行車両の車種例えば普通車、
大型車、特大車等の種別を自動判別し、当該車両
に相当する通行券を発行することが考えられる。 車種を自動判別するには通行車両の車幅値ある
いはトレツド(輪距)を測定することにより可能
である。これはそれぞれ超音波あるいは路面の幅
方向に複数個の踏板スイツチを等間隔に設置する
ことによつて実現可能である。 しかし、この車幅値あるいはトレツドの測定を
行つて車種判別を行つても我が国の現行(昭和56
年11月現在)の車種区分によると判別下能なもの
が出て来る。 例えば2軸の大型トラツクと大型バスの区別で
ある。即ち、2軸の大型トラツクは大型車、大型
バスは特大車の区分に属し、料金が異なるが両者
は車幅もトレツドも大差がない場合が多く上述の
判別方式では区別できない。 そこで、このような大型トラツクと大型バスと
の識別を行うために従来の車種判別装置では第1
の方法として車両の車体検出を車軸検出を行い、
第1図にAで示すように大型バスBSの特徴であ
る前端部と前輪との距離LBがトラツクTの前端
部と前輪との距離LTよりも長いと云う点を利用
して第1軸目からのオーバーハング長を検出して
その長さより判別する方法、第2の方法として第
1図にBで示すように運転台と荷台との隙間の有
無(トラツクにはあるがバスには存在しない)を
検出してこれより判別する方法、第3の方法とし
て第1図にCで示す如く横から見た車体下部の凹
凸の有無(トラツクにはあるがバスには無い)よ
り判別する方法、第4の方法として第1図にDで
示す如くエンジンの位置(トラツクの場合は荷物
積載の目的上、荷台面積を大きくとれるようエン
ジンの位置は前部、バスは乗客の乗降などの関係
上、エンジン位置は後部)より判別する方法など
が利用されている。 〔発明が解決しようとする問題点〕 しかしながら、これらいずれの方法も次のよう
な状況下においては判別が不可能であり、確実な
方法とは云えない。 即ち、第1の方法では光路の遮蔽状況より光学
的に検出するために車両が渋滞すると先行車の後
部がオーバーハング検出用の光電管にかかり、判
別できなくなる。 また第2の方法も同様に光学的に検出を行うも
のでこの運転席と荷台との隙間に荷台の幌などを
詰込んだり或いは雪が積つた場合には該隙間がな
くなり、光の通過がないのて光電検出することが
できないから判別できなくなる。 また第3の方法も同様、光学的に検出を行うも
ので、トラツクの下部に雪に泥が積つた場合には
トラツク下部の形状より得られるはずの光路が遮
断状態となるので、バスと区別がつかない。 また第4の方法ではエンジンの位置を測定する
のに音及び熱を検知するようにするが、車両の渋
滞時には前後の車両からの影響を受け、誤測定す
る可能性がある。このようにいずれの方式も一長
一短で大型バスと大型トラツクを区別する必要が
ある場合に車種判別の信頼性が十分でない。 そこでこの発明の目的とするところは、車種判
別の信頼性が高く、従つて、トラツクとバスの識
別をも精度良く行うことのできるようにした車種
判別装置を提供することにある。 〔問題点を解決するための手段〕 上記目的を達成するため、本発明は次のように
構成する。すなわち、進入車両の特徴を検出し、
これに基づき所定の車種区分から該当車種区分を
判別して車種情報を出力する車種判別装置におい
て、車両通過路をはさんで対向する投受光器を車
両の下部領域及び上部領域に亙つて垂直方向に複
数対積重した第1の光電管装置と、同第1の光電
管装置の設置位置に対応する該車両通過路に車両
通過路を横断して埋設され通過車両の車輪の踏圧
作用幅に応じて電気抵抗を変化させる抵抗体を有
して車両のトレツドを抵抗変化に基づく電気信号
として検出する踏板装置と、上記第1の光電管装
置より通過車両進行方向前方の所定位置に設置さ
れ車両通過路をはさんで対向する投受光器を備え
たオーバーハング検出用の第2の光電管装置と、
上記踏板装置の出力する通過車両毎の最初の検出
信号により動作し、上記第1の光電管装置の上部
領域用受光器の信号に基づき荷台の有無を検知す
る隙間検出回路、同第1の光電管装置の下部領域
用受光器の信号に基づき車体下部形状を検知する
下部抜け検知回路及び第2の光電管装置の信号に
よりオーバーハング部を検知するオーバーハング
検出回路と、これら各回路及び上記踏板装置に接
続し、各出力信号に基づき車種判別を行なつて該
当する車種判別信号を出力する判別制御回路とよ
り構成する。 〔作用〕 このような構成において、第1の光電管装置に
より車両を検知すると共に車両軸数とトレツド幅
が踏板装置により検知される。また、第1の光電
管装置の上部領域用受光器出力により、荷台検出
回路は荷台の有無を検知し、下部領域用受光器出
力により、車体下部形状検出用の下部抜け検出回
路は通過車両の下部形状を検出する。更にこの下
部形状の検出出力と第2の光電管装置の遮光信号
によりオーバーハング検出回路は通過車両のオー
バーハングを検出する。そして、これらの各検出
出力をもとに車種判別制御回路は車種判別する。 本装置においては、トラツクとバスの識別はこ
れらにおける第1軸からのオーバーハング長の違
い及びトラツクにおける運転台と荷台との間の隙
間及びトラツクにおける第1軸目と第2軸目との
間の車体下部の凹凸などの特徴を検出し、これら
の検出結果を組合わせて総合的に判断するように
しており、トラツクとバスの判別は複数箇所の形
状の相違点にもとづいて行うので正確な車種判別
が可能となる車種判別装置を提供することができ
る。 〔実施例〕 以下、本発明の一実施例について第2図、第3
図を参照しながら説明する。 第2図は本装置の構成例を示すブロツク図であ
る。図中10はオーバーハング検出用の光電管装
置、20は運転台と荷台との隙間を検知する光電
管装置、30は車体下部の抜けを検知する光電管
装置、50は車両の通過中を検出する光電管装置
であり、この光電管装置50は車両通過路をはさ
んで対向する位置にそれぞれ複数の投受光器を高
さ方向に積重配設して成るものであり、対となる
投受光器は路面に並行な光路を介して互いに対向
させてあり、その光路の断続を検出することによ
り車両通過路を通る車両の側面の情報を検出す
る。 40はこの光電管装置50の対向配設位置にお
ける車両通過路上に敷設されたトレツドやタイヤ
幅或いは車軸等の検出を行うための踏板装置であ
り、ここではトレツドと車軸の検出のために用い
られる。踏板装置40は車両通過路の横断方向に
ほぼ道路全体にわたつて敷設され、車両通過路中
央で分離された例えば棒状に長い一対の抵抗接点
を下部接点としてその上部側に常時は離間して配
設される可撓性帯状の上部接点とより構成して車
輪の踏圧作用を受けるとその作用を受けた部分の
上部接点が抵抗接点に接して抵抗値を変えること
によりその抵抗値変化分から踏圧作用幅を検知す
るようにしたものであるが、踏圧装置としてはそ
の他多数の接点をマトリツクス状に配設して接点
の動作パターンより情報を得るものや導電ゴムに
よる接点構造を用いるものなどがある。 前記オーバーハング検出用の光電管装置10は
一対の投受光器よりなり、前記光電管装置50と
は別の位置例えば光電管装置50より通過車両進
行方向前方の所定位置に車両通過路をはさんで投
光器及び受光器を対峙して設置してあり、通過車
両の通過時にその光路がしや断されることにより
車両の前端より後端が通過する間、検出出力D1
を出力するものである。11はオーバーハング検
出回路で、後述するタイミング回路6よりの1軸
目の検知信号に同期して光電管装置10の検出出
力D1をラツチ(保持)し、しや光時(バス)は
論理レベル“0”、非しや光時(トラツク)には
論理レベル“1”の出力信号X1を出力する。 前記運転台と荷台間の隙間検出用の光電管装置
20は前記光電管装置50の最上段に位置する一
対の投受光器が利用される。この最上段位置の高
さはバスの屋根より低くトラツクの運転台と荷台
の隙間を検知できる高さとしてあることはもちろ
んである。21はこの光電管装置20の出力をも
とに隙間検出を行う隙間検出回路で、タイミング
回路6の出力する1軸目のタイミングで測定を開
始し、2軸目のタイミングで終了して両タイミン
グ間で隙間検知を行い、隙間が検知されたときは
論理レベル“1”を、検知されないときは論理レ
ベル“0”の出力信号X2を出力する。 前記下部抜け検知用の光電管装置30は前記光
電管装置50の下部の適宜なる高さ位置の投受光
器を1、2対利用するもので、31はこの光電管
装置30の出力をもとにタイミング回路6の出力
する車両の第1軸目の検知タイミングから第2軸
目の検知タイミングの間、下部抜け検知を行い下
部抜けが検知された場合は論理レベル“1”をま
た、検知されないときは論理レベル“0”の出力
信号X3を出力する下部抜け検知回路である。 41は踏板装置40の出力をもとにトレツド長
測定信号TRと軸検出出力である軸信号AXを発
生する軸・トレツド長測定回路であり、踏板装置
40の接点出力で軸検出を、また、抵抗値(多接
点形では動作接点の位置が数)によりトレツド長
を測定する。 51は前記光電管装置50の受光器群の出力を
受けて車両の通過中であることを検出して通過検
出信号Pを出力する通過検出回路であり、前記タ
イミング回路6はこの通過信号Pを受けて動作し
て前記軸・トレツド長測定回路41の出力する軸
信号AXをカウントし、1つ目のカウントにより
車両の第1軸目の検知出力AX1を、また、2つ
目のカウントにより第2軸目の検知出力AX2
発生するものである。 7は軸・トレツド長測定回路41により出力さ
れるトレツド長測定信号TRを受け、この信号の
示すトレツド長の情報より普通車であるか大型車
以上の車種区分の車種であるかを判別する判別回
路であり、例えば普通車となる車種のトレツド長
を設定した設定回路7aの設定値γ以上のとき、
即ち大型車以上のとき、バスとトラツクの種別の
判別を開始するよう制御信号G1を出力する回路
である。 12は前記オーバーハング検出回路11よりの
出力X1に定数回路12aより与えられる補正用
の定数α1を乗算して出力する乗算回路、22は同
じく前記隙間検出信号X2に定数回路22aより
与えられる定数α2を乗算して出力する乗算回路、
32は前記下部抜け検出信号X3の定数回路32
aより与えられる補正用の定数α3で乗算する回路
である。 8はこれら各乗算回路12,22,32より与
えられる出力信号X1,α1,X2α2,X3α3を加算す
る加算回路でその出力Yは Y=X1α1+X2α2+X3α3となる。 9は判別回路7の出力する制御信号Gを受けて
動作し、加算回路8の出力を比較する比較回路で
あり、加算回路8よりの出力Yと判別比較用の定
数を出力する定数回路9aよりの定数βとを比較
し、Yβの時トラツク識別信号を、また、Y<
βの時バス識別信号を出力する。 このような構成の本装置の作用について第3図
を参照しながら説明する。車両が光電管装置50
の位置に差しかかるとそのいくつかの投受光器の
光路がしや断されるので、そのしや断された光路
の受光器より検出出力が発生して通過検出回路5
1に与えられる。これにより通過検出回路51は
第3図aに示す如き通過信号Pを光路しや断期間
中発生させる。 一方、オーバーハング検知用の光電管装置10
の位置に車両の前部が差しかかるとこの光電管装
置10は第3図bに示す如く、オーバーハング検
知信号D1を出力してオーバーハング検出回路1
1に与える。 また、光電管装置20により車両の通過ととも
に車体下部の検知が成され抜け検知信号(第3図
d)D3が、また、光電管装置20により運転台
−荷台の隙間検出が成されて第3図cの如き信号
D2が出力される。 車両の進行が進み、第1軸目の車輪が踏板装置
40を踏圧すると踏板装置40はその踏圧により
動作して接点閉路による動作出力発生及び抵抗値
(但し抵抗接点型の場合)の変化が生ずる。これ
により、軸・トレツド長測定回路41は接点動作
時に軸検出出力である軸信号AXを発生し(第3
図e)タイミング回路6に与えると共に抵抗値よ
りトレツド長を検出してトレツド長測定信号TR
を発生する。 第1軸目の軸信号AXを受けるとタイミング回
路6は信号AX1を発生してこれをオーバーハン
グ検出回路11及び隙間検出回路21及び下部抜
け検知回路31に与える。 これにより各々の回路11,21,31は各々
の対応する光電管装置10,20,30の出力を
受け、回路11では入力をラツチし、他の回路2
1,31では立上り信号が入力されるとこれをラ
ツチして出力する。 ここで第3図を参照して説明するとタイムチヤ
ートのうち実線と点線で示された部分があるが、
これらのうち実線はトラツクの場合を示し、また
点線はバスの場合を示している。 従つて、トラツクの場合オーバーハング検出回
路11は第3図fに実線で示す如き出力を、また
バスの場合は点線で示す如き出力を発生し、その
出力は乗算回路12に与えられる。トラツクの場
合には車両が進行して運転台と荷台の部分が光電
管装置50の位置に来ると第3図cの如き検知信
号が光電管装置20より得られ、その立上り信号
が入力されるとこれをラツチする隙間検出回路2
1によりラツチ時より通過信号Pの消滅までの
間、第3図gの如き信号がこの回路21より乗算
回路22に与えられる。更に進行すると荷台部分
が通過することとなるので、荷台下側がバスと異
なり大きく空いている部分があるので光電管装置
30によつてこれが検出され、その出力(第3図
d)は下部抜け検知回路31により保持されて第
3図hの如き出力が乗算回路32に与えられる。 各乗算回路12,22,32の上記入力は論理
レベルで与えられる。従つて各乗算回路12,2
2,32は各々に与えられる補正用の常数分を
各々の入力に乗算したうえで加算回路8で与えら
れ加算される。 ここで、トレツド長測定信号TRが入力された
判別回路7は車両が大型車以上のものであるか否
かをこのトレツド長測定信号TRより判別し、大
型車以上であれば制御信号Gを比較回路9に与え
てこの比較回路9を作動させる。 従つて、大型車以上のときは各乗算回路12,
22,32の出力の加算値Yが定数回路9aの出
力βと比較されてその比較結果によりバスである
かトラツクであるかの判別出力が出される。 この判別は次の判別式に基づいて行われる。即
ち、 Y=X1α1+X2α2+X3α3 Yβの時トラツク Y<βの時バス なる条件にてバス、トラツクの判別を行う。ここ
で判別には各検出要素の検出出力に点数を与えそ
の合計点数をしきい値で比較する方式をとつてい
るのでα1、α2、α3、βなどの定数を適当に設定す
ることにより、判別要素の誤検知による影響を除
くことができ、精度の高いバス/トラツクの判別
が行える。 例えばα1=α2=α3=γ、β=2γとするとひと
つの判別要素の誤検知の影響が除ける。 尚、判別は下記第1表に基づいて行われる。
[Industrial Field of Application] The present invention relates to a vehicle type discrimination device used for determining the type of vehicle entering a toll road toll gate or the like. [Prior Art] Generally, toll roads often use a toll system in which tolls vary depending on vehicle type, such as regular cars, large cars, and extra large cars. Additionally, on multi-section toll roads such as expressways, a small amount of tolls are collected for each section used. In such a toll road system, a toll ticket is issued at the entrance gate of the entrance interchange with necessary data such as the name and number of the entrance interchange, the date and time of entry, and the vehicle model code according to the above classification. and receive it at the exit gate of the exit interchange,
The data on the received pass is read by the reader of the processing device to determine the vehicle type-specific fare corresponding to the section to be used up to the exit interchange, and this is displayed, and the staff in charge collects the displayed fare from the user. It turns out. By the way, toll road operations must be carried out day and night, and as the toll road network continues to expand, a large number of attendants are required, so there is a desire for unmanned entrance and exit gates at toll road interchanges. . Therefore, as a method to make the entrance of the toll road system unmanned, the type of vehicle passing by, such as a regular car,
One possibility would be to automatically determine the type of vehicle, such as a large vehicle or an extra-large vehicle, and issue a ticket corresponding to the vehicle. Automatic identification of vehicle type is possible by measuring the width or tread of passing vehicles. This can be achieved by using ultrasonic waves or by installing a plurality of treadle switches at equal intervals in the width direction of the road surface. However, even if the vehicle type is determined by measuring the vehicle width or tread,
According to the car model classification (as of November 2017), there are some that cannot be identified. For example, there is a distinction between two-axle large trucks and large buses. That is, two-axle large trucks are classified as large vehicles, and large buses are classified as extra-large vehicles, and although the tolls differ, the two vehicles often have the same width and tread, and cannot be distinguished using the above-mentioned discrimination method. Therefore, in order to distinguish between such large trucks and large buses, conventional vehicle type discrimination devices
As a method, we perform vehicle body detection and axle detection,
As shown by A in Fig. 1, the first axis is The second method is to detect the overhang length from the top and determine the presence or absence of a gap between the driver's cab and the loading platform as shown by B in Figure 1 (there is one in trucks, but not in buses). ), and a third method is to determine the presence or absence of irregularities on the lower part of the vehicle body when viewed from the side (trucks have it, but buses do not), as shown by C in Figure 1. The fourth method is to position the engine as shown by D in Figure 1 (in the case of a truck, the engine is located at the front for the purpose of loading luggage, so that the loading area can be increased, and for buses, the engine is located at the front for the purpose of loading passengers, etc.). The engine position is located at the rear). [Problems to be Solved by the Invention] However, none of these methods can be said to be a reliable method since it is impossible to distinguish under the following circumstances. That is, in the first method, since the optical path is detected optically based on the shielding state of the optical path, when a vehicle is in a traffic jam, the rear of the preceding vehicle is covered by the phototube for overhang detection, making it impossible to distinguish. The second method also uses optical detection, and if the gap between the driver's seat and the cargo bed is stuffed with a cargo canopy or snow accumulates, the gap disappears and no light passes through. Since it cannot be photoelectrically detected, discrimination becomes impossible. Similarly, the third method uses optical detection, and if snow or mud accumulates at the bottom of the truck, the light path that should be obtained from the shape of the bottom of the truck will be blocked, so it can be distinguished from buses. I can't stand it. Furthermore, in the fourth method, sound and heat are detected to measure the position of the engine, but when there is traffic congestion, there is a possibility of erroneous measurements due to the influence of vehicles in front and behind. As described above, each method has advantages and disadvantages, but the reliability of vehicle type discrimination is not sufficient when it is necessary to distinguish between large buses and large trucks. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a vehicle type discrimination device which has high reliability in vehicle type discrimination and can therefore accurately discriminate between trucks and buses. [Means for Solving the Problems] In order to achieve the above object, the present invention is configured as follows. That is, detecting the characteristics of the approaching vehicle,
Based on this, in a vehicle type discrimination device that discriminates the applicable vehicle type classification from a predetermined vehicle type classification and outputs vehicle type information, a light emitting/receiving device facing across the vehicle passageway is vertically directed across the lower and upper regions of the vehicle. a plurality of first phototube devices stacked on top of each other; and a plurality of first phototube devices that are buried in the vehicle passageway corresponding to the installation position of the first phototube device across the vehicle passageway, and that correspond to the width of the tread pressure action of the wheels of passing vehicles. a step board device that has a resistor that changes electrical resistance and detects the tread of the vehicle as an electrical signal based on the change in resistance; a second phototube device for overhang detection having a light emitter and receiver facing each other;
a gap detection circuit that operates according to the first detection signal of each passing vehicle outputted from the step board device and detects the presence or absence of a loading platform based on the signal of the upper area light receiver of the first phototube device; the first phototube device; A lower part missing detection circuit detects the shape of the lower part of the vehicle body based on the signal of the lower region light receiver, and an overhang detection circuit detects the overhang part based on the signal of the second phototube device, and is connected to each of these circuits and the step board device. It also includes a discrimination control circuit that discriminates the vehicle type based on each output signal and outputs a corresponding vehicle type discrimination signal. [Operation] In such a configuration, the vehicle is detected by the first phototube device, and the number of vehicle axles and the tread width are detected by the footplate device. Furthermore, the cargo platform detection circuit detects the presence or absence of a cargo platform based on the output of the upper area photoreceptor of the first phototube device, and the lower part omission detection circuit for detecting the shape of the lower part of the vehicle body uses the output of the lower area photoreceptor to detect the presence or absence of the cargo platform. Detect shapes. Furthermore, the overhang detection circuit detects the overhang of the passing vehicle based on the detection output of the lower shape and the light shielding signal from the second phototube device. Then, the vehicle type discrimination control circuit discriminates the vehicle type based on each of these detection outputs. In this device, the distinction between a truck and a bus is based on the difference in overhang length from the first axle, the gap between the driver's cab and the loading platform in the truck, and the gap between the first and second axles in the truck. The system detects features such as irregularities on the lower part of the vehicle body, and combines these detection results to make a comprehensive judgment.The system distinguishes between a truck and a bus based on differences in shape at multiple locations, making it accurate. It is possible to provide a vehicle type discrimination device that enables vehicle type discrimination. [Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 2 and 3.
This will be explained with reference to the figures. FIG. 2 is a block diagram showing an example of the configuration of this device. In the figure, 10 is a phototube device for detecting overhang, 20 is a phototube device for detecting the gap between the driver's cab and the loading platform, 30 is a phototube device for detecting a gap in the lower part of the vehicle body, and 50 is a phototube device for detecting when a vehicle is passing. This phototube device 50 is constructed by stacking a plurality of light emitters and receivers in the height direction at opposite positions across the vehicle passageway, and the paired light emitters and receivers are placed on the road surface. They are made to face each other via parallel optical paths, and by detecting interruptions in the optical paths, information on the side surface of the vehicle passing through the vehicle passageway is detected. Reference numeral 40 denotes a step board device for detecting the tread, tire width, axle, etc. laid down on the vehicle passing path at a position opposite to the phototube device 50, and is used here for detecting the tread and axle. The footboard device 40 is laid across almost the entire road in the transverse direction of the vehicle passageway, and has a pair of long resistance contacts, for example, rod-shaped, separated at the center of the vehicle passageway, as lower contacts, which are normally spaced apart from each other on the upper side. When it receives the pressure action of the wheel, the upper contact of the part that receives the action contacts the resistance contact and changes the resistance value, so that the pressure action is applied by the change in resistance value. Although the device is designed to detect the width, there are other types of tread pressure devices, such as those that have a large number of contacts arranged in a matrix and obtain information from the operating pattern of the contacts, and those that use a contact structure made of conductive rubber. The phototube device 10 for overhang detection consists of a pair of light emitters and receivers, and is located at a different location from the phototube device 50, for example, at a predetermined position ahead of the phototube device 50 in the traveling direction of the passing vehicle, across the vehicle passing path. The light receivers are installed facing each other, and when a passing vehicle passes, the optical path is interrupted and the detection output D 1 is generated while the rear end of the vehicle passes over the front end of the vehicle.
This outputs the following. Reference numeral 11 denotes an overhang detection circuit, which latches (holds) the detection output D1 of the phototube device 10 in synchronization with the first axis detection signal from the timing circuit 6, which will be described later. When the output signal is "0" and there is no light (track), an output signal X1 of logic level "1" is output. As the phototube device 20 for detecting the gap between the driver's cab and the loading platform, a pair of light emitters and receivers located at the top of the phototube device 50 are used. It goes without saying that the height of this top step is lower than the roof of the bus and is high enough to detect the gap between the truck driver's cab and the cargo bed. Reference numeral 21 denotes a gap detection circuit that detects gaps based on the output of the phototube device 20. Measurement starts at the timing of the first axis output from the timing circuit 6, ends at the timing of the second axis, and continues between the two timings. When a gap is detected, a logic level "1" is output, and when a gap is not detected, a logic level "0" is output as an output signal X2 . The phototube device 30 for detecting the lower part missing uses one or two pairs of light emitters and receivers located at appropriate heights at the bottom of the phototube device 50, and 31 is a timing circuit based on the output of the phototube device 30. 6 is output from the detection timing of the first axis of the vehicle to the detection timing of the second axis of the vehicle, detection of the lower part is detected, and if the lower part is detected, the logic level is "1", and if it is not detected, the logic level is set to "1". This is a bottom omission detection circuit that outputs an output signal X3 of level "0". 41 is an axis/tread length measurement circuit that generates a tread length measurement signal TR and an axis signal AX which is an axis detection output based on the output of the tread plate device 40; Measure the tread length based on the resistance value (number of operating contacts for multi-contact types). Reference numeral 51 denotes a passage detection circuit that receives the output of the photoreceptor group of the phototube device 50, detects that a vehicle is passing, and outputs a passage detection signal P. The timing circuit 6 receives this passage signal P. The axis signal AX output from the axis/tread length measuring circuit 41 is counted, and the first count determines the detection output AX 1 of the first axis of the vehicle, and the second count determines the detection output AX 1 of the vehicle's first axis. This generates the second axis detection output AX 2 . 7 receives the tread length measurement signal TR output from the axle/tread length measurement circuit 41, and determines whether the vehicle is a regular vehicle or a large vehicle or above based on the tread length information indicated by this signal. For example, when the setting value γ of the setting circuit 7a, which sets the tread length of a vehicle type that is a regular car, is greater than or equal to the setting value γ,
That is, this circuit outputs a control signal G1 to start determining the type of bus or truck when the vehicle is a large vehicle or larger. 12 is a multiplication circuit that multiplies the output X 1 from the overhang detection circuit 11 by a correction constant α 1 given from a constant circuit 12a and outputs the result; 22 is a multiplication circuit that also supplies the gap detection signal X 2 from the constant circuit 22a; A multiplication circuit that multiplies the constant α 2 and outputs the result,
32 is a constant circuit 32 for the lower dropout detection signal X3 .
This is a circuit that multiplies by a correction constant α 3 given by a. 8 is an adder circuit that adds the output signals X 1 , α 1 , X 2 α 2 , and X 3 α 3 given from these multiplier circuits 12, 22, and 32, and its output Y is Y=X 1 α 1 +X 2 α 2 +X 3 α 3 . Reference numeral 9 denotes a comparison circuit that operates upon receiving the control signal G output from the discrimination circuit 7 and compares the output of the addition circuit 8, and a constant circuit 9a that outputs the output Y from the addition circuit 8 and a constant for discrimination comparison. When Yβ, the track identification signal is determined, and when Y<
When β, a bus identification signal is output. The operation of this apparatus having such a configuration will be explained with reference to FIG. The vehicle is a photocell device 50
When reaching the position, the optical paths of some of the light emitters and receivers are interrupted, and a detection output is generated from the receivers of the interrupted optical paths, and the passage detection circuit 5
given to 1. As a result, the passage detection circuit 51 generates a passage signal P as shown in FIG. 3a during the optical path interruption period. On the other hand, the phototube device 10 for overhang detection
When the front of the vehicle approaches the position, the phototube device 10 outputs an overhang detection signal D1 as shown in FIG.
Give to 1. In addition, the phototube device 20 detects the lower part of the vehicle body as the vehicle passes, and generates a missing detection signal (d) D3 , and the phototube device 20 detects the gap between the driver's cab and the loading platform, as shown in FIG. signal like c
D 2 is output. As the vehicle progresses, when the wheel of the first axis presses the footboard device 40, the footboard device 40 is operated by the footpressure, and the contact closes to generate an operating output and change the resistance value (in the case of a resistance contact type). . As a result, the shaft/tread length measurement circuit 41 generates the shaft signal AX which is the shaft detection output when the contact is operated (the third
Figure e) The tread length measurement signal TR is supplied to the timing circuit 6 and the tread length is detected from the resistance value.
occurs. Upon receiving the axis signal AX of the first axis, the timing circuit 6 generates a signal AX1 and supplies it to the overhang detection circuit 11, the gap detection circuit 21, and the bottom omission detection circuit 31. As a result, each circuit 11, 21, 31 receives the output of each corresponding phototube device 10, 20, 30, circuit 11 latches the input, and the other circuit 2
1 and 31, when a rising signal is input, it is latched and output. Here, to explain with reference to Figure 3, there are parts of the time chart indicated by solid lines and dotted lines.
Among these, the solid line shows the case of a truck, and the dotted line shows the case of a bus. Therefore, in the case of a track, the overhang detection circuit 11 generates an output as shown by a solid line in FIG. In the case of a truck, when the vehicle advances and the driver's cab and loading platform come to the position of the photocell device 50, a detection signal as shown in FIG. 3c is obtained from the phototube device 20, and when the rising signal is input, this Gap detection circuit 2 that latches
1, a signal as shown in FIG. 3g is applied from this circuit 21 to the multiplier circuit 22 from the time of latching until the passing signal P disappears. As the loading platform advances further, the loading platform will pass through. Unlike a bus, there is a large empty area at the bottom of the loading platform, so this is detected by the phototube device 30, and its output (Fig. 3 d) is sent to the bottom missing detection circuit. 31 and an output as shown in FIG. The inputs of each multiplier circuit 12, 22, 32 are given at logic levels. Therefore, each multiplication circuit 12, 2
2 and 32 are multiplied by respective inputs by constants for correction given to each, and then given to and added by the adder circuit 8. Here, the determination circuit 7 to which the tread length measurement signal TR is input determines whether the vehicle is larger than a large vehicle or not based on the tread length measurement signal TR, and if the vehicle is larger than a large vehicle, the control signal G is compared. The comparison circuit 9 is activated by applying it to the circuit 9. Therefore, for large vehicles or larger, each multiplier circuit 12,
The added value Y of the outputs 22 and 32 is compared with the output β of the constant circuit 9a, and an output for determining whether it is a bus or a track is output based on the comparison result. This determination is performed based on the following discriminant. That is, a bus or a truck is determined under the following conditions: Y=X 1 α 1 +X 2 α 2 +X 3 α 3 Yβ: Truck; when Y<β: Bus. For discrimination, a method is used in which points are assigned to the detection output of each detection element and the total score is compared with a threshold value, so constants such as α 1 , α 2 , α 3 , and β must be set appropriately. This makes it possible to eliminate the influence of erroneous detection of discrimination elements, and to perform highly accurate bus/truck discrimination. For example, by setting α 123 =γ and β = 2γ, the influence of false positive detection of one discrimination element can be removed. Note that the determination is made based on Table 1 below.

【表】 これにより誤判別する確率は、各判別要素の誤
検知率をP1=P2=P3=aとし、誤判別のモード
が全て“1”→“0”(すなわちトラツクをバス
と誤検知する)とすると第2表の通りとなる。
[Table] The probability of misclassification is determined by assuming that the false detection rate of each discrimination element is P 1 = P 2 = P 3 = a, and that the modes of misclassification all change from “1” to “0” (that is, if a truck is a bus) (false detection), the result will be as shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によれば、バスとト
ラツクの識別を高精度で行い得るなど優れた特徴
を有する車種判別装置を提供することができる。
As described in detail above, according to the present invention, it is possible to provide a vehicle type discrimination device having excellent features such as being able to discriminate between buses and trucks with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はバスとトラツクの特徴差を説明するた
めの図、第2図は本発明の一実施例を示すブロツ
ク図、第3図はその動作を説明するためのタイム
チヤートである。 6……タイミング回路、7……判別回路、7
a,12a,22a,32a,9a……定数回
路、8……加算回路、9……比較回路、10,2
0,30,50……光電管装置、40……踏板装
置、11……オーバーハング検出回路、21……
隙間検出回路、31……下部抜け検知回路、1
2,22,32……乗算回路。
FIG. 1 is a diagram for explaining the difference in characteristics between a bus and a truck, FIG. 2 is a block diagram showing an embodiment of the present invention, and FIG. 3 is a time chart for explaining its operation. 6...Timing circuit, 7...Discrimination circuit, 7
a, 12a, 22a, 32a, 9a... Constant circuit, 8... Addition circuit, 9... Comparison circuit, 10, 2
0, 30, 50...Phototube device, 40...Treadboard device, 11...Overhang detection circuit, 21...
Gap detection circuit, 31... Bottom omission detection circuit, 1
2, 22, 32...Multiplication circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 進入車両の特徴を検出し、これに基づき所定
の車種区分から該当車種区分を判別して車種情報
を出力する車種判別装置において、車両通過路を
はさんで対向する投受光器を車両の下部領域及び
上部領域に亙つて垂直方向に複数対積重した第1
の光電管装置と、同第1の光電管装置の設置位置
に対応する該車両通過路に車両通過路を横断して
埋設され通過車両の車輪の踏圧作用幅に応じて電
気抵抗を変化させる抵抗体を有して車両のトレツ
ドを抵抗変化に基づく電気信号として検出する踏
板装置と、上記第1の光電管装置より通過車両進
行方向前方の所定位置に設置され車両通過路をは
さんで対向する投受光器を備えたオーバーハング
検出用の第2の光電管装置と、上記踏板装置の出
力する通過車両毎の最初の検出信号により動作
し、上記第1の光電管装置の上部領域用受光器の
信号に基づき荷台の有無を検知する隙間検出回
路、同第1の光電管装置の下部領域用受光器の信
号に基づき車体下部形状を検知する下部抜け検知
回路及び第2の光電管装置の信号によりオーバー
ハング部を検知するオーバーハング検出回路と、
これら各回路及び上記踏板装置に接続し、各出力
信号に基づき車種判別を行なつて該当する車種判
別信号を出力する判別制御回路とを有してなるこ
とを特徴とする車種判別装置。
1. In a vehicle type discrimination device that detects the characteristics of an approaching vehicle, determines the applicable vehicle category from a predetermined vehicle category based on the characteristics, and outputs vehicle type information, a light emitter/receiver that faces across the vehicle passageway is placed under the vehicle. A plurality of first pairs stacked vertically over the area and the upper area
a photocell device, and a resistor that is buried across the vehicle passageway in the vehicle passageway corresponding to the installation position of the first photocell device and changes its electrical resistance in accordance with the width of the pressure applied by the wheels of the passing vehicle. a stepboard device that detects the tread of a vehicle as an electrical signal based on a resistance change; and a light emitter/receiver that is installed at a predetermined position ahead of the first phototube device in the traveling direction of the passing vehicle and faces across the vehicle passing path. a second phototube device for overhang detection, which is equipped with a second phototube device for overhang detection; a gap detection circuit that detects the presence or absence of the vehicle body, a lower part missing detection circuit that detects the shape of the lower part of the vehicle body based on the signal from the lower area receiver of the first phototube device, and a signal from the second phototube device to detect the overhang portion. an overhang detection circuit;
A vehicle type discriminating device comprising a discrimination control circuit connected to each of these circuits and the step board device to discriminate the vehicle type based on each output signal and output a corresponding vehicle type discrimination signal.
JP57044171A 1982-03-19 1982-03-19 Car type discriminator Granted JPS58161092A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57044171A JPS58161092A (en) 1982-03-19 1982-03-19 Car type discriminator
KR1019830001073A KR860002210B1 (en) 1982-03-19 1983-03-17 Vehicles distinction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57044171A JPS58161092A (en) 1982-03-19 1982-03-19 Car type discriminator

Publications (2)

Publication Number Publication Date
JPS58161092A JPS58161092A (en) 1983-09-24
JPS6342316B2 true JPS6342316B2 (en) 1988-08-23

Family

ID=12684136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57044171A Granted JPS58161092A (en) 1982-03-19 1982-03-19 Car type discriminator

Country Status (2)

Country Link
JP (1) JPS58161092A (en)
KR (1) KR860002210B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212310U (en) * 1988-07-08 1990-01-25

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212310U (en) * 1988-07-08 1990-01-25

Also Published As

Publication number Publication date
JPS58161092A (en) 1983-09-24
KR840004281A (en) 1984-10-10
KR860002210B1 (en) 1986-12-31

Similar Documents

Publication Publication Date Title
JPH05225490A (en) Vehicle type discriminating device
JP3140651B2 (en) Vehicle type identification device
JP3150581B2 (en) Vehicle type identification device
JPS6342316B2 (en)
JP2000020877A (en) Device for judging kind of automobile
JPH0615359Y2 (en) Vehicle type identification device
JP3140650B2 (en) Vehicle type identification device
JP3701603B2 (en) Vehicle detection device and vehicle detection method
JP6727885B2 (en) Vehicle type identification system, vehicle type identification method and program
KR101468502B1 (en) A vehicle classification system using a treadle for vehicle driving in multi-lane
JPH09319993A (en) Vehicle kind decision device
JPH0468680B2 (en)
JPS5985906A (en) Apparatus for judging type of vehicle
JPH08202983A (en) Vehicle detector
JPH04257087A (en) Vehicle type discriminating device
JPH0410679B2 (en)
JPH0642320Y2 (en) Vehicle type identification device
JPH0410677B2 (en)
JPS5834311A (en) Length discriminator for moving body
JP2596554B2 (en) Vehicle type identification method
KR20010097490A (en) Device and Methods for Finding the type of Vehicles by Counting Shafts Number and Tire Size
JPH0420520B2 (en)
JPS6339959B2 (en)
JPS6244320B2 (en)
JPH0417448B2 (en)