JPH04274502A - Method for controlling running of unmanned carrier - Google Patents
Method for controlling running of unmanned carrierInfo
- Publication number
- JPH04274502A JPH04274502A JP3059701A JP5970191A JPH04274502A JP H04274502 A JPH04274502 A JP H04274502A JP 3059701 A JP3059701 A JP 3059701A JP 5970191 A JP5970191 A JP 5970191A JP H04274502 A JPH04274502 A JP H04274502A
- Authority
- JP
- Japan
- Prior art keywords
- guideline
- carrier
- driving
- sensors
- degree
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000001514 detection method Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、走行中に、走行ルート
上に敷設されたガイドラインからの走行ずれを非接触状
態で検出し、この検出に基づき左,右の両側の動輪に速
度差を与えて自動的に操舵し、無人搬送車両をガイドラ
インに従って自動走行させる無人搬送車両の走行制御方
法に関する。[Industrial Application Field] The present invention detects, in a non-contact manner, deviation from the guideline laid down on the driving route while driving, and based on this detection, calculates the speed difference between the left and right driving wheels. The present invention relates to a travel control method for an unmanned guided vehicle that automatically steers the unmanned guided vehicle according to guidelines.
【0002】0002
【従来の技術】従来、工場,病院等においては、作業能
率の向上等を図るため、機器、荷物等の搬送にロボット
構成の無人搬送車両が用いられる。2. Description of the Related Art Conventionally, in factories, hospitals, etc., unmanned guided vehicles with robot configurations have been used to transport equipment, luggage, etc. in order to improve work efficiency.
【0003】この種の無人搬送車両には、走行ルートの
事前の煩雑な教示等を省いて作業ステーション間の走行
制御等を行うため、図6に示すように走行ルート上に敷
設したガイドライン1からの無人搬送車両2の走行ずれ
を磁気,光,音波,電波等を媒体として非接触状態でく
り返し検出し、この検出に基づく自動操舵により走行ず
れを随時補正しながら走行するものがある。[0003] This type of unmanned guided vehicle uses guide lines 1 laid out on the traveling route as shown in FIG. Some automatic guided vehicles 2 travel by repeatedly detecting deviations in their running in a non-contact manner using magnetism, light, sound waves, radio waves, etc. as media, and correcting the deviations as needed through automatic steering based on this detection.
【0004】この場合、搬送車両2は図7に示すように
、本体3の左,右の両側にそれぞれ1個の動輪4,5が
設けられるとともに、例えば磁性体のガイドライン1か
らの走行ずれを検出するため、従来、本体3の下面部の
前,後それぞれに、磁性体に感応する複数のセンサ素子
6を直線状に配列した1個のガイドラインセンサ7,8
が進行方向に対し直角方向に取付けられる。In this case, as shown in FIG. 7, the conveyance vehicle 2 is provided with driving wheels 4 and 5 on each of the left and right sides of the main body 3, and for example, the conveyance vehicle 2 is provided with driving wheels 4 and 5 on both sides of the left and right sides of the main body 3. Conventionally, one guideline sensor 7, 8 in which a plurality of sensor elements 6 sensitive to a magnetic material are linearly arranged is installed on the front and rear of the lower surface of the main body 3 for detection.
is installed perpendicular to the direction of travel.
【0005】なお、図6,図7において、9,10は左
折,右折を報知する方向指示器、11は移動中にメロデ
ィー音を発生するメロディアラーム出力器、12は作業
ステーション等と情報をやりとりするためのアンテナ、
13,14は本体3の下面部の前,後に取付けられた回
動自在のキャスタである。In FIGS. 6 and 7, 9 and 10 are direction indicators that notify left and right turns, 11 is a melody alarm output device that generates a melody sound while moving, and 12 is a unit that exchanges information with a work station, etc. antenna for
13 and 14 are rotatable casters attached to the front and rear of the lower surface of the main body 3.
【0006】そして、本体3は走行制御,通信処理等を
行うマイクロコンピュータ(以下CPUという)を内蔵
し、このCPUの走行制御により、従来は、つぎに説明
するようにして動輪4,5を駆動する。The main body 3 has a built-in microcomputer (hereinafter referred to as CPU) that performs travel control, communication processing, etc. Conventionally, the driving wheels 4 and 5 are driven by the travel control of this CPU as described below. do.
【0007】まず、図7に示す本体3の下面中央の・印
の点を、走行制御基準の代表点Pとして設定する。[0007] First, a point marked with a * mark at the center of the lower surface of the main body 3 shown in FIG. 7 is set as a representative point P of the travel control reference.
【0008】そして、走行中は数10msec程度のサ
ンプリング周期でセンサ7,8の出力をくり返し読取る
。[0008] While the vehicle is running, the outputs of the sensors 7 and 8 are repeatedly read at a sampling period of approximately several tens of milliseconds.
【0009】このとき、両センサ7,8の出力は各素子
6の出力を1ビットとして形成され、ガイドライン1に
対向する素子6のビットの出力の増減変化により、両セ
ンサ7,8それぞれでのガイドライン1に対向する位置
(ライン通過位置)が求まる。At this time, the outputs of both sensors 7 and 8 are formed using the output of each element 6 as 1 bit, and the output of both sensors 7 and 8 is formed by increasing or decreasing the output of the bit of element 6 facing guideline 1. The position facing guideline 1 (line passing position) is determined.
【0010】そして、図8に示すように両センサ7,8
のライン通過位置を結ぶ線分をX軸,この軸に直角な軸
をY軸とし、代表点Pを通る1点鎖線の基準線とX軸と
の走行ずれに基づく距離df,drを求める。Then, as shown in FIG.
The line segment connecting the line passing positions is defined as the X axis, and the axis perpendicular to this axis is defined as the Y axis, and the distances df and dr are determined based on the running deviation between the reference line of a dashed line passing through the representative point P and the X axis.
【0011】さらに、図8のトレッド幅2・Tと代表点
Pとセンサ7,8それぞれとの間隔wf,wrと、距離
df,drとに基づき、走行ルートからの現在のずれ量
(走行ずれ量)として、ガイドライン1に対する同図の
横方向のずれ量y及び姿勢(走行方向)のずれ量θを求
める。Furthermore, based on the tread width 2·T and the distances wf and wr between the representative point P and the sensors 7 and 8, respectively, and the distances df and dr in FIG. The amount of deviation y in the lateral direction and the amount θ of deviation in the posture (running direction) of the figure with respect to the guideline 1 are determined.
【0012】そして、ずれ量y,θに基づき、つぎの数
1,数2の式から前進の速度データV及び左,右に速度
差を付けるデータωを求める。Then, based on the deviation amounts y and θ, forward speed data V and data ω for adding a speed difference to the left and right are obtained from the following equations 1 and 2.
【0013】[0013]
【数1】[Math 1]
【0014】[0014]
【数2】[Math 2]
【0015】さらに、データV,ωに基づき、つぎの数
3,数4の式から動輪4,5それぞれの速度制御量Vl
,Vrを求める。Furthermore, based on the data V and ω, the speed control amount Vl of each of the driving wheels 4 and 5 is calculated from the following equations 3 and 4.
, Vr are determined.
【0016】[0016]
【数3】[Math 3]
【0017】[0017]
【数4】[Math 4]
【0018】なお、前記各式において、G1 ,G2
,G3 は予め設定された制御のゲイン定数であり、V
ref は両動輪4,5に与える基準速度のデータであ
る。[0018] In each of the above formulas, G1, G2
, G3 are preset control gain constants, and V
ref is reference speed data given to both driving wheels 4 and 5.
【0019】そして、速度制御量Vl,Vrに従って動
輪4,5それぞれを独立して駆動し、両動輪4,5に走
行ずれに応じた速度差を与え、この速度差によりガイド
ライン1の折曲等に応じて姿勢を補正し、走行ずれを随
時自動補正して搬送車両2を走行制御する。Then, the driving wheels 4 and 5 are driven independently according to the speed control amounts Vl and Vr, and a speed difference is given to both the driving wheels 4 and 5 according to the running deviation, and this speed difference causes bending of the guideline 1, etc. The transport vehicle 2 is controlled to travel by correcting the posture according to the situation and automatically correcting the travel deviation as needed.
【0020】この走行制御により、搬送車両2がガイド
ライン1に従って走行する。With this traveling control, the transport vehicle 2 travels according to the guideline 1.
【0021】[0021]
【発明が解決しようとする課題】前記従来の走行制御方
法の場合、走行性能を大きく左右する数1〜数4の制御
量演算の式中のゲイン定数G1 ,G2 ,G3 が例
えばROMに書込まれて固定されているため、それらを
どのように設定しても直進走行時及びカーブ走行時の両
方の走行性能を高めることができない問題点がある。[Problems to be Solved by the Invention] In the case of the conventional driving control method, the gain constants G1, G2, and G3 in the control amount calculation formulas of Equations 1 to 4, which greatly affect the driving performance, are written in the ROM, for example. The problem is that no matter how they are set, it is not possible to improve driving performance both when driving straight and when driving around curves.
【0022】例えば、ゲイン定数G2 ,G3 を大き
くすると、カーブ走行時のガイドライン1に対する追従
性は向上するが、直進走行時は過制御となり、車両2が
左,右に振れて走行が不安定になる。For example, if the gain constants G2 and G3 are increased, the ability to follow the guideline 1 when driving on a curve improves, but when driving in a straight line, overcontrol occurs, causing the vehicle 2 to sway to the left or right, making driving unstable. Become.
【0023】また、ゲイン定数G2 ,G3 を小さく
すると、直進走行は安定するが、カーブ走行時に制御不
足となってガイドライン1に対する追従性が悪化する。Furthermore, if the gain constants G2 and G3 are made small, straight-line traveling becomes stable, but control becomes insufficient when traveling on a curve, and the ability to follow the guideline 1 deteriorates.
【0024】一方、無人搬送車両に走行ルートを教示す
る制御方法においては、例えば各カーブの直前にマーカ
を設置するとともに、カーブ毎にマーカの検出により走
行制御のゲイン定数を直進時の値から変更するように教
示し、直進走行時及びカーブ走行時の走行性能を共に向
上することが考えられる。On the other hand, in a control method for teaching an unmanned guided vehicle a traveling route, for example, a marker is installed just before each curve, and the gain constant for travel control is changed from the value when traveling straight by detecting the marker for each curve. It is conceivable that the driving performance can be improved both when driving straight and when driving on curves.
【0025】しかし、事前に煩雑な教示作業を要し、省
力化の面からは、極めて不利である。However, this method requires complicated teaching work in advance, which is extremely disadvantageous in terms of labor saving.
【0026】本発明は、走行中にガイドラインからの走
行ずれを検出して左,右の両側それぞれの動輪に速度差
を与え、走行ずれを随時自動補正する無人搬送車両の走
行制御方法において、直進走行時及びカーブ走行時の走
行性能を共に向上することを目的とする。The present invention provides a driving control method for an automatic guided vehicle that detects a deviation from a guideline while driving and applies a speed difference to the left and right driving wheels to automatically correct the deviation as needed. The purpose is to improve driving performance both when driving and when driving around curves.
【0027】[0027]
【課題を解決するための手段】前記の目的を達成するた
めに、本発明の無人搬送車両の走行制御方法においては
、車両の下面部に、ガイドラインを非接触状態で検出す
る3個の直線状のガイドラインセンサを前記車両の進行
方向に対し直角方向に間隔を設けて取付け、[Means for Solving the Problems] In order to achieve the above-mentioned object, in the travel control method for an unmanned guided vehicle of the present invention, three linear guide lines are installed on the lower surface of the vehicle to detect guide lines in a non-contact manner. guideline sensors are installed at intervals in a direction perpendicular to the traveling direction of the vehicle,
【0028
】前記各センサの前記ガイドラインの検出位置と前記各
センサの間隔とから前記ガイドラインの曲りの程度を測
定し、0028
] measuring the degree of bending of the guideline from the detection position of the guideline of each of the sensors and the interval between the sensors;
【0029】該測定の結果に基づき前記ガイドラインの
曲りの程度に応じて走行制御量演算のゲイン定数を直進
時の値から可変する。Based on the result of the measurement, the gain constant for calculating the travel control amount is varied from the value when traveling straight, depending on the degree of curvature of the guideline.
【0030】[0030]
【作用】前記のように構成された本発明の制御方法の場
合、車両の下面部に設けた3個のガイドラインセンサを
通過するガイドラインの位置と各センサの間隔とにより
、ガイドラインの曲りの程度が測定される。[Operation] In the case of the control method of the present invention configured as described above, the degree of bending of the guideline is determined by the position of the guideline passing through the three guideline sensors provided on the lower surface of the vehicle and the spacing between each sensor. be measured.
【0031】そして、曲りの程度に応じて走行制御量演
算のゲイン定数を可変するため、直進走行時とカーブ走
行時とでゲイン定数が自動的に可変され、しかも、カー
ブの曲りの程度によってもゲイン定数が変わる。[0031] Since the gain constant for calculating the travel control amount is varied according to the degree of the curve, the gain constant is automatically varied when traveling straight and when traveling on a curve. Gain constant changes.
【0032】したがって、事前に煩雑な教示を行うこと
なく、直進走行時及びカーブ走行時の走行性能が共に向
上する。[0032] Therefore, the running performance during both straight running and curved running is improved without complicated teaching in advance.
【0033】[0033]
【実施例】1実施例について、図1ないし図5を参照し
て説明する。それらの図面において、図6〜図8と同一
符号は同一もしくは相当するものを示す。Embodiment One embodiment will be described with reference to FIGS. 1 to 5. In those drawings, the same reference numerals as in FIGS. 6 to 8 indicate the same or equivalent parts.
【0034】そして、無人搬送車両15が従来の車両2
と外観上異なる点は、図1に示すように本体16の下面
部に、進行方向に対し直角に間隔を設け3個のガイドラ
インセンサ17,18,19を取付けた点である。[0034] Then, the unmanned guided vehicle 15 is replaced by the conventional vehicle 2.
The difference in appearance is that, as shown in FIG. 1, three guideline sensors 17, 18, and 19 are attached to the lower surface of the main body 16 at intervals perpendicular to the traveling direction.
【0035】なお、ガイドライン1を磁気的に検出する
ため、センサ17〜19は従来のセンサ7,8と同様、
複数のセンサ素子6を直線状に配列して形成される。[0035] In order to detect the guideline 1 magnetically, the sensors 17 to 19 are similar to the conventional sensors 7 and 8.
It is formed by arranging a plurality of sensor elements 6 in a straight line.
【0036】また、本体16の制御ブロックは、走行制
御,通信処理等を行うCPUを用いて図2に示すように
構成される。The control block of the main body 16 is configured as shown in FIG. 2 using a CPU that performs travel control, communication processing, etc.
【0037】同図において、20はCPU、21はセン
サ17〜19の検出値をデジタル変換してCPU20に
伝送するA/D変換器、22,23はモータドライバ、
24,25は動輪4,5それぞれの駆動用のモータ、2
6,27はモータ24,25それぞれに取付けられた速
度検出用のエンコーダ、28はCPU20とアンテナ1
2との間の通信インタフェース、29はCPU20と方
向指示器9,10,メロディアラーム11等との間の入
力/出力インタフェースである。In the figure, 20 is a CPU, 21 is an A/D converter that digitally converts the detected values of sensors 17 to 19 and transmitted to the CPU 20, 22 and 23 are motor drivers,
24 and 25 are motors for driving the driving wheels 4 and 5, respectively;
6 and 27 are speed detection encoders attached to the motors 24 and 25, respectively; 28 is the CPU 20 and the antenna 1;
A communication interface 29 is an input/output interface between the CPU 20 and the direction indicators 9, 10, melody alarm 11, etc.
【0038】そして、走行中は、CPU20の走行制御
によりモータドライバ22,23を介してモータ24,
25を別個に駆動し、動輪4,5を独立して駆動する。While driving, the CPU 20 controls the motors 24 and 24 via the motor drivers 22 and 23.
25 are driven separately, and the driving wheels 4 and 5 are driven independently.
【0039】また、動輪4,5の回転に比例したエンコ
ーダ26,27の値をCPU20に読取り、動輪4,5
の速度を監視する。Further, the CPU 20 reads the values of the encoders 26 and 27 that are proportional to the rotation of the driving wheels 4 and 5, and
monitor the speed of
【0040】さらに、例えば図3に示す20msec程
度の周期T毎のタイミングパルスに基づき、CPU20
がA/D変換されたセンサ17〜19の検出値をくり返
し読取る。Furthermore, for example, based on the timing pulses shown in FIG.
The A/D converted detection values of the sensors 17 to 19 are read repeatedly.
【0041】このとき、センサ17〜19の検出値は、
それぞれガイドライン1に対向するライン通過位置の素
子6のビットが反転する。At this time, the detected values of the sensors 17 to 19 are:
The bits of the elements 6 at the line passing positions facing the guideline 1 are inverted.
【0042】そして、CPU20は例えばセンサ17,
19の検出値を従来のセンサ7,8の検出値とし、前記
数1〜数4の制御量演算の式から動輪4,5それぞれの
速度制御量Vl,Vrを求めるとともに、ガイドライン
1の曲りの程度を測定してゲイン定数G1 ,G2 ,
G3 を可変する。[0042]The CPU 20 then uses, for example, the sensor 17,
19 are the detection values of the conventional sensors 7 and 8, and calculate the speed control amounts Vl and Vr of the driving wheels 4 and 5 from the control amount calculation formulas of Equations 1 to 4 above, and calculate the speed control amounts Vl and Vr of the driving wheels 4 and 5 respectively, Gain constants G1, G2,
Vary G3.
【0043】すなわち、センサ17〜19のライン通過
位置に基づき、図4に示す基準線l0 から各ライン通
過位置までの距離l1 ,l2 ,l3 を検出位置と
して求める。That is, based on the line passing positions of the sensors 17 to 19, distances l1, l2, l3 from the reference line l0 shown in FIG. 4 to each line passing position are determined as detection positions.
【0044】そして、距離l1 ,l2 ,l3 と各
センサ17〜19の間隔d1 ,d2 とに基づき、つ
ぎの数5,数6,数7の式により、ガイドライン1の曲
りの程度を内接三角形の角θc として測定する。Then, based on the distances l1, l2, l3 and the intervals d1, d2 between the sensors 17 to 19, the degree of curvature of the guideline 1 is determined by the following equations 5, 6, and 7. It is measured as the angle θc.
【0045】[0045]
【数5】[Math 5]
【0046】[0046]
【数6】[Math 6]
【0047】[0047]
【数7】[Math 7]
【0048】なお、ガイドライン1が直線に近づく程、
θc は180°に近くなる。[0048] Note that the closer the guideline 1 is to a straight line, the more
θc approaches 180°.
【0049】さらに、CPU20はガイドライン1の曲
りの程度に応じた各ゲイン定数G1 ,G2 ,G3
の最適値の組合せを例えばROM又はRAMからなるゲ
インテーブルに保持し、曲りの程度が測定される毎に、
その時点での最適値の組合せをテーブルから選択して読
出し、各ゲイン定数G1 ,G2 ,G3 を変更する
。Furthermore, the CPU 20 sets gain constants G1, G2, G3 according to the degree of bending of the guideline 1.
A combination of optimal values of is stored in a gain table made of ROM or RAM, for example, and each time the degree of bending is measured,
A combination of optimum values at that time is selected and read from the table, and each gain constant G1, G2, G3 is changed.
【0050】この変更により各ゲイン定数G1 ,G2
,G3 はガイドライン1の曲りの程度に応じて自動
的に可変され、例えばカーブ走行時は、直進走行時より
G1 が小さくなってG2 ,G3 が大きくなり、9
0°に近い曲りであってもガイドライン1から逸脱する
ことなく搬送車両15が走行する。With this change, each gain constant G1, G2
, G3 are automatically varied depending on the degree of curvature of the guideline 1. For example, when driving on a curve, G1 becomes smaller than when driving straight, G2 and G3 become larger, and 9
The conveyance vehicle 15 travels without deviating from the guideline 1 even at a bend close to 0°.
【0051】なお、過制御を防止するため、この実施例
においては、各ゲイン定数G1 ,G2 ,G3 に上
限値を設定し、曲りの程度の測定結果が過大になるとき
にも、各ゲイン定数G1 ,G2,G3 を上限値以下
に抑える。In order to prevent overcontrol, in this embodiment, upper limits are set for each gain constant G1, G2, G3, and even when the measurement result of the degree of bending becomes excessive, each gain constant Keep G1, G2, and G3 below the upper limit.
【0052】そして、周期T毎に図5の処理を実行して
各ゲイン定数G1 ,G2 ,G3 をその時点での曲
りの程度に応じた最適値に変更するため、直進走行時及
びカーブ走行時の走行性能が共に向上し、搬送車両15
が常にガイドライン1に従って滑らかに走行し、搬送物
の荷くずれ,ガイドライン1からの逸脱がほとんど生じ
なくなる。[0052]The process shown in FIG. 5 is executed every period T to change each gain constant G1, G2, G3 to the optimum value according to the degree of bending at that time. The running performance of the transportation vehicle 15 has improved.
The conveyor always runs smoothly according to the guideline 1, and there is almost no possibility that the conveyed objects will be dislocated or deviate from the guideline 1.
【0053】そして、前記実施例においては、走行ずれ
を磁気的に検出したが、光,音波,電波等を媒体として
検出してもよい。[0053] In the above embodiment, the running deviation is detected magnetically, but it may also be detected using light, sound waves, radio waves, or the like as a medium.
【0054】また、数5〜数7と異なる数式により三角
形近似あるいは曲率中心の軌跡を求めて曲りの程度を測
定してもよい。The degree of curvature may also be measured by triangular approximation or by finding the locus of the center of curvature using formulas different from Equations 5 to 7.
【0055】[0055]
【発明の効果】本発明は、以上説明したように構成され
ているため、以下に記載する効果を奏する。無人搬送車
両15の下面部に3個のガイドラインセンサ17,18
,19を車両15の進行方向に対し直角方向に間隔d1
,d2 を設けて取付け、車両15の走行により各セ
ンサ17〜19を通過するガイドライン1の位置と各セ
ンサ17〜19の間隔d1 ,d2とにより、ガイドラ
イン1の曲りの程度を測定し、曲りの程度に応じて走行
制御量演算のゲイン定数G1 ,G2 ,G3 を可変
したため、直進走行時とカーブ走行時とでゲイン定数G
1 ,G2 ,G3 が自動的に可変され、しかもカー
ブ走行時はカーブの曲りの程度によってもゲイン定数G
1 ,G2 ,G3 が変わり、事前に教示等の煩雑な
作業を行うことなく、ガイドライン1からの走行ずれに
応じて動輪4,5にそれぞれ最適な速度制御を与え、直
進走行時の安定性及びカーブ走行時の追従性の高い手法
で車両15の走行を制御することができる。[Effects of the Invention] Since the present invention is configured as described above, it produces the effects described below. Three guideline sensors 17 and 18 are installed on the bottom of the unmanned guided vehicle 15.
, 19 at an interval d1 in the direction perpendicular to the traveling direction of the vehicle 15.
, d2, and the degree of curvature of the guideline 1 is measured based on the position of the guideline 1 passing each sensor 17 to 19 as the vehicle 15 travels and the spacing d1, d2 between each sensor 17 to 19. Since the gain constants G1, G2, and G3 for calculating the travel control amount were varied according to the degree of travel control, the gain constant G is different when traveling straight and when traveling on a curve.
1, G2, and G3 are automatically varied, and when driving on a curve, the gain constant G can be changed depending on the degree of the curve.
1, G2, and G3 are changed, and the optimum speed control is given to each of the driving wheels 4 and 5 according to the running deviation from guideline 1, without the need for complicated work such as prior teaching, and the stability and stability during straight running are improved. The traveling of the vehicle 15 can be controlled using a method that provides high followability when traveling on a curve.
【図1】本発明の無人搬送車両の走行制御方法の1実施
例の車両の下方から見た斜視図である。FIG. 1 is a perspective view from below of a vehicle according to an embodiment of the method for controlling travel of an automatic guided vehicle according to the present invention.
【図2】図1の本体に設けられた制御ブロックの回路図
である。FIG. 2 is a circuit diagram of a control block provided in the main body of FIG. 1;
【図3】図2のタイミングパルスの波形図である。FIG. 3 is a waveform diagram of timing pulses in FIG. 2;
【図4】図2の曲りの程度の測定説明図である。FIG. 4 is an explanatory diagram for measuring the degree of bending in FIG. 2;
【図5】図2の動作説明用のフローチャートである。FIG. 5 is a flowchart for explaining the operation of FIG. 2;
【図6】従来の無人搬送車両の上方から見た斜視図であ
る。FIG. 6 is a perspective view of a conventional automatic guided vehicle seen from above.
【図7】図6の下方から見た斜視図である。FIG. 7 is a perspective view seen from below in FIG. 6;
【図8】従来の曲りの程度の測定説明図である。FIG. 8 is an explanatory diagram of conventional measurement of the degree of bending.
1 ガイドライン 4,5 動輪 1 Guidelines 4,5 Driving wheel
Claims (1)
備えた無人搬送車両により、走行ルート上に敷設された
ガイドラインからの走行ずれをくり返し検出し、該検出
の結果に基づき、設定されたゲイン定数の制御量演算か
ら前記両動輪それぞれの速度制御量を求め、前記両動輪
に速度差を与え走行ずれを補正する無人搬送車両の走行
制御方法において、前記車両の下面部に、前記ガイドラ
インを非接触状態で検出する3個の直線状のガイドライ
ンセンサを前記車両の進行方向に対し直角方向に間隔を
設けて取付け、前記各センサの前記ガイドラインの検出
位置と前記各センサの間隔とから前記ガイドラインの曲
りの程度を測定し、該測定の結果に基づき前記ガイドラ
インの曲りの程度に応じて前記ゲイン定数を直進時の値
から可変することを特徴とする無人搬送車両の走行制御
方法。[Claim 1] An unmanned guided vehicle equipped with one driving wheel on each of the left and right sides repeatedly detects deviations from the guideline laid down on the travel route, and based on the detection results, a guideline is set. In the driving control method for an automatic guided vehicle, the speed control amount of each of the two driving wheels is calculated from the control amount calculation of a gain constant, and a speed difference is given to the two driving wheels to correct a driving deviation. Three linear guideline sensors for non-contact detection are installed at intervals in a direction perpendicular to the traveling direction of the vehicle, and from the detection position of the guideline of each sensor and the interval between the sensors A travel control method for an automatic guided vehicle, characterized in that the degree of curvature of a guideline is measured, and the gain constant is varied from a value when traveling straight in accordance with the degree of curvature of the guideline based on the measurement result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3059701A JP2994776B2 (en) | 1991-02-28 | 1991-02-28 | Travel control method for unmanned transport vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3059701A JP2994776B2 (en) | 1991-02-28 | 1991-02-28 | Travel control method for unmanned transport vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04274502A true JPH04274502A (en) | 1992-09-30 |
JP2994776B2 JP2994776B2 (en) | 1999-12-27 |
Family
ID=13120783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3059701A Expired - Lifetime JP2994776B2 (en) | 1991-02-28 | 1991-02-28 | Travel control method for unmanned transport vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2994776B2 (en) |
-
1991
- 1991-02-28 JP JP3059701A patent/JP2994776B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2994776B2 (en) | 1999-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6721638B2 (en) | AGV position and heading controller | |
JPH0646364B2 (en) | How to guide an autonomous vehicle | |
GB2042217A (en) | Self-piloting vehicle | |
US5781870A (en) | Vehicle steering angle control device | |
JP2018194937A (en) | Travel control device and travel control method of unmanned carrier | |
JPH02105904A (en) | Method and device for guiding moving body | |
JP3378843B2 (en) | Correction device for position and direction of automatic guided vehicle | |
JPS61278912A (en) | Method for guiding unmanned moving machine by spot following system | |
JPH04274502A (en) | Method for controlling running of unmanned carrier | |
JP2003067053A (en) | Unmanned carriage | |
JP4269170B2 (en) | Trajectory tracking control method and apparatus | |
JPH1195837A (en) | Method for determining initial truck position and attitude angle of gyro guide type automated guided vehicle, and method for improving travel stability at position correction | |
JPH08202449A (en) | Automatic operation controller for carring truck | |
JP3846828B2 (en) | Steering angle control device for moving body | |
JPH05333928A (en) | Back traveling control method for unmanned carrier | |
JPH01282615A (en) | Position correcting system for self-travelling unmanned vehicle | |
JP2001350520A (en) | Travel controller for automated guided vehicle | |
JPS62109105A (en) | Magnetic guidance method for vehicle | |
JP3239992B2 (en) | Error Correction Method for Steering Zero Information in Gyro Guided Automated guided Vehicle | |
JPS62221707A (en) | Gyro-guide type unmanned carrier | |
JP2676831B2 (en) | Automatic guided vehicle position detection device | |
JP3846829B2 (en) | Steering angle control device for moving body | |
JP2983527B1 (en) | Vehicle measuring device | |
JP3735897B2 (en) | Unmanned vehicle guidance system | |
JP3447480B2 (en) | Position measurement method and device |