JP4269170B2 - Trajectory tracking control method and apparatus - Google Patents

Trajectory tracking control method and apparatus Download PDF

Info

Publication number
JP4269170B2
JP4269170B2 JP2004279327A JP2004279327A JP4269170B2 JP 4269170 B2 JP4269170 B2 JP 4269170B2 JP 2004279327 A JP2004279327 A JP 2004279327A JP 2004279327 A JP2004279327 A JP 2004279327A JP 4269170 B2 JP4269170 B2 JP 4269170B2
Authority
JP
Japan
Prior art keywords
target
speed
moving body
control
turning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004279327A
Other languages
Japanese (ja)
Other versions
JP2006092424A (en
Inventor
正和 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004279327A priority Critical patent/JP4269170B2/en
Publication of JP2006092424A publication Critical patent/JP2006092424A/en
Application granted granted Critical
Publication of JP4269170B2 publication Critical patent/JP4269170B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、目標軌道に追従させて移動体を移動させるに必要な制御指令値を進行速度、横行速度および旋回速度としてそれぞれ得て、前記移動体を前記目標軌道に高精度に追従させて移動させることのできる軌道追従制御方法および装置に関する。   The present invention obtains control command values necessary to move the moving body by following the target trajectory as the traveling speed, the traversing speed, and the turning speed, respectively, and moves the moving body to the target trajectory with high accuracy. The present invention relates to a trajectory tracking control method and apparatus that can be used.

予め設定された目標軌道に追従させて移動体を移動させる技術は、工場等における無人搬送車の走行制御に用いられる。この種の無人搬送車の軌道追従制御は、専ら、無人搬送車に搭載したセンサを用いて予め路面(床面)に敷設した走行ラインを検出し、該無人搬送車の上記走行ラインからずれ量を求めながら、このずれ量を零(0)とするように無人搬送車を操舵制御することにより実現される。   A technique for moving a moving body following a preset target trajectory is used for running control of an automated guided vehicle in a factory or the like. The track following control of this kind of automatic guided vehicle exclusively detects a travel line previously laid on the road surface (floor surface) using a sensor mounted on the automatic guided vehicle, and the amount of deviation from the travel line of the automatic guided vehicle This is realized by steering control of the automatic guided vehicle so that the amount of deviation is zero (0).

またこのような軌道追従制御を滑らかに行う手法として、非ホロノミックの手法を採用し、目標軌道に対する無人走行車の位置や向きのずれ角に応じてその走行速度と操舵角とを制御することが提唱されている(例えば特許文献1を参照)。また非ホロノミックな拘束の下での運動制御システムにおいて、旋回運動により目標軌道に対する移動体の左右方向のずれを補正しながら該移動体の向きを補正することで軌道追従制御を行うことが提唱されている(例えば非特許文献1を参照)。
特開平11−327641号公報 日本ロボット学会誌11巻6号,837〜844頁,1993年
In addition, as a method for smoothly performing such track tracking control, a non-holonomic method is adopted, and its traveling speed and steering angle can be controlled according to the deviation angle of the position and orientation of the unmanned traveling vehicle with respect to the target track. Has been proposed (see, for example, Patent Document 1). In a motion control system under non-holonomic constraints, it has been proposed to perform trajectory tracking control by correcting the orientation of the moving body while correcting the lateral displacement of the moving body with respect to the target trajectory by turning motion. (For example, see Non-Patent Document 1).
JP-A-11-327641 Journal of the Robotics Society of Japan Vol.11, No.6, 837-844, 1993

しかしながら上述した制御の手法においては、移動体の向きのずれ角が変化すると、その速度や操舵角をそれぞれ制御するアクチュエータをずれ量に応じて同じ量だけ駆動しても、目標軌道への戻り方が異なると言う不具合がある。即ち、ずれ量に比例してアクチュエータを駆動しても、幅広い動作範囲で適切な追従性能を得ることが困難であった。特に低速時に操舵しても横行・旋回運動が殆ど生じることがないので、操舵によってその偏差(ずれ量)が少なくなることがない。これ故、操舵に対するフィードバック制御系に、徒に大きな負荷が掛かると言う問題があった。   However, in the above-described control method, if the deviation angle of the moving body changes, even if the actuator that controls the speed and the steering angle is driven by the same amount according to the deviation amount, the method of returning to the target trajectory There is a defect that is different. That is, even if the actuator is driven in proportion to the deviation amount, it is difficult to obtain an appropriate tracking performance in a wide operation range. In particular, even when steering is performed at a low speed, there is almost no traversing / turning motion, so that the deviation (deviation amount) is not reduced by steering. Therefore, there is a problem that a large load is applied to the feedback control system for steering.

本発明はこのような事情を考慮してなされたもので、その目的は、移動体の移動速度に拘わることなく、目標軌道からのずれ量に応じて上記移動体を目標軌道に安定に追従させるに必要な制御指令を適切に得て、その軌道追従性能を高めることのできる軌道追従制御方法および制御装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to make the moving body follow the target trajectory stably according to the amount of deviation from the target trajectory, regardless of the moving speed of the moving body. It is an object of the present invention to provide a trajectory following control method and a control device capable of appropriately obtaining a control command necessary for the above and improving the trajectory following performance.

上述した目的を達成するべく本発明に係る軌道追従制御方法は、移動体を操舵制御し、2次元平面内で目標軌道に追従させて前記移動体を所定の進行目標速度 と旋回目標速度γで移動させるに際し、
<a> 前記目標軌道上における前記移動体の制御目標位置に対する前記移動体の前後方向のずれ量xと前記移動体の横方向のずれ量yとをそれぞれ求めると共に、前記制御目標位置での前記目標軌道の接線方向として与えられる前記移動体の制御目標姿勢に対する前記移動体の向きずれ角φ求め
<b> 前記ずれ量x,yおよびずれ角φと、前記進行目標速度uおよび旋回目標速度γとから、前記ずれ量x,yおよびずれ角φを補正しながら前記移動体を前記目標軌道に追従させる為の前記移動体に対する前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ予め設定された演算式に従ってそれぞれ計算し、
<c> これらの各速度指令値uに従って前記移動体の進行速度および操舵角を決定して前記移動体の進行速度、横行速度、および旋回速度をそれぞれ制御することを特徴としている。
Trajectory tracking control method according to the present invention in order to achieve the above objects, and steering control of the mobile, the mobile body to follow the target trajectory in the two-dimensional plane with a predetermined progression target speed u d swivel target speed When moving with γ d ,
<a> the lateral longitudinal displacement amount x e with the mobile of the moving body with respect to the control target position of the moving object in the target orbit and an amount of deviation y e with finding respectively, with the control target position It determined the orientation deviation angle phi e of the moving body with respect to the control target posture of the movable body, given as a tangential direction of the target track,
<b> The shift amount x e, and y e and deviation angle phi e, from said traveling target speed u d and the turning target speed gamma d, the shift amount x e, while correcting the y e and deviation angle phi e A longitudinal speed command value u r , a lateral speed command value ν r , and a turning speed command value γ r for the moving body for causing the moving body to follow the target trajectory are respectively calculated in accordance with preset arithmetic expressions. ,
<c> The traveling speed and the steering angle of the moving body are determined in accordance with these speed command values u r , ν r , and γ r to control the traveling speed, the traversing speed, and the turning speed of the moving body, respectively. It is a feature.

具体的には請求項2に記載するように前記目標軌道上での制御目標姿勢は、前記制御目標位置における前記目標軌道の接線方向として求められ、また制御目標位置および制御目標姿勢に対する前記移動体の前記各ずれ量は、前記移動体の前後に搭載したセンサによりそれぞれ計測される該移動体の幅方向における前記目標軌道までの距離および制御目標位置までの距離から計算して、或いは予め記憶した制御目標位置の絶対座標(x,y)とおよび制御目標姿勢φ前記移動体に搭載されたセンサにより求められる前記移動体の絶対位置(x,y)および該移動体の向きを示す姿勢φとから計算して求められる。 Specifically, the control target posture on the target trajectory is obtained as a tangential direction of the target trajectory at the control target position, and the moving body with respect to the control target position and the control target posture. The respective deviation amounts of are calculated from the distance to the target trajectory and the distance to the control target position in the width direction of the moving body respectively measured by sensors mounted before and after the moving body, or stored in advance. The absolute coordinates (x d , y d ) of the control target position, the control target posture φ d , the absolute position (x, y) of the mobile body determined by the sensor mounted on the mobile body, and the direction of the mobile body It is obtained by calculation from the posture φ shown.

また本発明に係る軌道追従制御装置は、移動体に搭載されて該移動体を操舵制御し、2次元平面内で予め設定した目標軌道に追従させて該移動体を所定の進行目標速度 と旋回目標速度γで移動させるものであって、
<A> 前記目標軌道上における前記移動体の制御目標位置に対する移動体の前後方向のずれ量xおよび横方向のずれ量yとをそれぞれ求めると共に、前記制御目標位置での前記目標軌道の接線方向として与えられる制御目標姿勢に対する前記移動体の向きのずれ角φ求めるセンシング手段と、
<B> 前記ずれ量x,yおよびずれ角φと、前記進行目標速度uおよび旋回目標速度γとから、前記ずれ量x,yおよびずれ角φを補正しながら前記移動体を前記目標軌道に追従させる為の前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ予め設定された演算式に従ってそれぞれ計算するマイクロコンピュータ等の演算手段と、
<C> これらの各速度指令値uに従って前記移動体の進行速度および操舵角を決定して前記移動体の挙動を制御するアクチュエータ等の操舵系を駆動して前記移動体の進行速度、横行速度、および旋回速度をそれぞれ制御する移動制御手段と
を備えたことを特徴としている。
The trajectory tracking control system according to the present invention is mounted on a mobile body by the steering control of the movable body, to follow the target trajectory set in advance in a two-dimensional plane moving body to a predetermined progression target speed u d And turn at a turning target speed γ d ,
<A> before and after the moving body with respect to the control target position of the movable body in the target orbit direction of the shift amount x e and a transverse direction and a shift amount y e with determining each of the target track in the control target position Sensing means for obtaining a deviation angle φ e of the moving body relative to a control target posture given as a tangential direction ;
<B> the amount of deviation x e, and y e and deviation angle phi e, from said traveling target speed u d and the turning target speed gamma d, the shift amount x e, while correcting the y e and deviation angle phi e A microcomputer that calculates the longitudinal speed command value u r , the lateral speed command value ν r , and the turning speed command value γ r for causing the moving body to follow the target trajectory according to a preset arithmetic expression, etc. Computing means;
<C> According to these speed command values u r , ν r , and γ r, the moving speed of the moving body and the steering angle are determined to drive a steering system such as an actuator that controls the behavior of the moving body to drive the moving It is characterized by comprising movement control means for controlling the traveling speed, traversing speed, and turning speed of the body.

具体的には前記演算手段は、請求項4に記載するように該演算手段に設定された前記移動体の進行目標速度をu、横行目標速度をν、および旋回目標速度をγとして、前記センシング手段により検出された前記ずれ量x ,y およびずれ角φ に従って前記移動体に対する前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ
=ucosφ+K
ν=ν+K
γ=γ+Ksinφ
但し、K,K,Kはそれぞれ正の制御ゲイン
として求めるように構成される。
Specifically, as described in claim 4 , the calculating means sets the moving target speed set to the calculating means as u d , the traversing target speed as ν d , and the turning target speed as γ d. , A longitudinal speed command value u r , a lateral speed command value ν r , and a turning speed command value γ r for the moving body according to the deviation amounts x e , y e and the deviation angle φ e detected by the sensing means. u r = u d cos φ e + K x x e
ν r = ν d + K y u d y e
γ r = γ d + K p u d sinφ e
However, K x , K y , and K p are each configured to be obtained as a positive control gain.

上記構成の軌道追従制御方法によれば、向きのずれ角φeに応じて前記移動体の目標移動速度uddと目標軌道に対するずれ量xe,yeとから前記移動体に対する前後方向速度指令値ur、横方向速度指令値νr、および旋回速度指令値γrをそれぞれ求め、前記移動体の進行速度、横行速度、および旋回速度をそれぞれ独立に制御するので、向きのずれ角φeに応じた進行・旋回動作により目標軌道に精度良く追従させて移動体を移動させることが可能となる。 According to the trajectory tracking control method having the above-described configuration, the front and rear of the moving body are determined from the target moving speeds u d and γ d of the moving body and the deviation amounts x e and y e with respect to the target trajectory according to the direction deviation angle φ e. The direction speed command value u r , the lateral direction speed command value ν r , and the turning speed command value γ r are respectively obtained, and the traveling speed, the traversing speed, and the turning speed of the moving body are independently controlled. precisely follow are not the target track by the advanced or turning operation in response to the angular phi e becomes possible to move the moving body.

ちなみに従来では、例えば前述した非特許文献1に紹介されるように前後方向速度指令値uを求めて移動体の前後方向のずれを補正しながら、旋回速度指令値γを求めて前記移動体の左右方向のずれおよび向き角のずれを補正しているが、この場合、左右方向のずれ補正と向き角のずれ補正とをどのような関係で、つまりどのようにトレードオフして作用させるかを決定することが困難である。この点、本願発明においては前後方向速度指令値uに加えて横方向速度指令値νと旋回速度指令値γとを独立に求めるので、左右方向のずれ補正と向き角のずれ補正とを個別に制御することが可能となる。従って目標軌道に対するずれ補正を的確に行って上記目標軌道に対する追従精度を高めることが可能となる。 Incidentally, conventionally, for example while correcting the longitudinal displacement of the moving body in search of the front-rear direction speed command value u r as introduced in Non-Patent Document 1 described above, the mobile seeking rotation speed command value gamma r In this case, the right and left direction deviation and the direction angle deviation correction are made to work in a trade-off manner. It is difficult to determine. In this regard, since in the present invention obtains a lateral velocity command value [nu r and the rotation speed command value gamma r independently in addition to the front-rear direction speed command value u r, and shift correction in the horizontal direction of displacement correction and orientation angle Can be controlled individually. Accordingly, it is possible to accurately correct the deviation with respect to the target trajectory and increase the tracking accuracy with respect to the target trajectory.

特に前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ
=ucosφ+K
ν=ν+K
γ=γ+Ksinφ
として求めることで、向きのずれ角φに応じて非線形の制御を行うことになるので、例えば向きのずれ角φが大きくても目標軌道から離れる方向への移動をなくすことができる。換言すれば向きのずれ角φが大きいにも拘わらずその速度を高くした場合、移動体が目標軌道から離れる虞があるが、上述した制御によればずれ角φを加味して横行速度と旋回速度とを決定するので、その挙動を適正化して目標軌道からのずれを抑制することが可能となる。また前述した各指令値uを、進行目標速度に応じて決定される補正量を加味してそれぞれ求めるので、例えば低速走行時における不本意な横行運動や旋回運動を防ぐことができる。従って目標軌道に対する追従性を高めることができる等の効果が奏せられる。つまり無駄な操舵制御を減らすことができ、その制御負担も軽減することができ、更には外乱の影響を軽減することができる等の効果が奏せられる。
In particular, the longitudinal speed command value u r , the lateral speed command value ν r , and the turning speed command value γ r are expressed as u r = u d cos φ e + K x x e
ν r = ν d + K y u d y e
γ r = γ d + K p u d sinφ e
Therefore, non-linear control is performed according to the direction deviation angle φ e , so that, for example, even if the direction deviation angle φ e is large, movement in a direction away from the target trajectory can be eliminated. In other words, when the speed is increased even though the direction deviation angle φ e is large, the moving body may move away from the target trajectory. However, according to the control described above, the traverse speed is taken into account by taking the deviation angle φ e into consideration. Therefore, it is possible to optimize the behavior and suppress the deviation from the target trajectory. Further, since each of the command values u r , ν r , and γ r described above is obtained by adding a correction amount determined according to the target traveling speed u d , for example, unintentional transverse motion or turning motion during low-speed traveling Can be prevented. Therefore, effects such as the ability to improve followability with respect to the target trajectory are exhibited. That is, it is possible to reduce the useless steering control, reduce the control burden, and further reduce the influence of disturbance.

以下、図面を参照して本発明の一実施形態に係る軌道追従制御方法および制御装置について説明する。
図1はこの実施形態に係る軌道追従制御方法の基本的な制御原理を示すもので、Lは予め設定された目標軌道、Mは上記目標軌道Lに追従して移動制御される移動体である。目標軌道Lは、例えば港湾の敷地内の予め設定された経路に沿って複数の磁性素子を敷設する等して規定された走行ラインからなり、移動体Mは上記走行ラインLに沿って走行駆動される無人搬送車からなる。この無人搬送車(移動体)Mの上記走行ライン(目標軌道)Lに沿った走行(移動)は、基本的には無人搬送車(移動体)Mの現在位置と走行ライン(目標軌道)L上での目標位置とのずれに応じて該無人搬送車(移動体)Mの走行速度を制御すると共に、その操舵角を制御して行われる。
A trajectory tracking control method and control apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 shows the basic control principle of the trajectory tracking control method according to this embodiment. L is a preset target trajectory, and M is a moving body that is controlled to follow the target trajectory L. . The target track L is composed of a travel line defined by, for example, laying a plurality of magnetic elements along a predetermined route in a port site, and the moving body M travels along the travel line L. Consisting of automated guided vehicles. The travel (movement) of the automatic guided vehicle (moving body) M along the traveling line (target track) L is basically the current position of the automatic guided vehicle (moving body) M and the traveling line (target track) L. This is performed by controlling the traveling speed of the automatic guided vehicle (moving body) M according to the deviation from the target position and controlling the steering angle.

即ち、本発明に係る軌道追従制御方法は、移動体Mにおける制御すべき点、具体的には移動体Mの挙動を表現する代表点、例えば移動体Mにおける重心Gの現在位置(x,y)およびその向き(姿勢)φと、前記目標軌道L上における或る制御時点での目標位置(xd,yd)およびその向きφdとの差(ずれ量)に従い、例えばその走行速度と操舵角とをそれぞれ制御することによって行われる。尚、前記目標位置の向きφdは、前記目標位置(xd,yd)における前記目標軌道Lの接線方向として定義される。 That is, the trajectory tracking control method according to the present invention is a point to be controlled in the moving body M, specifically, a representative point expressing the behavior of the moving body M, for example, the current position (x, y) of the center of gravity G in the moving body M. ) And its direction (posture) φ and the difference (deviation amount) between the target position (x d , y d ) and its direction φ d on the target trajectory L at a certain control point, for example, This is done by controlling the steering angle. The direction φ d of the target position is defined as the tangential direction of the target trajectory L at the target position (x d , y d ).

即ち、目標軌道Lに対する移動体Mの追従制御は、図2に軌道追従制御装置の概略的な構成とその処理概念を示すように、先ず移動体Mの現在位置・姿勢(x,y,φ)と、現時点における前記目標軌道L上の目標位置・姿勢(xd,ydd)に対する前記移動体Mの前後方向のずれ量xe(=xd−x)、前記移動体Mの左右方向のずれ量ye(=yd−y)、および前記移動体Mの向きのずれ角φe(=φd−φ)をそれぞれ求める[処理A]。次いで後述するように、これらのずれ量(xe,yee)に従って前記移動体Mの前後方向への移動速度(進行速度)ur、左右方向への移動速度(横行速度)νr、および旋回速度γrをそれぞれその制御指令値として求め[処理B]、これらの制御指令値urrrに従って当該移動体Mの移動を制御する[処理C]ことによって行われる。この移動体Mの移動制御は、具体的には移動体Mの移動速度(走行速度)を制御すると共に、その操舵角を制御することによって行われる。 That is, the follow-up control of the moving body M with respect to the target trajectory L starts with the current position / posture (x, y, φ) of the moving body M, as shown in FIG. ), The amount of displacement x e (= x d −x) in the front-rear direction of the moving body M with respect to the target position / posture (x d , y d , φ d ) on the target trajectory L at the present time, and the moving body M The right and left displacement amount y e (= y d −y) and the displacement angle φ e (= φ d −φ) of the moving body M are respectively obtained [processing A]. Next, as will be described later, according to these shift amounts (x e , y e , φ e ), the moving body M moves in the front-rear direction (traveling speed) u r and moves in the left-right direction (transverse speed) ν. r and turning speed γ r are obtained as control command values [Process B], and the movement of the moving body M is controlled according to these control command values u r , ν r and γ r [Process C]. Is called. Specifically, the movement control of the moving body M is performed by controlling the moving speed (traveling speed) of the moving body M and controlling the steering angle thereof.

具体的には上記ずれ量(x,y)の検出は、例えば移動体Mに搭載した各種のセンサ(例えば磁気センサ、超音波センサ、トランスポンダ、距離計等)を用いて目標軌道Lまでの距離を直接測定して求められる。或いは予め記憶した目標軌道Lを特定するデータ系列から目標位置の絶対座標・向き(x,y)を求めると共に、移動体Mの絶対位置・姿勢(x,y,φ)をGPS情報等から求め、これらの情報に従って前記ずれ量(x,y)を、下記の計算式に基づいて求めるようにすれば良い。 Specifically, the detection of the amount of deviation (x e , y e , φ e ) is performed using, for example, various sensors (for example, a magnetic sensor, an ultrasonic sensor, a transponder, a distance meter, etc.) mounted on the moving body M. It is obtained by directly measuring the distance to the track L. Alternatively, the absolute coordinates and orientation (x d , y d , φ d ) of the target position are obtained from the data series that specifies the target trajectory L stored in advance, and the absolute position / posture (x, y, φ) of the moving body M is obtained. derived from GPS information or the like, the shift amount in accordance with the information (x e, y e, φ e) , and it suffices to determine, based on the following calculation equation.

Figure 0004269170
Figure 0004269170

ちなみにこのようなずれ量(x,y)に基づいてそのずれを補正し、これによって目標軌道Lに対する追従制御を行う手法については、前述した非特許文献1に詳しく紹介される通りである。具体的には、例えば
=ucosφ+K
γ=γ+K+Ksinφ
但し、K,K,Kはそれぞれ正の制御ゲイン
として、上記ずれを補正するための前記移動体Mの進行指令速度uと旋回指令速度γとを求めて移動体Mの移動を制御すれば、目標軌道Lに対する追従制御を行うことが可能となる。即ち、所定の進行速度の下で移動体Mの旋回運動により左右方向のずれを補正しながら、その向きのずれを補正すれば良い。しかしこの場合、左右方向のずれyと向きのずれφとをどのような関係で補正するかが問題となり、一般にその制御ゲインK,Kを最適設定することは困難である。
Incidentally, a technique for correcting the deviation based on such deviation amounts (x e , y e , φ e ) and thereby performing the follow-up control with respect to the target trajectory L will be introduced in detail in Non-Patent Document 1 described above. Street. More specifically, u r = u d cosφ e + K r x e
γ r = γ d + K y u d y e + K p u d sinφ e
However, K x, as K y, K p is a positive control gain, respectively, movement of the movable body M in search of said progress command speed of the moving object M u r and the turning command speed gamma r for correcting the deviation Can be controlled to follow the target trajectory L. That is, it is only necessary to correct the deviation in the direction while correcting the deviation in the left-right direction by the turning motion of the moving body M at a predetermined traveling speed. However, in this case, there is a problem of how to correct the lateral displacement y e and the orientation displacement φ e, and it is generally difficult to optimally set the control gains K y and K p .

そこで本発明に係る軌道追従制御方法においては、前述したずれ量(xe,yee)をそれぞれ独立に補正するための制御指令値を、そのときの前記移動体Mの目標移動速度uddと向き角のずれ量φeとに応じて
r=udcosφe+Kxe …(1)
νr=νd+Kyde …(2)
γr=γd+Kpdsinφe …(3)
としてそれぞれ求めるようにしている[処理B]。
Therefore, in the trajectory tracking control method according to the present invention, a control command value for independently correcting the aforementioned deviation amounts (x e , y e , φ e ) is used as the target moving speed of the moving body M at that time. According to u d , γ d and the direction angle deviation φ e , u r = u d cos φ e + K x x e (1)
ν r = ν d + K y u d y e (2)
γ r = γ d + K p u d sinφ e (3)
[Processing B].

即ち、移動体Mの前後方向に対する進行速度指令値uを、そのときの目標移動速度uと向き角のずれ量φとにより定まる速度に、目標位置との前後方向のずれ量xに応じて定まる補正量を加えて決定する。また移動体Mの左右方向に対する横行速度指令値νを、そのときの横行速度νに前記移動体の目標移動速度uと左右方向のずれ量yとにより定まる補正量を加えて決定する。更にはその旋回速度指令値γを、そのときの旋回速度γに前記移動体の目標移動速度uと向き角のずれ量φとにより定まる補正量を加えて決定する。尚、上記横行速度νについては、前述した目標移動速度uとそのときの移動体Mの向き角φから求めるようにすれば良く、また旋回速度γについてはそのときの移動体Mの操舵角から求められる旋回半径r等に従って求めるようにすれば良い。 That is, the traveling speed command value u r for the longitudinal direction of the moving body M, a target moving velocity u d and the speed determined by the shift amount phi e orientation angle at that time, the deviation amount in the longitudinal direction of the target position x e It is determined by adding a correction amount determined according to the above. The rampant speed command value [nu r for the right and left direction of the moving body M, by adding a correction amount determined by the target moving velocity u d and the left-right direction of the deviation amount y e of the movable body in the transverse velocity [nu d at that time determined To do. Furthermore its turning speed command value gamma r, is determined by adding a correction amount determined by the shift amount phi e target moving velocity u d and orientation angle of the movable body in turning velocity gamma d at that time. The traversing speed ν d may be obtained from the aforementioned target moving speed u d and the direction angle φ of the moving body M at that time, and the turning speed γ d is determined by the moving body M at that time. What is necessary is just to obtain | require according to the turning radius r etc. which are calculated | required from a steering angle.

そして移動体Mの目標位置に対するずれ量(xe,yee)に従って該移動体Mに対する制御指令値を進行速度指令値ur、横行速度指令値νr、および旋回速度指令値γrとしてそれぞれ求めた後、これらの速度指令値urrrに従って移動体Mの挙動を制御するアクチュエータの作動を制御する。具体的には移動体Mの走行速度を決定するモータやエンジンの回転数を制御すると共に、その操舵角を決定するステアリングや舵の操作量を制御し、これによって移動体Mの進行速度、横行速度、および旋回速度をそれぞれ制御する[処理C]。 The control command value for the moving body M is determined as the traveling speed command value u r , the traverse speed command value ν r , and the turning speed command value γ according to the deviation amount (x e , y e , φ e ) of the moving body M with respect to the target position. after obtaining each as r, these speed command value u r, [nu r, controls the operation of the actuator that controls the behavior of the moving object M in accordance with gamma r. Specifically, the number of revolutions of the motor or engine that determines the traveling speed of the moving body M is controlled, and the operation amount of the steering and the rudder that determines the steering angle is controlled. The speed and the turning speed are respectively controlled [Process C].

このようにして移動体Mの進行速度、横行速度、および旋回速度をそれぞれ個別に制御すれば、上述したずれ量(xe,yee)をそれぞれ独立に補正することが可能となるので、移動体Mを目標軌道Lに沿って精度良く追従させて移動させることが可能となる。しかも各速度指令値urrrに対する補正を前述したずれ量(xe,yee)に基づいてそれぞれ独立に行い得るので、その制御ゲインKx,Ky,Kpについてもそれぞれ独立に最適設定することが可能となる。 If the traveling speed, the traversing speed, and the turning speed of the moving body M are individually controlled in this way, the above-described deviation amounts (x e , y e , φ e ) can be independently corrected. Therefore, the moving body M can be moved along the target trajectory L with high accuracy. In addition, the correction to each of the speed command values u r , v r , γ r can be performed independently based on the aforementioned deviation amounts (x e , y e , φ e ), so that the control gains K x , K y , K It is possible to optimally set each p independently.

特に上述した追従制御によれば、向きのずれ角φeに応じて移動体Mの進行動作と旋回動作とをそれぞれ制御することが可能となるので、定性的には向きのずれ角φeが大きくても移動体Mが目標軌道Lから離れていくような不本意な挙動をなくすことができる。即ち、前述した式(1)(3)にそれぞれ示すように向きのずれ角φeに応じて非線形に決定される値を含む指令値に従ってその進行速度と旋回速度とがそれぞれ制御されることになるので、仮に向きのずれ角φeが大きい場合であっても、移動体Mが目標軌道Lから次第に離れるような不本意な挙動をなくすことが可能となる。 In particular, according to the follow-up control described above, it is possible to control the traveling operation and the turning operation of the moving body M in accordance with the direction deviation angle φ e , so that the direction deviation angle φ e is qualitatively determined. Even if it is large, it is possible to eliminate an unintended behavior in which the moving body M moves away from the target trajectory L. That is, the traveling speed and the turning speed are respectively controlled according to the command value including the value determined nonlinearly according to the direction deviation angle φ e as shown in the above-described equations (1) and (3). Therefore, even if the direction deviation angle φ e is large, it is possible to eliminate the unintended behavior in which the moving body M gradually moves away from the target trajectory L.

また前述した式(2)(3)にそれぞれ示されるように、そのときの横行速度νdおよび旋回速度γdを、目標移動速度udとずれ量(yee)とを掛け合わせることで決定される補正量に従って補正してその横行速度指令値νrと旋回速度指令値γrとをそれぞれ求めるので、目標移動速度udが小さいときには上記横行速度指令値νrおよび旋回速度指令値γrをそれぞれ小さく抑えて横行運動や旋回運動が生じ難くすることができる。 Further, as shown in the aforementioned equations (2) and (3), the traversing speed ν d and the turning speed γ d at that time are multiplied by the target moving speed u d and the deviation amount (y e , φ e ). since the determined corrected according to the correction amount determining that the traverse speed command value [nu r a turning speed command value gamma r respectively by, the traverse speed command value [nu r and the rotation speed command when the target movement velocity u d is small The value γ r can be kept small to make it difficult for traversing motion and turning motion to occur.

尚、移動体Mの目標移動速度udが微小なときには、仮に操舵角を大きく設定しても横行や旋回が殆ど生じることがないので、前記目標移動速度udが所定の閾値に満たないとき、前述した横行速度および旋回速度をそれぞれ零に抑えるような制限を加えることが望ましい。具体的には目標移動速度udが小さいときには前述したずれ量(xe,yee)に基づいて算出した横行速度指令値νrおよび旋回速度指令値γrに基づく横行・旋回操作が生じないようにし、これによって無駄な操舵制御をなくすことが好ましい。換言すれば低速移動時に操舵しても、これによって横行・旋回運動が生じないような場合、上述した制御により横行速度および旋回速度をそれぞれ零に抑える制限を加えることで、無駄な操舵自体を減らすことが可能となる。 Incidentally, when the moving body M target moving velocity u d is minute of, if so be rampant and turning is set larger the steering angle is never little occurs, when the target moving velocity u d is less than a predetermined threshold value It is desirable to add a restriction that suppresses the above-mentioned traverse speed and turning speed to zero. Displacement amount mentioned above when specifically a small target movement velocity u d (x e, y e , φ e) based on the traverse speed command value [nu r and the rotation speed command value gamma r is calculated on the basis of the transverse-turning operation It is preferable to avoid the occurrence of unnecessary steering control. In other words, even if steering is performed during low-speed movement, if this does not cause traversing / turning motion, the above-described control is applied to limit the transverse speed and the turning speed to zero, thereby reducing unnecessary steering itself. It becomes possible.

そして上述した横行・旋回運動の下で移動体Mの進行速度urが制御されるので、移動体Mの目標軌道Lに対する追従移動が効果的に保証されることになる。特に向きのずれ角φeに応じて移動体Mの進行速度、横行速度、および旋回速度がそれぞれ独立に制御されることになるので、目標軌道Lに沿って追従性良く移動体Mを移動(走行)させることが可能となる等の多大なる効果が奏せられる。 And since traveling speed u r of the moving object M under the transverse-pivoting movement described above is controlled, following the movement is to be effectively guaranteed to the target trajectory L of the moving object M. In particular, since the traveling speed, the traversing speed, and the turning speed of the moving body M are independently controlled according to the direction deviation angle φ e , the moving body M is moved along the target trajectory L with good followability ( It is possible to achieve a great effect such as being able to travel).

尚、上述した制御形態は、港湾の敷地内等において無人搬送車(移動体)Mを目標軌道Lに沿って走行制御するような2次元平面での追従制御を例にしたものであるが、潜水艦や航空機のように3次元空間において目標軌道に追従制御させる場合にも同様に適用することが可能である。この場合には、移動体Mの3次元空間における座標位置(x,y,z)と、目標軌道L上の目標座標(xd,yd,zd)とからその前後方向のずれ量xe(=xd−x)を求めると共に、横方向のずれ量yeについては前記目標軌道Lに対する前記移動体Mの左右方向のずれ量ye(=yd−y)および上下方向のずれ量ze(=zd−z)としてそれぞれ求めるようにすれば良い。また前記移動体Mの向き角のずれ量φeについては前記目標軌道Lの接線方向に対する前記移動体Mの前後方向のヨー角φye、ピッチ角φpeおよびロール角φreとしてそれぞれ求めるようにすれば良い。 The above-described control mode is an example of follow-up control on a two-dimensional plane in which the automatic guided vehicle (moving body) M is controlled to travel along the target track L in the premises of a harbor, The present invention can be similarly applied to a case where the target track is controlled to follow in a three-dimensional space like a submarine or an aircraft. In this case, a displacement amount x in the front-rear direction from the coordinate position (x, y, z) of the moving body M in the three-dimensional space and the target coordinates (x d , y d , z d ) on the target trajectory L. e (= x d −x) is obtained, and the lateral displacement amount y e is determined by the lateral displacement amount y e (= y d −y) of the movable body M with respect to the target trajectory L and the vertical displacement. the amount z e (= z d -z) as it suffices to determine, respectively. Further, the displacement angle φ e of the moving body M is obtained as the yaw angle φ ye , the pitch angle φ pe, and the roll angle φ re in the longitudinal direction of the moving body M with respect to the tangential direction of the target track L. Just do it.

そしてその制御指令値を、上記各ずれ量xe,ye,zeye,φpereをそれぞれ補正する進行速度指令値xr、2種類の横行速度指令値yr,zr、および3種類の旋回速度指令値φyr,φprrrとしてそれぞれ求め、その進行速度・横行速度・旋回速度をそれぞれ独立に制御するようにすれば良い。この場合においても目標進行速度が小さく、横行運動および旋回運動が殆ど生じない場合には、その操舵を行わないように制御することが好ましいことは言うまでもない。 Then, the control command value is converted into a traveling speed command value x r for correcting the deviation amounts x e , y e , z e , φ ye , φ pe , and φ re , respectively, and two kinds of transverse speed command values y r , z r and three types of turning speed command values φ yr , φ pr , and φ rr may be obtained, and the traveling speed, traverse speed, and turning speed may be controlled independently. Even in this case, it is needless to say that it is preferable not to perform the steering when the target traveling speed is small and the transverse movement and the turning movement hardly occur.

以上説明したように本発明によれば、目標軌道Lに対する移動体Mの向きのずれ角φeに応じて移動体Mの挙動(移動)を制御する前後方向速度指令値ur、横方向速度指令値νr、および旋回速度指令値γrをそれぞれ求めるので、移動体Mの進行速度、横行速度、および旋回速度をそれぞれ制御して該移動体Mを目標軌道Lに高精度に追従させて移動させることができる。具体的には前後方向速度指令値urに応じてその進行速度(走行速度)を制御し、また横方向速度指令値νrと旋回速度指令値γrとに応じてその操舵角を制御することで、目標軌道Lに追従させて移動体Mを移動させることができ。その追従性を十分に高めることが可能となる。 As described above, according to the present invention, the longitudinal speed command value u r for controlling the behavior (movement) of the moving body M according to the deviation angle φ e of the direction of the moving body M with respect to the target trajectory L, the lateral speed. Since the command value ν r and the turning speed command value γ r are respectively determined, the traveling speed, the traversing speed, and the turning speed of the moving body M are controlled so that the moving body M follows the target trajectory L with high accuracy. Can be moved. Controlling the advancing speed (travel speed) according to the longitudinal direction the speed command value u r in particular, also controls the steering angle in accordance with a lateral velocity command value [nu r and the rotation speed command value gamma r Thus, the moving body M can be moved following the target trajectory L. The followability can be sufficiently enhanced.

特に移動体Mが4輪操舵型の無人搬送車のような場合、前輪の操舵角と後輪の操舵角とを向きのずれ角φeに応じてそれぞれ一意に決定するだけで、上記無人搬送車(移動体)を目標軌道Lに沿って走行させることが可能となり、その制御も簡単なので実用的利点が多大である。しかも4輪(前輪および後輪)をそれぞれ操舵するといえども、無人搬送車(移動体)が不本意に目標軌道(走行ライン)から離れていく等の不具合を未然に防ぐことが可能となる。 Particularly when the moving object M is such as automatic guided vehicle four-wheel steering type, in the steering angle of the rear wheels and the front wheel steering angle only uniquely determined respectively in accordance with the deviation angle phi e orientation, the AGV It is possible to drive the vehicle (moving body) along the target track L, and since the control is simple, the practical advantage is great. Moreover, even if the four wheels (front wheels and rear wheels) are respectively steered, it is possible to prevent problems such as the unmanned transport vehicle (moving body) unintentionally leaving the target track (travel line).

尚、本発明は上述した実施形態に限定されるものではない。例えばずれ量の検出手段やずれ量検出に用いるセンサについては、移動体の種別やその仕様に応じて定めれば良いものである。また制御指令値の演算手段については、専用のハードウェア回路を構築して演算処理を高速度に実行するようにしても良いが、マイクロコンピュータ等を用いてソフトウェア処理により実行するようにしても良い。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, a deviation amount detecting means and a sensor used for deviation amount detection may be determined according to the type of the moving body and its specifications. Regarding the calculation means for the control command value, a dedicated hardware circuit may be constructed and the calculation process may be executed at a high speed, but may be executed by a software process using a microcomputer or the like. . In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

本発明に係る軌道追従制御方法の基本的な制御原理を示す図。The figure which shows the basic control principle of the track following control method which concerns on this invention. 本発明に係る軌道追従制御装置の概略的な処理概念とその処理手順を示す図。The figure which shows the rough process concept of the track | orbit tracking control apparatus which concerns on this invention, and its process sequence.

符号の説明Explanation of symbols

A ずれ検出処理手段
B 指令値演算手段
C 移動制御手段
A deviation detection processing means B command value calculation means C movement control means

Claims (4)

移動体を操舵制御して、2次元平面内で目標軌道に追従させて前記移動体を所定の進行目標速度 と旋回目標速度γで移動させるに際し、
前記目標軌道上における前記移動体の制御目標位置に対する前記移動体の前後方向のずれ量xと前記移動体の横方向のずれ量yとをそれぞれ求めると共に、前記制御目標位置での前記目標軌道の接線方向として与えられる前記移動体の制御目標姿勢に対する前記移動体の向きのずれ角φ求め
前記ずれ量x,yおよびずれ角φと、前記進行目標速度uおよび旋回目標速度γとから、前記ずれ量x,yおよびずれ角φを補正しながら前記移動体を前記目標軌道に追従させる為の前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ予め設定された演算式に従ってそれぞれ計算し、
これらの各速度指令値uに従って前記移動体の進行速度および操舵角を決定して前記移動体の進行速度、横行速度、および旋回速度をそれぞれ制御することを特徴とする軌道追従制御方法。
Mobile steering control to, when moving the movable body so as to follow the target track at a predetermined traveling target speed u d and the turning target speed gamma d in a two-dimensional plane,
Together determine the lateral deviation amount y e in the longitudinal direction of the deviation amount x e with the mobile of the moving body with respect to the control target position of the movable body in the target orbit, respectively, said target at said control target position It obtains a deviation angle phi e direction of the moving body with respect to the control target posture of the movable body, given as a tangential trajectory,
The shift amount x e, and y e and deviation angle phi e, wherein the the traveling target speed u d and the turning target speed gamma d, the mobile the shift amount x e, while correcting the y e and deviation angle phi e To calculate the longitudinal speed command value u r , the lateral speed command value ν r , and the turning speed command value γ r for following the target trajectory according to a preset arithmetic expression ,
The traveling speed, the traversing speed, and the turning speed of the moving body are controlled by determining the traveling speed and the steering angle of the moving body according to the speed command values u r , ν r , and γ r , respectively. Trajectory tracking control method.
前記目標軌道上での制御目標姿勢は、前記制御目標位置における前記目標軌道の接線方向として求められるものであって、
前記制御目標位置および制御目標姿勢に対する前記移動体の前記各ずれ量は、前記移動体の前後に搭載したセンサによりそれぞれ計測される該移動体の幅方向における前記目標軌道までの距離および制御目標位置までの距離から計算して、或いは予め記憶した制御目標位置の絶対座標(x,y)および制御目標姿勢φ前記移動体に搭載されたセンサにより求められる前記移動体の絶対位置(x,y)および該移動体の向きを示す姿勢φとから計算して求められるものである請求項1に記載の軌道追従制御方法。
The control target attitude on the target trajectory is obtained as a tangential direction of the target trajectory at the control target position,
The respective displacement amounts of the moving body with respect to the control target position and the control target attitude are respectively measured by sensors mounted before and after the moving body , the distance to the target trajectory in the width direction of the moving body, and the control target position Or the absolute coordinates (x d , y d ) of the control target position calculated in advance or the absolute position of the moving body (x d , y d ) and the control target posture φ d obtained by the sensor mounted on the moving body ( 2. The trajectory tracking control method according to claim 1, wherein the trajectory tracking control method is calculated from x, y) and a posture φ indicating the direction of the moving body.
移動体に搭載されて該移動体を操舵制御し、2次元平面内で予め設定した目標軌道に追従させて前記移動体を所定の進行目標速度 と旋回目標速度γで移動させる軌道追従制御装置であって、
前記目標軌道上における前記移動体の制御目標位置に対する前記移動体の前後方向のずれ量xおよび横方向のずれ量yをそれぞれ求めると共に、前記制御目標位置での前記目標軌道の接線方向として与えられる制御目標姿勢に対する前記移動体の向きのずれ角φ を求めるセンシング手段と、
前記ずれ量x,yおよびずれ角φと、前記進行目標速度uおよび旋回目標速度γとから、前記ずれ量x,yおよびずれ角φを補正しながら前記移動体を前記目標軌道に追従させる為の前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ予め設定された演算式に従ってそれぞれ計算する演算手段と、
これらの各速度指令値uに従って前記移動体の進行速度および操舵角を決定して前記移動体の操舵系を駆動して前記移動体の進行速度、横行速度、および旋回速度をそれぞれ制御する移動制御手段と
を具備したことを特徴とする軌道追従制御装置。
Is mounted on a mobile steering control movable body, the trajectory tracking of moving in advance the movable body to follow the target trajectory set in the predetermined traveling target speed u d and the turning target speed gamma d in a two-dimensional plane A control device,
The longitudinal displacement amount x e and lateral deviation amount y e of the moving body with respect to the control target position of the movable body in the target orbit with respectively obtained, as the tangential direction of the target track in the control target position Sensing means for obtaining an angle of deviation φ e of the moving body relative to a given control target posture;
The shift amount x e, and y e and deviation angle phi e, wherein the the traveling target speed u d and the turning target speed gamma d, the mobile the shift amount x e, while correcting the y e and deviation angle phi e Calculating means for calculating a longitudinal speed command value u r , a lateral speed command value ν r , and a turning speed command value γ r for following the target trajectory according to a preset arithmetic expression ,
The traveling speed and steering angle of the moving body are determined according to each of these speed command values u r , ν r , γ r and the steering system of the moving body is driven to drive the traveling speed, traversing speed, and turning of the moving body. A trajectory follow-up control device comprising movement control means for controlling each speed.
前記演算手段は、該演算手段に設定された前記移動体の進行目標速度をu、横行目標速度をν、および旋回目標速度をγとして、前記センシング手段により検出された前記ずれ量x,yおよびずれ角φに従って前記移動体に対する前後方向速度指令値u、横方向速度指令値ν、および旋回速度指令値γ
=ucosφ+K
ν=ν+K
γ=γ+Ksinφ
但し、K,K,Kはそれぞれ正の制御ゲイン
として求めるものである請求項3に記載の軌道追従制御装置。
The computing means sets the deviation amount x detected by the sensing means, where u d is the traveling target speed of the moving body set in the computing means, ν d is the traversing target speed, and γ d is the turning target speed. According to e 1 , y e and the deviation angle φ e, the longitudinal speed command value u r , the lateral speed command value ν r , and the turning speed command value γ r for the moving body are changed to u r = u d cos φ e + K x x e
ν r = ν d + K y u d y e
γ r = γ d + K p u d sinφ e
However, the trajectory tracking control device according to claim 3, wherein K x , K y , and K p are each obtained as a positive control gain.
JP2004279327A 2004-09-27 2004-09-27 Trajectory tracking control method and apparatus Expired - Fee Related JP4269170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004279327A JP4269170B2 (en) 2004-09-27 2004-09-27 Trajectory tracking control method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004279327A JP4269170B2 (en) 2004-09-27 2004-09-27 Trajectory tracking control method and apparatus

Publications (2)

Publication Number Publication Date
JP2006092424A JP2006092424A (en) 2006-04-06
JP4269170B2 true JP4269170B2 (en) 2009-05-27

Family

ID=36233312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004279327A Expired - Fee Related JP4269170B2 (en) 2004-09-27 2004-09-27 Trajectory tracking control method and apparatus

Country Status (1)

Country Link
JP (1) JP4269170B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911990A (en) * 2016-05-23 2016-08-31 吉林大学 Track bias determination method for ship sailing turning phase

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520011B1 (en) * 2008-06-30 2015-05-14 현대중공업 주식회사 Rodder control methode for noise reduction
WO2016110731A1 (en) * 2015-01-05 2016-07-14 日産自動車株式会社 Forward fixation point distance setting device and travel control device
CN105892493B (en) * 2016-03-31 2019-03-01 纳恩博(常州)科技有限公司 A kind of information processing method and mobile device
JP6894595B2 (en) * 2018-03-28 2021-06-30 株式会社エクォス・リサーチ Mobile

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05134757A (en) * 1991-11-13 1993-06-01 Tsubakimoto Chain Co Running control method for carrier
JP3670089B2 (en) * 1995-10-31 2005-07-13 本田技研工業株式会社 Automatic steering control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911990A (en) * 2016-05-23 2016-08-31 吉林大学 Track bias determination method for ship sailing turning phase

Also Published As

Publication number Publication date
JP2006092424A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
CN108673496B (en) Industrial robot path tracking method based on pure tracking model
WO2014155893A1 (en) Work vehicle automatic steering system
CN107585163A (en) Mobile Route Generation device and mobile route generation method
CN112896147B (en) Bidirectional positioning parking control method and device for mining vehicle
CN111629943B (en) Driving support device, driving support method, and driving support system
CN111634331B (en) Steering control method, device and system for automatic driving vehicle
JP4264399B2 (en) Automated guided vehicle
CN112537297B (en) Lane keeping method and system and vehicle
JP5561730B2 (en) Guidance control system and guidance control method for moving body
JP2018194937A (en) Travel control device and travel control method of unmanned carrier
JP4269170B2 (en) Trajectory tracking control method and apparatus
JP2007219960A (en) Position deviation detection device
JP4577247B2 (en) Mobile body and control method thereof
JP7040308B2 (en) Travel control device and travel control method for automatic guided vehicles
JP2021036416A (en) Autonomous robot
JP2022180938A (en) Apparatus for setting travel route
JP2008123116A (en) Automatic carrier and its control method
JP6717132B2 (en) Vehicle traveling control method and vehicle traveling control device
JP4697262B2 (en) Traveling vehicle and traveling vehicle system
WO2023054212A1 (en) Control method and control system
JP2008197922A (en) Unmanned carrier
JP6988547B2 (en) Driving control device
JP5390360B2 (en) Automated guided vehicle
TWI770966B (en) Guidance control method of unmanned self-propelled vehicle
US20230311988A1 (en) Systems and methods for machine steering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4269170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees