WO2016110731A1 - Forward fixation point distance setting device and travel control device - Google Patents

Forward fixation point distance setting device and travel control device Download PDF

Info

Publication number
WO2016110731A1
WO2016110731A1 PCT/IB2015/001079 IB2015001079W WO2016110731A1 WO 2016110731 A1 WO2016110731 A1 WO 2016110731A1 IB 2015001079 W IB2015001079 W IB 2015001079W WO 2016110731 A1 WO2016110731 A1 WO 2016110731A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
vehicle
target
gazing point
forward gazing
Prior art date
Application number
PCT/IB2015/001079
Other languages
French (fr)
Japanese (ja)
Inventor
正康 島影
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2016568152A priority Critical patent/JP6365688B2/en
Publication of WO2016110731A1 publication Critical patent/WO2016110731A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a forward gaze distance setting device and a travel control device. More specifically, the present invention relates to a forward gazing point distance setting device that sets a forward gazing point distance that determines a target traveling position for traveling control, and a traveling control device that includes the forward gazing point distance setting device.
  • Patent Document 1 discloses a technique for setting a longer forward gazing distance that determines a target travel position for steering control as the amount of offset from the vehicle travel center position increases.
  • Patent Document 2 discloses a technique for setting a shorter forward gazing distance as the radius of curvature of the traveling path is smaller.
  • An object of the present invention is to provide a vehicular travel control device capable of achieving both avoidance of approach to a travel path boundary and reduction of uncomfortable feeling given to a driver.
  • a forward gazing distance setting device as one aspect of the present invention is a device that sets a forward gazing distance for setting a target traveling position on a traveling road ahead of the host vehicle, and a target forward gazing distance calculation unit. And a forward gaze distance determining unit.
  • the target forward gazing distance calculation unit sets a target forward gazing distance according to the vehicle speed.
  • the forward gazing distance determination unit is configured to determine a first distance from a vehicle position to a contact point of a tangent line to the travel route boundary line, and a first distance from the vehicle position to the intersection of the vehicle travel direction and the travel route boundary line. When at least one of the two distances is shorter than the target forward gazing point distance, the front gazing point distance is set to be shorter than the target forward gazing point distance.
  • the first distance from the own vehicle position to the contact point of the tangent line to the travel path boundary line, or the second distance from the own vehicle position to the intersection of the own vehicle traveling direction and the travel path boundary line is a target corresponding to the vehicle speed. If it is shorter than the forward gazing distance, setting the forward gazing distance to a distance shorter than the target forward gazing distance according to the vehicle speed can avoid the approach to the road boundary line, and in other cases Then, the uncomfortable feeling given to the driver can be reduced without unnecessarily shortening the forward gaze distance. As a result, it is possible to achieve both the avoidance of approach to the road boundary and the reduction of the uncomfortable feeling given to the driver.
  • FIG. 3 is a control block diagram of a control unit of the vehicle travel control apparatus according to the first embodiment.
  • the flowchart which shows the flow of the traveling control process performed with the control unit of the traveling control apparatus for vehicles which concerns on 1st Embodiment.
  • the schematic diagram which shows the calculation method of the contact on the left road boundary line which concerns on 1st Embodiment.
  • the schematic diagram which shows each parameter and control method of the traveling control performed with the control unit of the traveling control apparatus for vehicles which concerns on 1st Embodiment.
  • the flowchart which shows the flow of the traveling control process performed with the control unit of the traveling control apparatus for vehicles which concerns on 2nd Embodiment.
  • the schematic diagram which shows each parameter and control method of the traveling control performed with the control unit of the traveling control apparatus for vehicles which concerns on 2nd Embodiment.
  • the flowchart which shows the flow of the traveling control process performed with the control unit of the traveling control apparatus for vehicles which concerns on 3rd Embodiment.
  • the schematic diagram which shows each parameter and control method of the traveling control performed with the control unit of the traveling control apparatus for vehicles which concerns on 3rd Embodiment.
  • the travel control device 10 includes a radar 20, a camera 30, a vehicle speed sensor 40, a navigation system 50, a control unit 60, and a travel control actuator 70.
  • a running state sensor that detects the running state of the host vehicle (for example, acceleration, yaw angle, etc.) and the operating state of the host vehicle (accelerator operation, brake operation, steering wheel operation (steering), etc.)
  • the operation state detection sensor which detects this is provided.
  • the radar 20 detects the presence, position (distance and angle from the host vehicle), speed, and relative speed with respect to the host vehicle.
  • the radar 20 As the radar 20, a laser radar, a millimeter wave radar, or the like can be used. Further, the radar 20 outputs the detected data to the control unit 60. As the radar 20, a well-known radar may be used as appropriate, and therefore a detailed description of the configuration is omitted.
  • the camera 30 is attached to the front or side of the host vehicle and captures an image around the host vehicle. For example, the camera 30 images a road segment line or an obstacle on the route.
  • the camera 18 includes, for example, an image sensor such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). The camera 30 outputs the captured image to the control unit 60.
  • CCD charge coupled device
  • CMOS complementary metal-oxide semiconductor
  • the vehicle speed sensor 40 is a sensor that detects the vehicle speed of the host vehicle. Examples of the vehicle speed sensor 40 include a wheel speed sensor that detects the traveling speed of the vehicle by detecting the rotational speed of each wheel of the host vehicle. Further, the vehicle speed sensor 40 outputs the detected speed to the control unit 60. As the vehicle speed sensor 40, a well-known vehicle speed sensor, acceleration sensor, and yaw angle sensor may be used.
  • the navigation system 50 receives a GPS signal from a GPS (Global Positioning System) satellite.
  • GPS Global Positioning System
  • the navigation system 50 also includes a gyroscope that detects the magnitude of the rotational motion applied to the vehicle, an acceleration sensor that detects the travel distance of the vehicle from three-axis acceleration, and a geomagnetic sensor that detects the traveling direction of the vehicle from the geomagnetism. Etc. may be provided.
  • the navigation system 50 stores map information in a recording medium such as a hard disk. This map information includes information on the location and shape of roads and intersections, traffic rules including traffic signs and signals, and the like. Further, the map information may define a travelable area of the vehicle in the lane on the road.
  • the navigation system 50 detects the position of the host vehicle, the direction with respect to the road, and the like based on the GPS signal from the GPS satellite and the map information.
  • the navigation system 50 searches for a route from the departure point to the destination according to the input of the departure point (or current location) and the destination, and uses the searched route and the position information of the own vehicle to reach the destination. The guidance of the route is performed. Further, the navigation system 50 outputs the searched route to the control unit 60 together with the map information. Since a known navigation system may be used as the navigation system 50, a detailed description of the configuration is omitted.
  • the travel control actuator 70 includes an acceleration / deceleration actuator for accelerating / decelerating the host vehicle and a steering actuator for adjusting a steering angle. The travel control actuator 70 operates the acceleration / deceleration actuator and the steering actuator based on the travel control amount transmitted from the control unit 60 to control the travel of the host vehicle.
  • the travel control actuator 70 a known travel control actuator may be used, and thus a detailed description of the configuration is omitted.
  • the control unit 60 performs various calculations based on various information detected by the radar 20, the camera 30, the vehicle speed sensor 40, and the navigation system 50, and sends a control signal corresponding to the calculation result to the travel control actuator 70. By outputting, vehicle steering control (an example of travel control) is performed.
  • vehicle steering control an example of travel control
  • the control unit 60 is formed as an integrated computer including storage means such as a CPU, RAM, ROM, and hard disk.
  • the control unit 60 sets a target travel position (front gaze point) separated by a front gaze distance in front of the host vehicle on the travel path so as to travel on the target travel line of the host vehicle.
  • FIG. 2 is a control block diagram of the control unit 60 according to the first embodiment.
  • the control unit 60 includes a target travel line setting unit 61, a vehicle speed detection unit 62, a target travel position setting unit 63, a forward gaze distance setting unit 64, and a steering control unit 65, and performs the following travel control. To do.
  • the target travel line setting unit 61 sets a target route based on the map information obtained from the navigation system 50 and the vehicle position information.
  • the “target route” is different from the concept of a traveling route (direction) from the departure point to the destination set by the navigation system 50.
  • the target route defines how the host vehicle travels on the travel route on the set travel route, that is, the behavior of the vehicle.
  • Information included in the target route includes a target vehicle speed, a target acceleration, a target steering angle, and the like in addition to the target travel line on the travel route.
  • the vehicle speed detector 62 detects the vehicle speed (vehicle speed) V of the host vehicle based on the signal from the vehicle speed sensor 40.
  • the method for detecting the vehicle speed V is arbitrary. For example, the average value of the wheel speeds of the four wheels and the average value of the wheel speeds of the left and right rear wheels that are driven wheels may be used as the vehicle speed V.
  • the target travel position setting unit 63 calculates a position on the target travel line that is a distance from the forward gazing point distance X from the host vehicle as the target travel position TP.
  • the forward gazing point distance setting unit 64 constitutes the forward gazing point distance setting device according to this embodiment, and sets the forward gazing point distance X based on the map information obtained from the navigation system 50 and the vehicle speed V. . That is, the forward gazing point distance setting unit 64 includes a target forward gazing point distance calculation unit and a forward gazing point distance determination unit.
  • the steering control unit 65 calculates a target curve connecting the host vehicle position and the target travel position TP, calculates a steering control amount for the left and right front wheels based on the target curve, and calculates a travel control actuator based on the calculated steering control amount. 70 is driven.
  • FIG. 3 is a flowchart showing a flow of a traveling control process executed by the control unit 60 of the traveling control apparatus according to the first embodiment. Apart from the control flow shown in FIG. 3, the target travel line setting unit 61 sets a target travel line (target route) based on map information and the like. Further, the target travel line may be configured such that the start point to the end point of the route are divided into a plurality of sections and updated for each section as the host vehicle travels along each section. The control flow shown in FIG.
  • step S11 the forward gazing point distance setting unit 64 reads the left road boundary coordinates and the right road boundary coordinates of the traveling road on which the host vehicle is traveling from the map information acquired from the navigation system 50.
  • the left and right road boundary line coordinates correspond to the coordinates of the left and right boundary lines of the lane that is the travel path on which the host vehicle is traveling.
  • the left and right road boundary coordinates are detected.
  • the vehicle speed detection unit 62 reads the vehicle speed V of the host vehicle.
  • the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x1 (target forward gazing point distance) based on the vehicle speed V detected in step S12.
  • the process of step S13 in the forward gazing point distance setting unit 64 corresponds to the target forward gazing point distance calculation unit.
  • the forward gazing point distance candidate x1 corresponding to the vehicle speed V is obtained by multiplying the vehicle speed V by a predetermined time constant. Accordingly, the forward gazing point distance candidate x1 corresponding to the vehicle speed is set to a larger value as the vehicle speed is higher, that is, a distance farther from the vehicle.
  • the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x2 corresponding to the contact point on the left road boundary line.
  • the contact point on the left road boundary is the tangent drawn from the reference point (for example, the center point) of the own vehicle to the left road boundary within the predetermined distance and the predetermined angle range in front of the own vehicle and the left road boundary. It is a line contact.
  • step S14 first, it is determined whether a tangent line from the reference point of the host vehicle to the left road boundary line exists within a predetermined distance and a predetermined angle range in front of the host vehicle. For example, a method of calculating the forward gazing point distance candidate x2 corresponding to the contact point on the left road boundary line in the present embodiment will be described with reference to FIG.
  • the forward traveling direction is the positive x-axis direction
  • the left side direction of the vehicle is the positive y-axis direction
  • a predetermined distance and a predetermined angular range in front of the host vehicle Select n arbitrary points on the left road boundary in the 1 (X 1 , Y 1 ), P 2 (X 2 , Y 2 ) ... P n (X n , Y n ).
  • the predetermined distance range and the predetermined angle range in front of the host vehicle for extracting an arbitrary point are not particularly limited.
  • the predetermined distance range in front of the host vehicle is preferably a distance corresponding to the forward gaze distance candidate x1 corresponding to at least the vehicle speed V set in step S13. That is, the forward gazing point distance setting unit 64 does not have a tangent contact point from the own vehicle position to the traveling road boundary line within a range corresponding to the forward forward gazing point distance candidate x1 from the own vehicle position on the traveling road. In this case, it is determined that the distance (first distance) from the vehicle position to the contact point of the tangent to the road boundary line is equal to or more than the forward gaze distance candidate x1 corresponding to the vehicle speed.
  • the predetermined angle range in front of the host vehicle can be, for example, an angle range of 180 ° on the vehicle front side from the left lateral direction to the right lateral direction of the vehicle centering on the reference point of the host vehicle. In the example of FIG.
  • this slope m n Decreases as the distance from the host vehicle decreases, reaches a minimum value at a contact point or a point P in the vicinity of the contact point, and then increases as the position of the point further moves away from the host vehicle. Therefore, a plurality of points P 1 ⁇ P n Of the points P corresponding to this change point (minimum value) min A straight line passing through the vehicle is regarded as a tangent line from the reference point (origin point) of the host vehicle to the left road boundary line. min Is regarded as a contact point P on the left road boundary line.
  • the “contact” used in this specification includes not only a true contact but also an approximate value of the contact and a value according to the contact.
  • the slope of the straight line becomes smaller toward 5 To minimize the slope.
  • point P 5 To point P 7 The slope of the straight line increases toward. Therefore, in the example of FIG. 5 Is the change point (minimum value), and this point P 5 Can be regarded as a contact point P on the left road boundary line.
  • point P 5 Is set as the forward gazing point distance candidate x2.
  • the number (n) of points P extracted to determine whether a tangent line exists is not particularly limited as long as it is a number that can identify the change point of the slope.
  • the forward gazing point distance candidate x2 has a null value. For example, when the traveling road within a predetermined distance and a predetermined angle range ahead of the host vehicle is a straight road, there is no tangent to the left / right road boundary line.
  • step S15 the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x3 corresponding to the contact point on the right road boundary line.
  • the contact point calculation method shown in FIG. 4 since the sign of the y coordinate is negative for the point on the right road boundary line, the changing point at which the inclination is maximum is specified. Since other processes are the same as those in step S14, description thereof is omitted.
  • step S16 the forward gaze distance setting unit 64 sets the minimum value among the forward gaze distance candidates x1, x2, and x3 obtained in steps S13 to S15 as the front gaze distance X.
  • the process of step S16 in the forward gazing point distance setting unit 64 corresponds to the forward gazing point distance determination unit. That is, the forward gazing point distance setting unit 64 has a distance x2 from the own vehicle position to the contact point of the tangent line to the left traveling road boundary line and a distance x3 from the own vehicle position to the contact point of the tangent line to the right traveling road boundary line.
  • the front gazing point distance setting unit 64 sets the front gazing point distance to a distance corresponding to the first distance when the first distance is shorter than the target front gazing point distance.
  • the target travel position setting unit 63 calculates, as the target travel position TP, a position on the target travel line that is away from the front gaze distance X from the host vehicle based on the front gaze distance X set in step S16. To do.
  • the reference point of the host vehicle is the origin (0, 0)
  • the forward traveling direction is the x-axis positive direction
  • the left side of the vehicle is the y-axis positive direction.
  • the target travel position TP is calculated by substituting the value of the x coordinate into a function indicating the target travel line.
  • the target travel position TP can be obtained by substituting the value of the x coordinate into this function.
  • the method for calculating the target travel position TP corresponding to the forward gazing point distance X is not limited to this method.
  • a perpendicular line may be drawn from the contact point P to the target travel line, and the intersection of the target travel line and the perpendicular line may be determined as the target travel position TP, or forward from the reference point in the forward traveling direction of the vehicle (on the x axis).
  • a perpendicular line may be drawn to the target travel line from a point separated by the gazing point distance X (point of coordinates (X, 0)), and the intersection of the target travel line and the perpendicular may be determined as the target travel position TP.
  • step S18 the steering control unit 65 calculates a target curve that connects the host vehicle position and the target travel position TP with a constant curvature, and calculates a steering control amount for the left and right front wheels according to the target curve. Then, the travel control actuator 70 is driven based on the calculated steering control amount. At this time, the steering control amount that passes on the target curve may be calculated, but a torque sensor is provided on the steering shaft to detect the driver's steering intervention, and at the time of steering intervention, the steering control amount is set to zero, A steering torque that guides the driver's steering operation to the turning angle of the left and right front wheels that pass on the target curve may be applied.
  • FIG. 1 A steering torque that guides the driver's steering operation to the turning angle of the left and right front wheels that pass on the target curve may be applied.
  • FIG. 5 shows the vehicle position, the target travel line, the left / right road boundary line, the contact point P on the left road boundary line, the forward gazing point distance candidate x1 corresponding to the vehicle speed V, and the contact point P in the travel control of the first embodiment.
  • the corresponding forward gazing point distance candidate x2, the forward gazing point distance X, the target travel position TP, and the target curve are shown.
  • FIG. 5 since there is no tangent to the right road boundary within a predetermined range in front of the vehicle, there is no forward gazing distance candidate x3 corresponding to the contact point on the right road boundary.
  • the target travel position TP ′ is set with the forward gazing point distance candidate x1 corresponding to the vehicle speed V as the forward gazing point distance when the shape of the road is a compound curve, the vehicle is far away from the host vehicle as seen in FIG.
  • the target travel position TP ′ may be set as the position.
  • the target curve to the target travel position target travel position TP ′ becomes a curve that is a shortcut to the curve, and the host vehicle may be too close to the left road boundary line.
  • the contact point P on the left road boundary line is detected, and when the forward gazing point distance candidate x2 corresponding to the contact point P is shorter than the forward gazing point distance candidate x1 corresponding to the vehicle speed V, the contact point P is determined.
  • the corresponding forward gazing point distance candidate x2 is set as the forward gazing point distance X.
  • the target travel position TP is set at a position closer to the host vehicle as compared with the target travel position TP ′ based on the forward gazing distance candidate x1 corresponding to the vehicle speed V. Therefore, the target curve is a curve toward the target travel position TP set at a position close to the host vehicle, and the host vehicle can avoid being too close to the left road boundary line.
  • the forward gazing point distance candidate x2 in the example of FIG. 5 is the vehicle speed. It becomes shorter than the forward gazing point distance candidate x1 according to V. Therefore, the forward gazing point distance X is set to a value smaller than the forward gazing point distance candidate x1 corresponding to the vehicle speed V, and the traveling position of the vehicle can be controlled so as not to approach the nearest convex portion.
  • the front gaze distance can be shortened more than the front gaze distance according to the vehicle speed V, and the vehicle travel position can be controlled to perform the shortcut.
  • the trend can be improved. As a result, it is possible to more reliably achieve both avoidance of approach to the road boundary and reduction of the uncomfortable feeling given to the driver.
  • the device configuration of the travel control device 10 according to the second embodiment is the same as the configuration of the travel control device 10 according to the first embodiment shown in FIGS. In the second embodiment, a part of the traveling control process executed in the control unit 60 is different from the traveling control process of the first embodiment.
  • FIG. 1 The device configuration of the travel control device 10 according to the second embodiment is the same as the configuration of the travel control device 10 according to the first embodiment shown in FIGS. In the second embodiment, a part of the traveling control process executed in the control unit 60 is different from the traveling control process of the first embodiment.
  • FIG. 6 is a flowchart showing a flow of travel control processing executed by the control unit 60 of the vehicle travel control apparatus according to the second embodiment. Similar to the first embodiment, also in the second embodiment, a target travel line (target route) is set based on map information or the like in the target travel line setting unit 61 separately from the control flow shown in FIG. The control flow shown in FIG. 6 is repeatedly executed at a predetermined interval (for example, 10 to 50 milliseconds) from the start to the end of the travel control of the host vehicle.
  • the processing from step S21 to S23 is the same as the processing from step S11 to S13 in FIG.
  • the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x4 corresponding to the intersection of the own vehicle traveling direction and the left road boundary line within a predetermined distance ahead of the own vehicle.
  • x4 is a null value.
  • the distance corresponding to the intersection closest to the host vehicle is set as the forward gaze distance candidate x4.
  • the predetermined distance range in front of the host vehicle for detecting the intersection is not particularly limited.
  • the predetermined distance range ahead of the host vehicle is preferably a distance range corresponding to the forward gaze distance candidate x1 corresponding to the vehicle speed V set in step S23. That is, the forward gazing point distance setting unit 64 determines that the intersection of the traveling direction and the traveling road boundary line from the own vehicle position within the range corresponding to the forward forward gazing point distance candidate x1 from the own vehicle position on the traveling road. If it does not exist, it is determined that the distance (second distance) from the own vehicle position to the intersection of the own vehicle traveling direction and the travel path boundary line is not less than the forward gazing distance candidate x1 corresponding to the vehicle speed.
  • the vehicle progresses from the vehicle position without performing unnecessary calculation processing. It is possible to determine whether the distance (second distance) to the intersection of the direction and the road boundary line is shorter than the forward gazing point distance candidate x1 according to the vehicle speed.
  • the forward traveling direction is the x-axis positive direction
  • the left side direction of the vehicle is the y-axis positive direction
  • the coordinates of the intersection C (x, y) of the left road boundary line and the x axis are detected within the range up to the forward gazing point distance candidate x1.
  • the distance from the host vehicle to this intersection C is set as a forward gazing point distance candidate x4.
  • step S25 as in step S24, the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x5 corresponding to the intersection of the vehicle traveling direction and the left road boundary within a predetermined distance ahead of the host vehicle. To do.
  • step S26 the forward gazing point distance setting unit 64 sets the minimum value among the forward gazing point distance candidates x1, x4, and x5 obtained in steps S23 to S25 as the forward gazing point distance X.
  • the process of step S26 in the forward gaze distance setting unit 64 corresponds to the front gaze distance determination unit.
  • the forward gazing point distance setting unit 64 determines that the distance (second distance) from the own vehicle position to the intersection of the own vehicle traveling direction and the road boundary line is a forward gazing point distance candidate x1 (target forward gazing point) corresponding to the vehicle speed. If it is shorter than (viewpoint distance), the forward gazing point distance is set to a distance shorter than the forward gazing point distance candidate x1 according to the vehicle speed. In the present embodiment, the forward gazing point distance setting unit 64 sets the forward gazing point distance to a distance corresponding to the second distance when the second distance is shorter than the target forward gazing point distance. Since the processes of steps S27 and S28 are the same as the processes of steps S17 and S18 of FIG.
  • FIG. 6 shows the vehicle position, the target travel line, the left / right road boundary line, the intersection C between the vehicle traveling direction and the right road boundary, and the forward gazing distance according to the vehicle speed V in the travel control of the second embodiment.
  • the candidate x1, the forward gazing point distance candidate x5 corresponding to the intersection C, the forward gazing point distance X, the target travel position TP, and the target curve are shown.
  • the forward gaze point corresponding to the intersection of the traveling direction of the own vehicle and the left road boundary
  • the forward gazing point distance candidate x5 corresponding to the intersection C with the right road boundary line is set as the forward gazing point distance X.
  • the forward gaze distance is corrected to a smaller value as the vehicle is directed to the outside of the road, and the follow-up speed to the target travel line is increased.
  • the travel control according to the present embodiment when the road shape changes greatly, for example, when the curve changes from a curve with a small radius of curvature to a straight line or when the road shape changes from a straight line to a curve with a small radius of curvature. Since the front gaze distance becomes shorter than the front gaze distance, the response speed can be temporarily increased.
  • the control gain is unnecessarily increased by setting the forward gazing distance according to the vehicle speed V. This can prevent changes in vehicle behavior. As a result, it is possible to achieve both the avoidance of approach to the road boundary and the reduction of the uncomfortable feeling given to the driver. Further, in the travel control device of the present embodiment, as shown in FIG. 6, when traveling on a travel path having a shape that shifts from a curve with a small radius of curvature to a straight line, a forward note corresponding to the vehicle speed V is used.
  • the forward gazing distance can be shortened more than the forward gazing distance according to the vehicle speed V in the case where the target travel position becomes too large and the outer boundary line is approached too much.
  • the traveling position of the vehicle can be controlled to improve the tendency to turn around. As a result, it is possible to more reliably achieve both avoidance of approach to the road boundary and reduction of the uncomfortable feeling given to the driver.
  • the travel control device of the present embodiment there is no need to determine the shape of the travel path on which the host vehicle is traveling, the posture angle of the host vehicle, its orientation, lateral displacement, etc., and the left and right roads Only by detecting the intersection of the vehicle traveling direction and each road boundary line based on the information on the boundary line, it is possible to perform driving control compatible with avoidance of approaching the road boundary and reduction of uncomfortable feeling given to the driver. effective.
  • (3) Third embodiment The device configuration of the travel control device 10 according to the third embodiment is the same as the configuration of the travel control device 10 according to the first embodiment shown in FIGS. In the third embodiment, the traveling control process executed in the control unit 60 is different from the traveling control process of the first embodiment or the second embodiment.
  • the distance from the own vehicle position to the contact point of the tangent line to the travel path boundary line (first distance), the distance from the own vehicle position to the intersection of the own vehicle traveling direction and the travel path boundary line.
  • the forward gazing point distance is set to a distance corresponding to the minimum value among the (second distance) and the forward gazing point distance (target forward gazing point distance) according to the vehicle speed.
  • the forward gazing point distance candidate (x2, x3) corresponding to the contact point on the road boundary line of the first embodiment, the own vehicle traveling direction and the road boundary line of the second embodiment.
  • FIG. 8 is a flowchart showing a flow of a travel control process executed by the control unit 60 of the vehicle travel control apparatus according to the third embodiment. Similar to the first and second embodiments, in the third embodiment, the target travel line (route information) is set based on the map information and the like in the target travel line setting unit 61 separately from the control flow shown in FIG. Is done. The control flow shown in FIG.
  • step S8 is repeatedly executed at predetermined intervals (for example, 10 to 50 milliseconds) from the start to the end of the travel control of the host vehicle.
  • the processing from step S31 to S35 is the same as the processing from step S11 to S15 in FIG. Since the processes of steps S36 and S37 are the same as the processes of steps S24 and S25 of FIG. 6 of the second embodiment, description thereof will be omitted.
  • step S38 the forward gaze distance setting unit 64 sets the minimum value among the forward gaze distance candidates x1 to x5 obtained in steps S32 to S37 as the front gaze distance X. Since the processes of steps S39 and S40 are the same as the processes of steps S17 and S18 of FIG. 3 of the first embodiment, description thereof will be omitted.
  • FIG. 9 shows the own vehicle position, target travel line, left / right road boundary line, contact point P on the left road boundary line, intersection C between the traveling direction of the own vehicle and the right road boundary line, vehicle speed in the travel control of the third embodiment.
  • a forward gazing point distance candidate x1 corresponding to V, a forward gazing point distance candidate x2 corresponding to the contact point P, a forward gazing point distance candidate x5 corresponding to the intersection C, the forward gazing point distance X, and the target travel position TP are shown. In the example shown in FIG.
  • the forward gazing distance corresponding to the target traveling position TP ′ based on the forward gazing distance candidate x1 corresponding to the vehicle speed V and the intersection C between the own vehicle traveling direction and the right road boundary line.
  • the target travel position TP is set at a position closer to the own vehicle. Therefore, the target curve is a curve toward the target travel position TP set at a position close to the own vehicle. It is possible to avoid that the host vehicle is too close to the left road boundary line.
  • the forward gazing distance is corrected to a small value based on the intersection C between the host vehicle traveling direction and the outer road boundary line, and the target travel The speed of following the line is increased, and approach to the outer road boundary line can be avoided.
  • the traveling control device and the travel control of the present invention have been described in detail above, the present invention is not limited to the above embodiment.
  • the left / right road boundary line information is obtained from the map information of the navigation system 50.
  • the present invention is not limited to this configuration.
  • the left and right road boundary lines may be detected by actually detecting road / lane boundaries, curbs, road lane markings, and the like from the detection results of the radar 20 and the captured image obtained from the camera 30. good.
  • a virtual boundary line can be set and It is also possible to perform the travel control of the first to third embodiments.
  • the forward gazing point distance X is set to the minimum value among the forward gazing point distance candidates x1 to x5, but is not limited to this configuration. That is, at least one of the forward gazing point distance candidates x2 and x3 corresponding to the contact point P on the road boundary line and the forward gazing point distance candidates x4 and x5 corresponding to the intersection C between the own vehicle traveling direction and the road boundary line becomes the vehicle speed V.
  • the forward gazing point distance X may be set to a shorter distance than the forward gazing point distance candidate x1 corresponding to the vehicle speed V when it is smaller than the corresponding forward gazing point distance candidate x1.
  • the forward gazing point distance X may be set to a value obtained by shortening the forward gazing point distance candidate x1 corresponding to the vehicle speed V by a predetermined distance.
  • the forward gazing point distance setting unit 64 intersects the distance (first distance) from the own vehicle position to the contact point of the tangent to the travel path boundary line, the intersection of the own vehicle traveling direction and the travel path boundary line from the own vehicle position. If at least one of the distance to the distance (second distance) is shorter than the forward gazing distance according to the vehicle speed (target forward gazing distance), a predetermined distance is subtracted from the forward gazing distance according to the vehicle speed The distance obtained in this way can be set as the forward gaze distance. Thereby, arithmetic processing can be simplified more.
  • the predetermined distance can be made variable based on the magnitude of the vehicle speed V, or the front gaze distance candidate x1 corresponding to the vehicle speed V and the front gaze distance candidate x2, x3 corresponding to the contact point P or the intersection C can be handled.
  • the predetermined distance may be variable based on the deviation from the forward gazing point distance candidates x4 and x5.
  • a coordinate system is used in which the reference point of the host vehicle is the origin (0, 0), the forward traveling direction is the x-axis positive direction, and the left side of the vehicle is the y-axis positive direction.
  • the present invention is not limited to this configuration.
  • a coordinate system based on the target travel line can be used.
  • Travel control apparatus 20 Radar 30 Camera 40 Vehicle speed sensor 50 Navigation system 60 Control unit 70 Travel control actuator 61 Target travel line setting part 62 Vehicle speed detection part 63 Target travel position setting part 64 Front gaze distance setting part 65 Steering control part

Abstract

A forward fixation point distance setting device (64) which sets a forward fixation point distance (X) for setting a target travel position (TP) ahead of a vehicle on a travel path is equipped with a target forward fixation point distance calculation unit and a forward fixation point distance determination unit. The target forward fixation point distance calculation unit sets a target forward fixation point distance (X1) corresponding to vehicle speed. The forward fixation point distance determination unit sets the forward fixation point distance (X) at a distance shorter than the target forward fixation point distance (X1) if a first distance (X2, X3) from the position of the vehicle to the point of contact tangent to a travel path boundary and/or a second distance (X4, X5) from the position of the vehicle to the point of intersection between the vehicle travel direction and the travel path boundary is shorter than the target forward fixation point distance (X1).

Description

前方注視点距離設定装置および走行制御装置Forward gaze distance setting device and travel control device
 本発明は、前方注視点距離設定装置および走行制御装置に関する。より具体的には、走行制御の目標走行位置を決める前方注視点距離を設定する前方注視点距離設定装置と、前方注視点距離設定装置を備えた走行制御装置に関する。 The present invention relates to a forward gaze distance setting device and a travel control device. More specifically, the present invention relates to a forward gazing point distance setting device that sets a forward gazing point distance that determines a target traveling position for traveling control, and a traveling control device that includes the forward gazing point distance setting device.
 特許文献1には、車両の走行路中央位置からのオフセット量が大きいほど、操舵制御の目標走行位置を決める前方注視点距離を長く設定する技術が開示されている。
 特許文献2には、走行路の曲率半径が小さいほど、前方注視点距離を短く設定する技術が開示されている。
Patent Document 1 discloses a technique for setting a longer forward gazing distance that determines a target travel position for steering control as the amount of offset from the vehicle travel center position increases.
Patent Document 2 discloses a technique for setting a shorter forward gazing distance as the radius of curvature of the traveling path is smaller.
特開2010−76573号公報JP 2010-76573 A 特開平10−167100号公報JP-A-10-167100
 しかしながら、特許文献1に記載された技術では、曲率半径の小さなカーブでオフセット量が大きい場合、カーブの曲率半径とは無関係に前方注視点距離が長く設定されるため、車線逸脱の可能性が高くなる。
 一方、特許文献2に記載された技術では、車線逸脱の可能性が低い場合でも曲率半径の小さなカーブでは常に前方注視点距離が短く設定されるため、操舵制御の制御ゲインが強くなりすぎて車両挙動が大きく変化することでドライバに違和感を与えてしまう。
 本発明の目的は、走行路境界への接近の回避とドライバに与える違和感の軽減との両立を図ることができる車両用走行制御装置を提供することにある。
However, in the technique described in Patent Document 1, when the offset amount is large with a curve having a small curvature radius, the front gaze distance is set to be long regardless of the curvature radius of the curve, and thus there is a high possibility of lane departure. Become.
On the other hand, in the technique described in Patent Document 2, even if the possibility of lane departure is low, the front gaze distance is always set to be short for a curve with a small radius of curvature, so that the control gain of the steering control becomes too strong. If the behavior changes greatly, the driver feels uncomfortable.
An object of the present invention is to provide a vehicular travel control device capable of achieving both avoidance of approach to a travel path boundary and reduction of uncomfortable feeling given to a driver.
 本発明のひとつの態様としての前方注視点距離設定装置は、自車前方の走行路上に目標走行位置を設定するための前方注視点距離を設定する装置であって、目標前方注視点距離算出部と前方注視点距離決定部を備える。前記目標前方注視点距離算出部は、車速に応じた目標前方注視点距離を設定する。前記前方注視点距離決定部は、自車位置から走行路境界線への接線の接点までの第1の距離と、前記自車位置から自車進行方向と前記走行路境界線の交差点までの第2の距離との少なくともいずれかが、前記目標前方注視点距離よりも短い場合は、前記前方注視点距離を前記目標前方注視点距離よりも短い距離に設定する。 A forward gazing distance setting device as one aspect of the present invention is a device that sets a forward gazing distance for setting a target traveling position on a traveling road ahead of the host vehicle, and a target forward gazing distance calculation unit. And a forward gaze distance determining unit. The target forward gazing distance calculation unit sets a target forward gazing distance according to the vehicle speed. The forward gazing distance determination unit is configured to determine a first distance from a vehicle position to a contact point of a tangent line to the travel route boundary line, and a first distance from the vehicle position to the intersection of the vehicle travel direction and the travel route boundary line. When at least one of the two distances is shorter than the target forward gazing point distance, the front gazing point distance is set to be shorter than the target forward gazing point distance.
 自車位置から走行路境界線への接線の接点までの第1の距離、または、自車位置から自車進行方向と走行路境界線の交差点までの第2の距離が、車速に応じた目標前方注視点距離よりも短い場合は、前方注視点距離を車速に応じた目標前方注視点距離よりも短い距離に設定することで、走行路境界線への接近を回避できるとともに、上記以外の場合では、前方注視点距離を不要に短縮することなくドライバに与える違和感を軽減することができる。
 この結果、走行路境界への接近の回避とドライバに与える違和感の軽減との両立を図ることができる。
The first distance from the own vehicle position to the contact point of the tangent line to the travel path boundary line, or the second distance from the own vehicle position to the intersection of the own vehicle traveling direction and the travel path boundary line is a target corresponding to the vehicle speed. If it is shorter than the forward gazing distance, setting the forward gazing distance to a distance shorter than the target forward gazing distance according to the vehicle speed can avoid the approach to the road boundary line, and in other cases Then, the uncomfortable feeling given to the driver can be reduced without unnecessarily shortening the forward gaze distance.
As a result, it is possible to achieve both the avoidance of approach to the road boundary and the reduction of the uncomfortable feeling given to the driver.
第1実施形態に係る車両用走行制御装置の構成を示すブロック図。The block diagram which shows the structure of the traveling control apparatus for vehicles which concerns on 1st Embodiment. 第1実施形態に係る車両用走行制御装置のコントロールユニットの制御ブロック図。FIG. 3 is a control block diagram of a control unit of the vehicle travel control apparatus according to the first embodiment. 第1実施形態に係る車両用走行制御装置のコントロールユニットで実行される走行制御処理の流れを示すフローチャート。The flowchart which shows the flow of the traveling control process performed with the control unit of the traveling control apparatus for vehicles which concerns on 1st Embodiment. 第1実施形態に係る左側道路境界線上の接点の算出方法を示す模式図。The schematic diagram which shows the calculation method of the contact on the left road boundary line which concerns on 1st Embodiment. 第1実施形態に係る車両用走行制御装置のコントロールユニットで実行される走行制御の各パラメータと制御方法を示す模式図。The schematic diagram which shows each parameter and control method of the traveling control performed with the control unit of the traveling control apparatus for vehicles which concerns on 1st Embodiment. 第2実施形態に係る車両用走行制御装置のコントロールユニットで実行される走行制御処理の流れを示すフローチャート。The flowchart which shows the flow of the traveling control process performed with the control unit of the traveling control apparatus for vehicles which concerns on 2nd Embodiment. 第2実施形態に係る車両用走行制御装置のコントロールユニットで実行される走行制御の各パラメータと制御方法を示す模式図。The schematic diagram which shows each parameter and control method of the traveling control performed with the control unit of the traveling control apparatus for vehicles which concerns on 2nd Embodiment. 第3実施形態に係る車両用走行制御装置のコントロールユニットで実行される走行制御処理の流れを示すフローチャート。The flowchart which shows the flow of the traveling control process performed with the control unit of the traveling control apparatus for vehicles which concerns on 3rd Embodiment. 第3実施形態に係る車両用走行制御装置のコントロールユニットで実行される走行制御の各パラメータと制御方法を示す模式図。The schematic diagram which shows each parameter and control method of the traveling control performed with the control unit of the traveling control apparatus for vehicles which concerns on 3rd Embodiment.
(1)第1実施形態
 図1を参照して、本実施形態に係る走行制御装置10の構成を説明する。図1に示すように、本実施形態に係る走行制御装置10は、レーダ20と、カメラ30と、車速センサ40と、ナビゲーションシステム50と、コントロールユニット60と、走行制御アクチュエータ70とを備える。また、図示はされていないが、自車両の走行状態(例えば、加速度、ヨー角など)を検出する走行状態センサや、自車両の操作状態(アクセル操作、ブレーキ操作、ハンドル操作(操舵)など)を検出する操作状態検出センサを備えている。
 レーダ20は、自車両周辺の車両、バイク、自転車、歩行者などの存在、位置(自車両からの距離や角度)、速度及びこれらの自車両に対する相対速度を検出する。レーダ20としては、レーザレーダやミリ波レーダなどを用いることが出来る。また、レーダ20は、検出したデータをコントロールユニット60に出力する。レーダ20としては、適宜周知のレーダを用いてもよいため、より詳細な構成についての説明は省略する。
 カメラ30は、例えば、自車両の前方や側方に取り付けられており、自車両の周囲における画像を撮像している。例えば、カメラ30は、進路上の道路区間線や障害物を撮像している。カメラ18は、カメラ18は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal−Oxide Semiconductor)などの撮像素子を有する。カメラ30は、撮像した画像をコントロールユニット60に出力する。カメラ30としては、適宜周知のカメラを用いてもよいため、より詳細な構成についての説明は省略する。
 車速センサ40は、自車両の車速を検出するセンサである。車速センサ40としては、例えば、自車両の各車輪の回転速度を検出することにより車両の走行速度を検出する車輪速センサがある。また、車速センサ40は、検出した速度をコントロールユニット60に出力する。車速センサ40としては、周知の車速センサ、加速度センサ、ヨー角センサを用いてもよいため、より詳細な構成についての説明は省略する。
 ナビゲーションシステム50は、GPS(Global Positioning System)衛星からのGPS信号を受信する。また、ナビゲーションシステム50は、車両に加えられる回転運動の大きさを検出するジャイロスコープ、3軸方向の加速度などから車両の走行距離を検出する加速度センサ、地磁気から車両の進行方向を検出する地磁気センサなどを備えていてもよい。ナビゲーションシステム50は、ハードディスクなどの記録媒体に地図情報を記憶している。この地図情報は、道路や交差点の場所や形状、交通標識や信号を含む交通規則などに関する情報を含んでいる。また、地図情報は、道路上の車線内における車両の走行可能領域を定義するものであってもよい。ナビゲーションシステム50は、GPS衛星からのGPS信号と地図情報とに基づいて、自車両の位置や道路に対する向きなどを検出する。ナビゲーションシステム50は、出発地(あるいは現在地)と目的地との入力に応じて、出発地から目的地までの進路を検索し、検索された進路と自車両の位置情報とを用いて目的地までの進路誘導を行う。また、ナビゲーションシステム50は、検索された進路を地図情報とともにコントロールユニット60に出力する。ナビゲーションシステム50としては、周知のナビゲーションシステムを用いてもよいため、より詳細な構成についての説明は省略する。
 走行制御アクチュエータ70は、自車両を加減速させるための加減速アクチュエータおよび操舵角を調整する操舵アクチュエータを備えている。走行制御アクチュエータ70は、コントロールユニット60から送信された走行制御量に基づいて加減速アクチュエータおよび操舵アクチュエータを作動させて、自車両の走行を制御する。走行制御アクチュエータ70としては、周知の走行制御アクチュエータを用いてもよいため、より詳細な構成についての説明は省略する。
 コントロールユニット60は、レーダ20、カメラ30、車速センサ40、およびナビゲーションシステム50によって検出される各種の情報に基づいて、種々の演算を行い、この演算結果に応じた制御信号を走行制御アクチュエータ70に出力することにより、車両の操舵制御(走行制御の一例)を行う。なお、本実施形態においては、コントロールユニット60は、CPU、RAM、ROM、ハードディスク等の記憶手段からなる一体型のコンピューターとして形成されている。
 コントロールユニット60は、走行制御として、自車両の目標走行ライン上を走行するように、走行路上の自車前方に前方注視点距離だけ離れた目標走行位置(前方注視点)を設定し、その目標走行位置を車両が走行するように走行制御アクチュエータ70を駆動して左右前輪を転舵させる操舵制御を実行する。
 図2は、実施形態1に係るコントロールユニット60の制御ブロック図である。コントロールユニット60は、目標走行ライン設定部61と、車速検出部62と、目標走行位置設定部63と、前方注視点距離設定部64と、操舵制御部65を備え、以下に示す走行制御を実施する。
 目標走行ライン設定部61は、ナビゲーションシステム50から得られた地図情報と自車位置情報に基づいて、目標経路を設定する。ここで言う「目標経路」とは、ナビゲーションシステム50によって設定される出発地から目的地までの走行進路(道順)という概念とは異なる。目標経路は、設定された走行進路上の走行路を自車両がどのように走行するか、つまり車両の挙動を定義するものである。目標経路に含まれる情報は、走行路上の目標走行ラインに加え、目標車速、目標加速度、目標操舵角等である。
 車速検出部62は、車速センサ40からの信号に基づいて、自車両の車体速(車速)Vを検出する。車速Vの検出方法は任意であり、例えば、4輪の各車輪速の平均値、従動輪である左右後輪の車輪速の平均値を車速Vとしてもよい。
 目標走行位置設定部63は、目標走行ライン上の自車から前方注視点距離X離れた位置を目標走行位置TPとして算出する。
 前方注視点距離設定部64は、本実施形態に係る前方注視点距離設定装置を構成するものであり、ナビゲーションシステム50から得た地図情報、車速Vに基づいて、前方注視点距離Xを設定する。つまり、前方注視点距離設定部64は、目標前方注視点距離算出部と前方注視点距離決定部を備える。
 操舵制御部65は、自車位置と目標走行位置TPとを結ぶ目標曲線を算出し、目標曲線に基づいて左右前輪の操舵制御量を算出するとともに、算出した操舵制御量に基づいて走行制御アクチュエータ70を駆動する。
 図3は、第1実施形態に係る走行制御装置のコントロールユニット60で実行される走行制御処理の流れを示すフローチャートである。
 図3に示される制御フローとは別に、目標走行ライン設定部61において、地図情報などに基づき目標走行ライン(目標経路)が設定される。また、目標走行ラインは、経路の出発点から終点までを複数の区間に区切り、自車両が経路に沿って各区間を走行するのに伴い区間ごとに更新されるように構成しても良い。
 図3に示される制御フローは、自車両の走行制御の開始から終了まで所定の間隔(例えば、10~50ミリ秒)で繰り返し実行されるものである。
 ステップS11では、前方注視点距離設定部64において、ナビゲーションシステム50から取得される地図情報から、自車両が走行している走行路の左側道路境界線座標及び右側道路境界線座標を読み込む。ここで、左側・右側道路境界線座標は、自車両が走行している走行路である車線の左側・右側境界線の座標に対応している。本実施形態においては、自車両の基準点(たとえば中心点)を原点(0,0)とし、自車両の前方進行方向をx軸それに直交する自車両の左側方方向をy軸とした座標系における左側・右側道路境界線座標を検出している。
 ステップS12では、車速検出部62において、自車両の車速Vを読み込む。
 ステップS13では、前方注視点距離設定部64において、ステップS12で検出された車速Vに基づいて、前方注視点距離候補x1(目標前方注視点距離)を算出する。前方注視点距離設定部64におけるステップS13の処理が、目標前方注視点距離算出部に対応する。ここで、車速Vに応じた前方注視点距離候補x1は、車速Vにあらかじめ設定された所定の時定数を乗算して求める。したがって、車速に応じた前方注視点距離候補x1は、車速が速いほど大きい値、即ち車両から遠く離れた距離に設定される。
 ステップS14では、前方注視点距離設定部64において、左側道路境界線上の接点に対応する前方注視点距離候補x2を算出する。ここで、左側道路境界線上の接点とは、自車両の前方の所定距離内および所定角度範囲内において、自車両の基準点(例えば中心点)から左側道路境界線へ引いた接線と左側道路境界線の接点である。走行路の形状によっては、自車両の前方の所定距離内および所定角度範囲内において接線が存在しない場合もあり得る。したがって、ステップS14においては、まず、自車両の前方の所定距離内および所定角度範囲内において、自車両の基準点から左側道路境界線への接線が存在するかを判定する。
 例えば、本実施形態における左側道路境界線上の接点に対応する前方注視点距離候補x2を算出方法を、図4を参照して説明する。まず、自車両の基準点を原点(0,0)とし前方進行方向をx軸正方向、車両左側方向をy軸正方向とする座標系において、自車両の前方の所定距離内および所定角度範囲内の左側道路境界線上のn個の任意の点を選び、それぞれの座標P(x,y),P(x,y)…P(x,y)を判定する。ここで、任意の点を抽出するための自車両前方の所定距離範囲と所定角度範囲は特に限定されない。自車両前方の所定距離範囲は、少なくともステップS13において設定された車速Vに応じた前方注視点距離候補x1に対応する距離とすることが好ましい。つまり、前方注視点距離設定部64は、走行路上の自車位置から前方の前方注視点距離候補x1に対応する距離内の範囲において自車位置から走行路境界線への接線の接点が存在しない場合は、自車位置から走行路境界線への接線の接点までの距離(第1の距離)は車速に応じた前方注視点距離候補x1以上であると判断する。このように、接点が存在するかどうかを判断する範囲を前方注視点距離候補x1に対応する距離内の範囲に限定することで、不要な演算処理を行わずに、自車位置から走行路境界線への接線の接点までの距離(第1の距離)が車速に応じた前方注視点距離候補x1よりも短いかどうかを判断することが出来る。自車両前方の所定角度範囲は、例えば、自車両の基準点を中心として、車両の左真横方向から右真横方向までの車両前方側の180°の角度範囲とすることが出来る。図4の例では、自車両の左真横方向(y軸正方向)から、自車両から車速Vに応じた前方注視点距離候補x1の距離内における、左側道路境界線上の点P~Pを選択し、点P~Pの座標を順に求める。そして、自車両の基準点(原点(0,0))と各点P~Pを通る各直線について、車両進行方向(x軸)に対する傾きm(tanθ=y/x)を算出する。自車両の基準点から左側道路境界線への接線を引くことが出来る場合は、この傾きmが自車両から離れるにつれて減少し、接点または接点近傍の点Pにおいて最小値となり、その後さらに点の位置が自車両から離れるにつれて傾きが増加していく。したがって、複数の点P~Pのうち、この変化点(最小値)に対応する点Pminを通る直線を、自車両の基準点(原点)から左側道路境界線への接線とみなし、点Pminを左側道路境界線上の接点Pとみなす。つまり、本明細書において使用される「接点」とは、真の接点のみではなく、接点の近似値や接点に準じる値も含む。図4の例では、点Pから点Pに向かって直線の傾きが小さくなり、点Pで傾きが最小となる。そして、点Pから点Pに向かって直線の傾きが増加する。したがって、図4の例では、点Pが変化点(最小値)であり、この点Pを左側道路境界線上の接点Pとみなすことができる。そして、点Pのx座標の値を前方注視点距離候補x2として設定する。
 ここで、接線が存在するかを判定するために抽出する点Pの数(n)は、傾きの変化点を特定することができる個数であればよく、特に限定されない。例えば8~12個程度が好ましく、多くても数十個程度である。
 また、接線が存在するかの判定方法と接線・接点の算出方法は上記の方法に限定されず、微分法による演算など、いかなる公知の接線や接点の検出方法を使用することが出来る。
 なお、ステップS14において接線が存在しない場合は、前方注視点距離候補x2は空値となる。例えば、自車両の前方の所定距離内および所定角度範囲内の走行路が直線道路である場合は、左側・右側道路境界線との接線は存在しない。また、車両前方の所定距離範囲内と所定角度範囲内に左側道路境界線への接線と接点が複数存在する場合は、複数の接点のうち自車両に一番近い位置に存在する接点の座標に対応する距離を前方注視点距離候補x2とする。
 ステップS15では、ステップS14と同様に、前方注視点距離設定部64において、右側道路境界線上の接点に対応する前方注視点距離候補x3を算出する。図4に示す接点の算出方法を適用する場合は、右側道路境界線上の点はy座標の符号が負となるため、傾きが最大となる変化点を特定することになる。その他の処理はステップS14と同一であるので説明を省略する。
 ステップS16では、前方注視点距離設定部64において、ステップS13~S15で得た前方注視点距離候補x1、x2、x3のうちの最小値を、前方注視点距離Xに設定する。前方注視点距離設定部64におけるステップS16の処理が、前方注視点距離決定部に対応する。つまり、前方注視点距離設定部64は、自車位置から左側走行路境界線への接線の接点までの距離x2と前記自車位置から右側走行路境界線への接線の接点までの距離x3のうち短い方を自車位置から走行路境界線への接線の接点までの距離(第1の距離)とし、第1の距離が車速に応じた前方注視点距離候補x1(目標前方注視点距離)よりも短い場合は、前方注視点距離を車速に応じた前方注視点距離候補x1よりも短い距離に設定する。本実施形態においては、前方注視点距離設定部64は、第1の距離が目標前方注視点距離よりも短い場合に、前方注視点距離を、第1の距離に対応した距離に設定する。
 ステップS17では、目標走行位置設定部63において、ステップS16で設定された前方注視点距離Xに基づき、目標走行ライン上の自車から前方注視点距離X離れた位置を目標走行位置TPとしてを算出する。本実施形態においては、自車両の基準点を原点(0,0)とし前方進行方向をx軸正方向、車両左側方をy軸正方向とする座標系において、前方注視点距離Xに対応するx座標の値を目標走行ラインを示す関数に代入して目標走行位置TPを算出している。例えば、目標走行ラインが左側境界線と右側境界線の中心を通る関数として定義されている場合は、この関数にx座標の値を代入して目標走行位置TPを求めることが出来る。しかし、前方注視点距離Xに対応する目標走行位置TPを算出する方法は、この方法に限定されない。例えば、接点Pから目標走行ラインに垂線を引き、目標走行ラインと垂線との交点を目標走行位置TPと決定しても良いし、自車前方進行方向(x軸上)で、基準点から前方注視点距離Xだけ離れた点(座標(X,0)の点)から目標走行ラインに垂線を引き、目標走行ラインと垂線との交点を目標走行位置TPと決定しても良い。
 ステップS18では、操舵制御部65において、自車位置と目標走行位置TPとを一定曲率で結ぶ目標曲線を算出し、目標曲線に応じた左右前輪の操舵制御量を算出する。そして、算出された操舵制御量に基づいて走行制御アクチュエータ70を駆動する。このとき、目標曲線上を通過するような操舵制御量を算出してもよいが、ステアリングシャフト上にトルクセンサを設けてドライバの操舵介入を検出し、操舵介入時には操舵制御量をゼロとしたり、目標曲線上を通過する左右前輪の転舵角までドライバの操舵操作を誘導するような操舵トルクを与えたりしてもよい。
 図5に、第1実施形態の走行制御における自車位置、目標走行ライン、左側・右側道路境界線、左側道路境界線上の接点P、車速Vに応じた前方注視点距離候補x1、接点Pに対応する前方注視点距離候補x2、前方注視点距離X、目標走行位置TPおよび目標曲線を示す。図5に示される例では、車両前方の所定範囲内において右側道路境界線への接線は存在しないため、右側道路境界線上の接点に対応する前方注視点距離候補x3は存在しない。
 図5では、道路の形状が複合カーブ(S字形状など)の場合に、自車両に近い側のカーブに自車両が進入していく場合を示している。道路の形状が複合カーブである場合に、車速Vに応じた前方注視点距離候補x1を前方注視点距離として目標走行位置TP’を設定すると、図5に見られるように自車両から遠く離れた位置に目標走行位置TP’が設定されてしまうことがある。このような場合、目標走行位置目標走行位置TP’への目標曲線が、カーブをショートカットするような曲線となってしまい、自車両が左側道路境界線へ接近しすぎてしまう恐れがある。
 本実施形態においては、左側道路境界線上の接点Pを検出し、この接点Pに対応する前方注視点距離候補x2が車速Vに対応する前方注視点距離候補x1よりも短い場合は、接点Pに対応する前方注視点距離候補x2を前方注視点距離Xとして設定する。これにより、図5に示されるように、車速Vに応じた前方注視点距離候補x1に基づく目標走行位置TP’と比べると、自車両により近い位置に目標走行位置TPが設定される。したがって、目標曲線は自車両に近い位置に設定された目標走行位置TPへ向かう曲線となり、自車両が左側道路境界線に接近しすぎることを回避することが出来る。つまり、車両前方のカーブの最寄りの凸部まの距離が近くなると、自車両からこの凸部への接線の接点までの距離(図5の例では前方注視点距離候補x2)の方が、車速Vに応じた前方注視点距離候補x1よりも短くなる。したがって、前方注視点距離Xが車速Vに応じた前方注視点距離候補x1よりも小さい値に設定され、この最寄りの凸部に接近しないように車両の走行位置を制御することが出来る。一方、接点が存在しない場合(最寄りにカーブの凸部が無い場合)は、車速Vに応じた前方注視点距離を設定することで、制御ゲインが不要に大きくなることを防ぎ、車両挙動変化を抑制できる。この結果、走行路境界への接近の回避とドライバに与える違和感の軽減との両立を図ることができる。
 本実施形態の走行制御装置では、曲率半径の小さいカーブや、直線から曲率半径の小さいカーブに移行するような形状の走行路を走行している際に、車速Vに応じた前方注視点距離に基づき目標走行位置を設定するとカーブをショートカットしてしまうような場合にも、車速Vに応じた前方注視点距離よりも前方注視点距離を短縮することができ、車両の走行位置を制御してショートカット傾向を改善することができる。この結果、走行路境界への接近の回避とドライバに与える違和感の軽減との両立をより確実に図ることができる。
 また、本実施形態の走行制御装置では、自車が走行している走行路の形状や、自車両の走行路に対する姿勢角やその向き、横変位などを判定する必要が無く、左側・右側道路境界線の情報に基づき各道路境界線の接点を検出するのみで、走行路境界への接近の回避とドライバに与える違和感の軽減との両立する走行制御を行うことが出来るという効果がある。
(2)第2実施形態
 第2実施形態に係る走行制御装置10の装置構成は図1および2に示される第1実施形態に係る走行制御装置10の構成と同一であるので説明を省略する。第2実施形態では、コントロールユニット60において実行される走行制御処理の一部が第1実施形態の走行制御処理と相違する。
 図6は、第2実施形態に係る車両用走行制御装置のコントロールユニット60で実行される走行制御処理の流れを示すフローチャートである。
 第1実施形態と同様に、第2実施形態においても、図6に示される制御フローとは別に目標走行ライン設定部61において、地図情報などに基づき目標走行ライン(目標経路)が設定される。
 図6に示される制御フローは、自車両の走行制御の開始から終了まで所定の間隔(例えば、10~50ミリ秒)で繰り返し実行されるものである。
 ステップS21~S23までの処理は、第1実施形態の図3のステップS11~S13までの処理と同一であるので説明を省略する。
 ステップS24では、前方注視点距離設定部64において、自車前方の所定距離内における自車進行方向と左側道路境界線との交差点に対応する前方注視点距離候補x4を算出する。ここで、自車進行方向と左側道路境界線との交差点が存在しない場合もあり得る。交差点が存在しない場合は、x4は空値となる。また、所定距離範囲内に交差点が複数存在する場合は、自車両に一番近い位置にある交差点に対応する距離を前方注視点距離候補x4とする。ここで、交差点を検出する自車両前方の所定距離範囲は特に限定されない。自車両前方の所定距離範囲は、少なくともステップS23において設定された車速Vに応じた前方注視点距離候補x1に対応する距離範囲とすることが好ましい。つまり、前方注視点距離設定部64は、走行路上の自車位置から前方の前方注視点距離候補x1に対応する距離内の範囲において自車位置から自車進行方向と走行路境界線の交差点が存在しない場合は、自車位置から自車進行方向と前記走行路境界線の交差点までの距離(第2の距離)は車速に応じた前方注視点距離候補x1以上であると判断する。このように、交差点が存在するかどうかを判断する範囲を前方注視点距離候補x1に対応する距離内の範囲に限定することで、不要な演算処理を行わずに、自車位置から自車進行方向と前記走行路境界線の交差点までの距離(第2の距離)が車速に応じた前方注視点距離候補x1よりも短いかどうかを判断することが出来る。
 本実施形態においては、自車両の基準点を原点(0,0)とし前方進行方向をx軸正方向、車両左側方向をy軸正方向とする座標系において、自車両から車速Vに応じた前方注視点距離候補x1までの範囲内で左側道路境界線とx軸との交差点C(x,y)の座標を検出する。自車両からこの交差点Cまでの距離を、前方注視点距離候補x4と設定する。
 ステップS25では、ステップS24と同様に、前方注視点距離設定部64において、自車前方の所定距離内における自車進行方向と左側道路境界線との交差点に対応する前方注視点距離候補x5を算出する。
 ステップS26では、前方注視点距離設定部64において、ステップS23~S25で得た前方注視点距離候補x1、x4、x5のうちの最小値を、前方注視点距離Xに設定する。前方注視点距離設定部64におけるステップS26の処理が、前方注視点距離決定部に対応する。つまり、前方注視点距離設定部64は、自車位置から自車進行方向と走行路境界線の交差点までの距離(第2の距離)が車速に応じた前方注視点距離候補x1(目標前方注視点距離)よりも短い場合は、前方注視点距離を車速に応じた前方注視点距離候補x1よりも短い距離に設定する。本実施形態においては、前方注視点距離設定部64は、第2の距離が目標前方注視点距離よりも短い場合に、前方注視点距離を、第2の距離に対応した距離に設定する。
 ステップS27とS28の処理は第1実施形態の図3のステップS17とS18の処理と同一であるので説明を省略する。
 図6に、第2実施形態の走行制御における自車位置、目標走行ライン、左側・右側道路境界線、自車両進行方向と右側道路境界線との交差点C、車速Vに応じた前方注視点距離候補x1、交差点Cに対応する前方注視点距離候補x5、前方注視点距離X、目標走行位置TPおよび目標曲線を示す。図6に示される例では、車両前方の所定範囲内において自車進行方向と左側道路境界線との交差点は存在しないため、自車進行方向と左側道路境界線との交差点に対応する前方注視点距離候補x4は存在しない。
 図6に示されるように、車両が曲線路の外側を向いて走行しているような場合に、車速Vに応じて前方注視点距離を設定すると、目標走行位置TP’が自車両から遠く離れた位置に設定されてしまい、目標曲線が大回り傾向になり外側境界線に接近しすぎてしまう場合がある。
 本実施形態においては、図6に示されるように、自車両前方の所定距離内において自車進行方向と道路境界線(図6の例では右側道路境界線)との交差点Cが存在し、自車両から交差点Cまでの距離(前方注視点距離候補x5)が車速Vに応じた前方注視点距離候補x1よりも小さい場合は、前方注視点距離が車速Vに応じた前方注視点距離候補x1よりも短く設定される。具体的には、右側道路境界線との交差点Cに対応する前方注視点距離候補x5を前方注視点距離Xとする。これにより、車両の道路の外側を向くほど、前方注視点距離が小さい値に修正され、目標走行ラインへの追従速度が高くなる。本実施形態による走行制御によれば、例えば曲率半径が小さいカーブから直線へ移行したり、直線から曲率半径が小さいカーブに移行するなど道路形状が大きく変化するような場合に、車速Vに応じた前方注視点距離よりも前方注視点距離が短くなるため、一時的に応答速度を高くすることができる。一方、所定距離範囲内に交差点が存在しない場合(自車両が走行路の外側を向いていない場合)は、車速Vに応じた前方注視点距離を設定することで、制御ゲインが不要に大きくなることを防ぎ、車両挙動変化を抑制できる。この結果、走行路境界への接近の回避とドライバに与える違和感の軽減との両立を図ることができる。
 また、本実施形態の走行制御装置では、図6に示されるように、曲率半径の小さいカーブから直線に移行するような形状の走行路を走行している際に、車速Vに応じた前方注視点距離に基づき目標走行位置を設定すると大回りになってしまい外側境界線に接近しすぎてしまうような場合に、車速Vに応じた前方注視点距離よりも前方注視点距離を短縮することができ、車両の走行位置を制御して大回り傾向を改善することができる。この結果、走行路境界への接近の回避とドライバに与える違和感の軽減との両立をより確実に図ることができる。
 また、本実施形態の走行制御装置では、自車が走行している走行路の形状や、自車両の走行路に対する姿勢角やその向き、横変位などを判定する必要が無く、左側・右側道路境界線の情報に基づき自車進行方向と各道路境界線の交差点を検出するのみで、走行路境界への接近の回避とドライバに与える違和感の軽減との両立する走行制御を行うことが出来るという効果がある。
(3)第3実施形態
 第3実施形態に係る走行制御装置10の装置構成は図1および2に示される第1実施形態に係る走行制御装置10の構成と同一であるので説明を省略する。第3実施形態では、コントロールユニット60において実行される走行制御処理が第1実施形態や第2実施形態の走行制御処理と相違する。つまり、第3実施形態においては、自車位置から走行路境界線への接線の接点までの距離(第1の距離)、自車位置から自車進行方向と走行路境界線の交差点までの距離(第2の距離)、および車速に応じた前方注視点距離(目標前方注視点距離)のうちの最小値に対応した距離に前方注視点距離を設定する。具体的には、第3実施形態においては、第1実施形態の道路境界線上の接点に応じた前方注視点距離候補(x2,x3)と、第2実施形態の自車進行方向と道路境界線との交差点に応じた前方注視点距離候補(x4,x5)の両方を算出し、これらの前方注視点距離候補(x2,x3,x4,x5)と車速Vに応じた前方注視点距離候補(x1)のうち最小値を前方注視点距離Xとして設定するものである。
 図8は、第3実施形態に係る車両用走行制御装置のコントロールユニット60で実行される走行制御処理の流れを示すフローチャートである。
 第1・第2実施形態と同様に、第3実施形態においても、図8に示される制御フローとは別に目標走行ライン設定部61において、地図情報などに基づき目標走行ライン(経路情報)が設定される。
 図8に示される制御フローは、自車両の走行制御の開始から終了まで所定の間隔(例えば、10~50ミリ秒)で繰り返し実行されるものである。
 ステップS31~S35までの処理は、第1実施形態の図3のステップS11~S15までの処理と同一であるので説明を省略する。
 ステップS36とS37の処理は、第2実施形態の図6のステップS24とS25の処理と同一であるので説明を省略する。
 ステップS38においては、前方注視点距離設定部64において、ステップS32~S37で得た前方注視点距離候補x1~x5のうちの最小値を、前方注視点距離Xに設定する。
 ステップS39とS40の処理は第1実施形態の図3のステップS17とS18の処理と同一であるので説明を省略する。
 図9に、第3実施形態の走行制御における自車位置、目標走行ライン、左側・右側道路境界線、左側道路境界線上の接点P、自車両進行方向と右側道路境界線との交差点C、車速Vに応じた前方注視点距離候補x1、接点Pに対応する前方注視点距離候補x2、交差点Cに対応する前方注視点距離候補x5、前方注視点距離X、および目標走行位置TPを示す。図9に示される例では、車両前方の所定範囲内において右側道路境界線への接線と、自車進行方向と左側道路境界線との交差点は存在しないため、右側道路境界線上の接点に対応する前方注視点距離候補x3と自車進行方向と左側道路境界線との交差点に対応する前方注視点距離候補x4は存在しない。
 図9に示される例では、車両前方の所定距離範囲内(この例では、車速Vに応じた前方注視点距離候補x1までの範囲)において、自車両の基準点から左側道路境界線への接線の接点Pと、自車進行方向と右側道路境界線との交差点Cが存在する場合である。このような場合は、車速Vに応じた前方注視点距離候補x1と、左側道路境界線上の接点Pに対応する前方注視点距離候補x2と、自車進行方向と右側道路境界線との交差点Cに対応する前方注視点距離候補x5のうち最小値である接点Pに対応する前方注視点距離候補x2を前方注視点距離Xとして設定する。これにより、図9に示されるように、車速Vに応じた前方注視点距離候補x1に基づく目標走行位置TP’や自車進行方向と右側道路境界線との交差点Cに対応する前方注視点距離候補x5に基づく目標走行位置TP”と比べると、自車両により近い位置に目標走行位置TPが設定される。したがって、目標曲線は自車両に近い位置に設定された目標走行位置TPへ向かう曲線となり、自車両が左側道路境界線に接近しすぎることを回避することが出来る。
 また、本実施形態では、自車両が道路の外側を向いている場合などには、自車進行方向と外側道路境界線との交差点Cに基づき前方注視点距離が小さい値に修正され、目標走行ラインへの追従速度が高くなり、外側道路境界線への接近を回避することが出来る。本実施形態のように、道路境界線上の接点と進行方向と道路境界線の交差点を両方検出して走行制御を行うことで、様々な形状の走行路において走行路境界への接近の回避とドライバに与える違和感の軽減との両立をより確実に図ることができる。
 以上、本発明の走行制御装置、及び、走行制御について詳細に説明したが、本発明は上記実施形態に限定されるものではない。また、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
 例えば、第1~第3実施形態においては、左側・右側道路境界線の情報をナビゲーションシステム50の地図情報から得る構成となっているが、この構成には限定されない。例えば、レーダ20の検出結果やカメラ30から得られる撮影画像などから、道路・車線の境界、縁石、道路区画線などを実際に検出することにより左側・右側道路境界線を検出するようにしても良い。または、地図情報やレーダ・カメラの検出結果から左側・右側道路境界線の情報が得られない場合や、駐車場のように境界線がないような場所においても、仮想境界線を設定して第1~第3実施形態の走行制御を行うことも可能である。
 第1~第3実施形態においては、前方注視点距離Xを前方注視点距離候補x1~x5のうちの最小値に設定する構成としているが、この構成には限定されない。つまり、道路境界線上の接点Pに対応する前方注視点距離候補x2、x3や自車進行方向と道路境界線の交差点Cに対応する前方注視点距離候補x4、x5の少なくともいずれかが車速Vに応じた前方注視点距離候補x1よりも小さい場合に、前方注視点距離Xが車速Vに応じた前方注視点距離候補x1よりも短い距離に設定される構成であればよい。したがって、必ずしも接点Pや交差点Cの位置や自車両からの距離に基づいて前方注視点距離Xを設定する必要はない。例えば、接点Pに対応する前方注視点距離候補x2、x3や交差点Cに対応する前方注視点距離候補x4、x5の少なくともいずれかが車速Vに応じた前方注視点距離候補x1よりも小さい場合は、前方注視点距離Xを車速Vに応じた前方注視点距離候補x1を所定の距離短くした値に設定する構成にしてもよい。つまり、前方注視点距離設定部64は、自車位置から走行路境界線への接線の接点までの距離(第1の距離)と自車位置から自車進行方向と前記走行路境界線の交差点までの距離(第2の距離)との少なくともいずれかが車速に応じた前方注視点距離(目標前方注視点距離)よりも短い場合は、車速に応じた前方注視点距離から所定の距離を減算して得られる距離を前方注視点距離に設定することも出来る。これにより、演算処理をより簡略化することができる。この場合、車速Vの大きさに基づいて所定の距離を可変としたり、車速Vに応じた前方注視点距離候補x1と、接点Pに対応する前方注視点距離候補x2、x3または交差点Cに対応する前方注視点距離候補x4、x5との偏差に基づいて所定の距離を可変とする構成としても良い。
 第1~第3実施形態においては、自車両の基準点を原点(0,0)とし前方進行方向をx軸正方向、車両左側方をy軸正方向とする座標系を使用した例を説明しているが、この構成には限定されず、例えば目標走行ラインを基準にした座標系などを使用することも可能である。
(1) First embodiment
With reference to FIG. 1, the structure of the traveling control apparatus 10 which concerns on this embodiment is demonstrated. As shown in FIG. 1, the travel control device 10 according to the present embodiment includes a radar 20, a camera 30, a vehicle speed sensor 40, a navigation system 50, a control unit 60, and a travel control actuator 70. Although not shown, a running state sensor that detects the running state of the host vehicle (for example, acceleration, yaw angle, etc.) and the operating state of the host vehicle (accelerator operation, brake operation, steering wheel operation (steering), etc.) The operation state detection sensor which detects this is provided.
The radar 20 detects the presence, position (distance and angle from the host vehicle), speed, and relative speed with respect to the host vehicle. As the radar 20, a laser radar, a millimeter wave radar, or the like can be used. Further, the radar 20 outputs the detected data to the control unit 60. As the radar 20, a well-known radar may be used as appropriate, and therefore a detailed description of the configuration is omitted.
For example, the camera 30 is attached to the front or side of the host vehicle and captures an image around the host vehicle. For example, the camera 30 images a road segment line or an obstacle on the route. The camera 18 includes, for example, an image sensor such as a charge coupled device (CCD) or a complementary metal-oxide semiconductor (CMOS). The camera 30 outputs the captured image to the control unit 60. As the camera 30, a well-known camera may be used as appropriate, and thus a detailed description of the configuration is omitted.
The vehicle speed sensor 40 is a sensor that detects the vehicle speed of the host vehicle. Examples of the vehicle speed sensor 40 include a wheel speed sensor that detects the traveling speed of the vehicle by detecting the rotational speed of each wheel of the host vehicle. Further, the vehicle speed sensor 40 outputs the detected speed to the control unit 60. As the vehicle speed sensor 40, a well-known vehicle speed sensor, acceleration sensor, and yaw angle sensor may be used.
The navigation system 50 receives a GPS signal from a GPS (Global Positioning System) satellite. The navigation system 50 also includes a gyroscope that detects the magnitude of the rotational motion applied to the vehicle, an acceleration sensor that detects the travel distance of the vehicle from three-axis acceleration, and a geomagnetic sensor that detects the traveling direction of the vehicle from the geomagnetism. Etc. may be provided. The navigation system 50 stores map information in a recording medium such as a hard disk. This map information includes information on the location and shape of roads and intersections, traffic rules including traffic signs and signals, and the like. Further, the map information may define a travelable area of the vehicle in the lane on the road. The navigation system 50 detects the position of the host vehicle, the direction with respect to the road, and the like based on the GPS signal from the GPS satellite and the map information. The navigation system 50 searches for a route from the departure point to the destination according to the input of the departure point (or current location) and the destination, and uses the searched route and the position information of the own vehicle to reach the destination. The guidance of the route is performed. Further, the navigation system 50 outputs the searched route to the control unit 60 together with the map information. Since a known navigation system may be used as the navigation system 50, a detailed description of the configuration is omitted.
The travel control actuator 70 includes an acceleration / deceleration actuator for accelerating / decelerating the host vehicle and a steering actuator for adjusting a steering angle. The travel control actuator 70 operates the acceleration / deceleration actuator and the steering actuator based on the travel control amount transmitted from the control unit 60 to control the travel of the host vehicle. As the travel control actuator 70, a known travel control actuator may be used, and thus a detailed description of the configuration is omitted.
The control unit 60 performs various calculations based on various information detected by the radar 20, the camera 30, the vehicle speed sensor 40, and the navigation system 50, and sends a control signal corresponding to the calculation result to the travel control actuator 70. By outputting, vehicle steering control (an example of travel control) is performed. In the present embodiment, the control unit 60 is formed as an integrated computer including storage means such as a CPU, RAM, ROM, and hard disk.
As the travel control, the control unit 60 sets a target travel position (front gaze point) separated by a front gaze distance in front of the host vehicle on the travel path so as to travel on the target travel line of the host vehicle. Steering control for driving the left and right front wheels by driving the travel control actuator 70 so that the vehicle travels in the travel position is executed.
FIG. 2 is a control block diagram of the control unit 60 according to the first embodiment. The control unit 60 includes a target travel line setting unit 61, a vehicle speed detection unit 62, a target travel position setting unit 63, a forward gaze distance setting unit 64, and a steering control unit 65, and performs the following travel control. To do.
The target travel line setting unit 61 sets a target route based on the map information obtained from the navigation system 50 and the vehicle position information. Here, the “target route” is different from the concept of a traveling route (direction) from the departure point to the destination set by the navigation system 50. The target route defines how the host vehicle travels on the travel route on the set travel route, that is, the behavior of the vehicle. Information included in the target route includes a target vehicle speed, a target acceleration, a target steering angle, and the like in addition to the target travel line on the travel route.
The vehicle speed detector 62 detects the vehicle speed (vehicle speed) V of the host vehicle based on the signal from the vehicle speed sensor 40. The method for detecting the vehicle speed V is arbitrary. For example, the average value of the wheel speeds of the four wheels and the average value of the wheel speeds of the left and right rear wheels that are driven wheels may be used as the vehicle speed V.
The target travel position setting unit 63 calculates a position on the target travel line that is a distance from the forward gazing point distance X from the host vehicle as the target travel position TP.
The forward gazing point distance setting unit 64 constitutes the forward gazing point distance setting device according to this embodiment, and sets the forward gazing point distance X based on the map information obtained from the navigation system 50 and the vehicle speed V. . That is, the forward gazing point distance setting unit 64 includes a target forward gazing point distance calculation unit and a forward gazing point distance determination unit.
The steering control unit 65 calculates a target curve connecting the host vehicle position and the target travel position TP, calculates a steering control amount for the left and right front wheels based on the target curve, and calculates a travel control actuator based on the calculated steering control amount. 70 is driven.
FIG. 3 is a flowchart showing a flow of a traveling control process executed by the control unit 60 of the traveling control apparatus according to the first embodiment.
Apart from the control flow shown in FIG. 3, the target travel line setting unit 61 sets a target travel line (target route) based on map information and the like. Further, the target travel line may be configured such that the start point to the end point of the route are divided into a plurality of sections and updated for each section as the host vehicle travels along each section.
The control flow shown in FIG. 3 is repeatedly executed at a predetermined interval (for example, 10 to 50 milliseconds) from the start to the end of the travel control of the host vehicle.
In step S11, the forward gazing point distance setting unit 64 reads the left road boundary coordinates and the right road boundary coordinates of the traveling road on which the host vehicle is traveling from the map information acquired from the navigation system 50. Here, the left and right road boundary line coordinates correspond to the coordinates of the left and right boundary lines of the lane that is the travel path on which the host vehicle is traveling. In the present embodiment, a coordinate system in which the reference point (for example, the center point) of the host vehicle is the origin (0, 0), the forward traveling direction of the host vehicle is the x axis, and the left side direction of the host vehicle orthogonal to the y axis is the y axis. The left and right road boundary coordinates are detected.
In step S12, the vehicle speed detection unit 62 reads the vehicle speed V of the host vehicle.
In step S13, the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x1 (target forward gazing point distance) based on the vehicle speed V detected in step S12. The process of step S13 in the forward gazing point distance setting unit 64 corresponds to the target forward gazing point distance calculation unit. Here, the forward gazing point distance candidate x1 corresponding to the vehicle speed V is obtained by multiplying the vehicle speed V by a predetermined time constant. Accordingly, the forward gazing point distance candidate x1 corresponding to the vehicle speed is set to a larger value as the vehicle speed is higher, that is, a distance farther from the vehicle.
In step S14, the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x2 corresponding to the contact point on the left road boundary line. Here, the contact point on the left road boundary is the tangent drawn from the reference point (for example, the center point) of the own vehicle to the left road boundary within the predetermined distance and the predetermined angle range in front of the own vehicle and the left road boundary. It is a line contact. Depending on the shape of the traveling road, there may be no tangent line within a predetermined distance and a predetermined angle range in front of the host vehicle. Therefore, in step S14, first, it is determined whether a tangent line from the reference point of the host vehicle to the left road boundary line exists within a predetermined distance and a predetermined angle range in front of the host vehicle.
For example, a method of calculating the forward gazing point distance candidate x2 corresponding to the contact point on the left road boundary line in the present embodiment will be described with reference to FIG. First, in a coordinate system in which the reference point of the host vehicle is the origin (0, 0), the forward traveling direction is the positive x-axis direction, and the left side direction of the vehicle is the positive y-axis direction, within a predetermined distance and a predetermined angular range in front of the host vehicle Select n arbitrary points on the left road boundary in the 1 (X 1 , Y 1 ), P 2 (X 2 , Y 2 ) ... P n (X n , Y n ). Here, the predetermined distance range and the predetermined angle range in front of the host vehicle for extracting an arbitrary point are not particularly limited. The predetermined distance range in front of the host vehicle is preferably a distance corresponding to the forward gaze distance candidate x1 corresponding to at least the vehicle speed V set in step S13. That is, the forward gazing point distance setting unit 64 does not have a tangent contact point from the own vehicle position to the traveling road boundary line within a range corresponding to the forward forward gazing point distance candidate x1 from the own vehicle position on the traveling road. In this case, it is determined that the distance (first distance) from the vehicle position to the contact point of the tangent to the road boundary line is equal to or more than the forward gaze distance candidate x1 corresponding to the vehicle speed. In this way, by limiting the range for determining whether or not a contact exists to a range within the distance corresponding to the forward gazing point distance candidate x1, it is possible to start from the vehicle position to the road boundary without performing unnecessary calculation processing. It can be determined whether the distance (first distance) to the contact point of the tangent to the line is shorter than the forward gazing point distance candidate x1 corresponding to the vehicle speed. The predetermined angle range in front of the host vehicle can be, for example, an angle range of 180 ° on the vehicle front side from the left lateral direction to the right lateral direction of the vehicle centering on the reference point of the host vehicle. In the example of FIG. 4, the point P on the left road boundary line within the distance of the forward gazing point distance candidate x1 corresponding to the vehicle speed V from the own vehicle from the left lateral direction (y axis positive direction) of the own vehicle. 1 ~ P 7 Select and point P 1 ~ P 7 Are obtained in order. And the reference point (origin (0, 0)) of the host vehicle and each point P 1 ~ P n For each straight line passing through, the slope m with respect to the vehicle traveling direction (x-axis) n (Tan θ n = Y n / X n ) Is calculated. If it is possible to draw a tangent line from the reference point of the vehicle to the left road boundary, this slope m n Decreases as the distance from the host vehicle decreases, reaches a minimum value at a contact point or a point P in the vicinity of the contact point, and then increases as the position of the point further moves away from the host vehicle. Therefore, a plurality of points P 1 ~ P n Of the points P corresponding to this change point (minimum value) min A straight line passing through the vehicle is regarded as a tangent line from the reference point (origin point) of the host vehicle to the left road boundary line. min Is regarded as a contact point P on the left road boundary line. That is, the “contact” used in this specification includes not only a true contact but also an approximate value of the contact and a value according to the contact. In the example of FIG. 1 To point P 5 The slope of the straight line becomes smaller toward 5 To minimize the slope. And point P 5 To point P 7 The slope of the straight line increases toward. Therefore, in the example of FIG. 5 Is the change point (minimum value), and this point P 5 Can be regarded as a contact point P on the left road boundary line. And point P 5 Is set as the forward gazing point distance candidate x2.
Here, the number (n) of points P extracted to determine whether a tangent line exists is not particularly limited as long as it is a number that can identify the change point of the slope. For example, about 8 to 12 are preferable, and at most about several tens.
The method for determining whether a tangent exists and the method for calculating the tangent / contact are not limited to the above-described methods, and any known tangent or contact detection method such as a calculation by a differential method can be used.
If no tangent exists in step S14, the forward gazing point distance candidate x2 has a null value. For example, when the traveling road within a predetermined distance and a predetermined angle range ahead of the host vehicle is a straight road, there is no tangent to the left / right road boundary line. In addition, when there are multiple tangents and contacts to the left road boundary line within the predetermined distance range and the predetermined angle range in front of the vehicle, the coordinates of the contact point closest to the host vehicle among the multiple contact points are used. Let the corresponding distance be a forward gaze distance candidate x2.
In step S15, as in step S14, the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x3 corresponding to the contact point on the right road boundary line. When the contact point calculation method shown in FIG. 4 is applied, since the sign of the y coordinate is negative for the point on the right road boundary line, the changing point at which the inclination is maximum is specified. Since other processes are the same as those in step S14, description thereof is omitted.
In step S16, the forward gaze distance setting unit 64 sets the minimum value among the forward gaze distance candidates x1, x2, and x3 obtained in steps S13 to S15 as the front gaze distance X. The process of step S16 in the forward gazing point distance setting unit 64 corresponds to the forward gazing point distance determination unit. That is, the forward gazing point distance setting unit 64 has a distance x2 from the own vehicle position to the contact point of the tangent line to the left traveling road boundary line and a distance x3 from the own vehicle position to the contact point of the tangent line to the right traveling road boundary line. The shorter one is the distance (first distance) from the vehicle position to the contact point of the tangent to the road boundary line, and the first distance is a forward gazing point distance candidate x1 (target forward gazing point distance) corresponding to the vehicle speed. Is shorter than the forward gazing point distance candidate x1 corresponding to the vehicle speed. In the present embodiment, the front gazing point distance setting unit 64 sets the front gazing point distance to a distance corresponding to the first distance when the first distance is shorter than the target front gazing point distance.
In step S17, the target travel position setting unit 63 calculates, as the target travel position TP, a position on the target travel line that is away from the front gaze distance X from the host vehicle based on the front gaze distance X set in step S16. To do. In this embodiment, the reference point of the host vehicle is the origin (0, 0), the forward traveling direction is the x-axis positive direction, and the left side of the vehicle is the y-axis positive direction. The target travel position TP is calculated by substituting the value of the x coordinate into a function indicating the target travel line. For example, when the target travel line is defined as a function passing through the center of the left boundary line and the right boundary line, the target travel position TP can be obtained by substituting the value of the x coordinate into this function. However, the method for calculating the target travel position TP corresponding to the forward gazing point distance X is not limited to this method. For example, a perpendicular line may be drawn from the contact point P to the target travel line, and the intersection of the target travel line and the perpendicular line may be determined as the target travel position TP, or forward from the reference point in the forward traveling direction of the vehicle (on the x axis). A perpendicular line may be drawn to the target travel line from a point separated by the gazing point distance X (point of coordinates (X, 0)), and the intersection of the target travel line and the perpendicular may be determined as the target travel position TP.
In step S18, the steering control unit 65 calculates a target curve that connects the host vehicle position and the target travel position TP with a constant curvature, and calculates a steering control amount for the left and right front wheels according to the target curve. Then, the travel control actuator 70 is driven based on the calculated steering control amount. At this time, the steering control amount that passes on the target curve may be calculated, but a torque sensor is provided on the steering shaft to detect the driver's steering intervention, and at the time of steering intervention, the steering control amount is set to zero, A steering torque that guides the driver's steering operation to the turning angle of the left and right front wheels that pass on the target curve may be applied.
FIG. 5 shows the vehicle position, the target travel line, the left / right road boundary line, the contact point P on the left road boundary line, the forward gazing point distance candidate x1 corresponding to the vehicle speed V, and the contact point P in the travel control of the first embodiment. The corresponding forward gazing point distance candidate x2, the forward gazing point distance X, the target travel position TP, and the target curve are shown. In the example shown in FIG. 5, since there is no tangent to the right road boundary within a predetermined range in front of the vehicle, there is no forward gazing distance candidate x3 corresponding to the contact point on the right road boundary.
FIG. 5 shows a case where the host vehicle enters a curve closer to the host vehicle when the road shape is a compound curve (such as an S-shape). If the target travel position TP ′ is set with the forward gazing point distance candidate x1 corresponding to the vehicle speed V as the forward gazing point distance when the shape of the road is a compound curve, the vehicle is far away from the host vehicle as seen in FIG. The target travel position TP ′ may be set as the position. In such a case, the target curve to the target travel position target travel position TP ′ becomes a curve that is a shortcut to the curve, and the host vehicle may be too close to the left road boundary line.
In the present embodiment, the contact point P on the left road boundary line is detected, and when the forward gazing point distance candidate x2 corresponding to the contact point P is shorter than the forward gazing point distance candidate x1 corresponding to the vehicle speed V, the contact point P is determined. The corresponding forward gazing point distance candidate x2 is set as the forward gazing point distance X. As a result, as shown in FIG. 5, the target travel position TP is set at a position closer to the host vehicle as compared with the target travel position TP ′ based on the forward gazing distance candidate x1 corresponding to the vehicle speed V. Therefore, the target curve is a curve toward the target travel position TP set at a position close to the host vehicle, and the host vehicle can avoid being too close to the left road boundary line. That is, when the distance to the nearest convex part of the curve in front of the vehicle is closer, the distance from the own vehicle to the contact point of the tangent to this convex part (the forward gazing point distance candidate x2 in the example of FIG. 5) is the vehicle speed. It becomes shorter than the forward gazing point distance candidate x1 according to V. Therefore, the forward gazing point distance X is set to a value smaller than the forward gazing point distance candidate x1 corresponding to the vehicle speed V, and the traveling position of the vehicle can be controlled so as not to approach the nearest convex portion. On the other hand, when there is no contact (when there is no convex part of the curve in the vicinity), setting the forward gaze distance according to the vehicle speed V prevents the control gain from becoming unnecessarily large, and changes the vehicle behavior. Can be suppressed. As a result, it is possible to achieve both the avoidance of approach to the road boundary and the reduction of the uncomfortable feeling given to the driver.
In the travel control device of the present embodiment, when traveling on a curve having a small radius of curvature or a shape that shifts from a straight line to a curve having a small radius of curvature, the distance to the front gazing point according to the vehicle speed V is set. Even if the target travel position is set based on the curve, the front gaze distance can be shortened more than the front gaze distance according to the vehicle speed V, and the vehicle travel position can be controlled to perform the shortcut. The trend can be improved. As a result, it is possible to more reliably achieve both avoidance of approach to the road boundary and reduction of the uncomfortable feeling given to the driver.
Further, in the travel control device of the present embodiment, there is no need to determine the shape of the travel path on which the host vehicle is traveling, the posture angle of the host vehicle, its orientation, lateral displacement, etc., and the left and right roads Only by detecting the contact point of each road boundary line based on the information on the boundary line, there is an effect that it is possible to perform traveling control that can avoid the approach to the road boundary and reduce the uncomfortable feeling given to the driver.
(2) Second embodiment
The device configuration of the travel control device 10 according to the second embodiment is the same as the configuration of the travel control device 10 according to the first embodiment shown in FIGS. In the second embodiment, a part of the traveling control process executed in the control unit 60 is different from the traveling control process of the first embodiment.
FIG. 6 is a flowchart showing a flow of travel control processing executed by the control unit 60 of the vehicle travel control apparatus according to the second embodiment.
Similar to the first embodiment, also in the second embodiment, a target travel line (target route) is set based on map information or the like in the target travel line setting unit 61 separately from the control flow shown in FIG.
The control flow shown in FIG. 6 is repeatedly executed at a predetermined interval (for example, 10 to 50 milliseconds) from the start to the end of the travel control of the host vehicle.
The processing from step S21 to S23 is the same as the processing from step S11 to S13 in FIG.
In step S24, the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x4 corresponding to the intersection of the own vehicle traveling direction and the left road boundary line within a predetermined distance ahead of the own vehicle. Here, there may be no intersection between the traveling direction of the vehicle and the left road boundary. When there is no intersection, x4 is a null value. When there are a plurality of intersections within the predetermined distance range, the distance corresponding to the intersection closest to the host vehicle is set as the forward gaze distance candidate x4. Here, the predetermined distance range in front of the host vehicle for detecting the intersection is not particularly limited. The predetermined distance range ahead of the host vehicle is preferably a distance range corresponding to the forward gaze distance candidate x1 corresponding to the vehicle speed V set in step S23. That is, the forward gazing point distance setting unit 64 determines that the intersection of the traveling direction and the traveling road boundary line from the own vehicle position within the range corresponding to the forward forward gazing point distance candidate x1 from the own vehicle position on the traveling road. If it does not exist, it is determined that the distance (second distance) from the own vehicle position to the intersection of the own vehicle traveling direction and the travel path boundary line is not less than the forward gazing distance candidate x1 corresponding to the vehicle speed. In this way, by limiting the range for determining whether or not there is an intersection to the range within the distance corresponding to the forward gazing point distance candidate x1, the vehicle progresses from the vehicle position without performing unnecessary calculation processing. It is possible to determine whether the distance (second distance) to the intersection of the direction and the road boundary line is shorter than the forward gazing point distance candidate x1 according to the vehicle speed.
In the present embodiment, in accordance with the vehicle speed V from the own vehicle in a coordinate system in which the reference point of the own vehicle is the origin (0, 0), the forward traveling direction is the x-axis positive direction, and the left side direction of the vehicle is the y-axis positive direction The coordinates of the intersection C (x, y) of the left road boundary line and the x axis are detected within the range up to the forward gazing point distance candidate x1. The distance from the host vehicle to this intersection C is set as a forward gazing point distance candidate x4.
In step S25, as in step S24, the forward gazing point distance setting unit 64 calculates a forward gazing point distance candidate x5 corresponding to the intersection of the vehicle traveling direction and the left road boundary within a predetermined distance ahead of the host vehicle. To do.
In step S26, the forward gazing point distance setting unit 64 sets the minimum value among the forward gazing point distance candidates x1, x4, and x5 obtained in steps S23 to S25 as the forward gazing point distance X. The process of step S26 in the forward gaze distance setting unit 64 corresponds to the front gaze distance determination unit. That is, the forward gazing point distance setting unit 64 determines that the distance (second distance) from the own vehicle position to the intersection of the own vehicle traveling direction and the road boundary line is a forward gazing point distance candidate x1 (target forward gazing point) corresponding to the vehicle speed. If it is shorter than (viewpoint distance), the forward gazing point distance is set to a distance shorter than the forward gazing point distance candidate x1 according to the vehicle speed. In the present embodiment, the forward gazing point distance setting unit 64 sets the forward gazing point distance to a distance corresponding to the second distance when the second distance is shorter than the target forward gazing point distance.
Since the processes of steps S27 and S28 are the same as the processes of steps S17 and S18 of FIG. 3 of the first embodiment, a description thereof will be omitted.
FIG. 6 shows the vehicle position, the target travel line, the left / right road boundary line, the intersection C between the vehicle traveling direction and the right road boundary, and the forward gazing distance according to the vehicle speed V in the travel control of the second embodiment. The candidate x1, the forward gazing point distance candidate x5 corresponding to the intersection C, the forward gazing point distance X, the target travel position TP, and the target curve are shown. In the example shown in FIG. 6, since there is no intersection between the traveling direction of the own vehicle and the left road boundary within a predetermined range in front of the vehicle, the forward gaze point corresponding to the intersection of the traveling direction of the own vehicle and the left road boundary There is no distance candidate x4.
As shown in FIG. 6, when the vehicle is traveling toward the outside of the curved road, if the front gazing point distance is set according to the vehicle speed V, the target travel position TP ′ is far away from the host vehicle. The target curve tends to go round, and may be too close to the outer boundary.
In this embodiment, as shown in FIG. 6, there is an intersection C between the traveling direction of the vehicle and the road boundary line (the right road boundary line in the example of FIG. 6) within a predetermined distance in front of the vehicle. When the distance from the vehicle to the intersection C (front gaze distance candidate x5) is smaller than the front gaze distance candidate x1 according to the vehicle speed V, the front gaze distance is greater than the front gaze distance candidate x1 according to the vehicle speed V. Is also set short. Specifically, the forward gazing point distance candidate x5 corresponding to the intersection C with the right road boundary line is set as the forward gazing point distance X. As a result, the forward gaze distance is corrected to a smaller value as the vehicle is directed to the outside of the road, and the follow-up speed to the target travel line is increased. According to the travel control according to the present embodiment, when the road shape changes greatly, for example, when the curve changes from a curve with a small radius of curvature to a straight line or when the road shape changes from a straight line to a curve with a small radius of curvature. Since the front gaze distance becomes shorter than the front gaze distance, the response speed can be temporarily increased. On the other hand, when there is no intersection within the predetermined distance range (when the host vehicle is not facing the outside of the travel path), the control gain is unnecessarily increased by setting the forward gazing distance according to the vehicle speed V. This can prevent changes in vehicle behavior. As a result, it is possible to achieve both the avoidance of approach to the road boundary and the reduction of the uncomfortable feeling given to the driver.
Further, in the travel control device of the present embodiment, as shown in FIG. 6, when traveling on a travel path having a shape that shifts from a curve with a small radius of curvature to a straight line, a forward note corresponding to the vehicle speed V is used. When the target travel position is set based on the viewpoint distance, the forward gazing distance can be shortened more than the forward gazing distance according to the vehicle speed V in the case where the target travel position becomes too large and the outer boundary line is approached too much. The traveling position of the vehicle can be controlled to improve the tendency to turn around. As a result, it is possible to more reliably achieve both avoidance of approach to the road boundary and reduction of the uncomfortable feeling given to the driver.
Further, in the travel control device of the present embodiment, there is no need to determine the shape of the travel path on which the host vehicle is traveling, the posture angle of the host vehicle, its orientation, lateral displacement, etc., and the left and right roads Only by detecting the intersection of the vehicle traveling direction and each road boundary line based on the information on the boundary line, it is possible to perform driving control compatible with avoidance of approaching the road boundary and reduction of uncomfortable feeling given to the driver. effective.
(3) Third embodiment
The device configuration of the travel control device 10 according to the third embodiment is the same as the configuration of the travel control device 10 according to the first embodiment shown in FIGS. In the third embodiment, the traveling control process executed in the control unit 60 is different from the traveling control process of the first embodiment or the second embodiment. That is, in the third embodiment, the distance from the own vehicle position to the contact point of the tangent line to the travel path boundary line (first distance), the distance from the own vehicle position to the intersection of the own vehicle traveling direction and the travel path boundary line. The forward gazing point distance is set to a distance corresponding to the minimum value among the (second distance) and the forward gazing point distance (target forward gazing point distance) according to the vehicle speed. Specifically, in the third embodiment, the forward gazing point distance candidate (x2, x3) corresponding to the contact point on the road boundary line of the first embodiment, the own vehicle traveling direction and the road boundary line of the second embodiment. Both the forward gazing point distance candidates (x4, x5) corresponding to the intersection with the forward gazing point distance candidates (x2, x3, x4, x5) and the forward gazing point distance candidates corresponding to the vehicle speed V ( The minimum value of x1) is set as the forward gaze distance X.
FIG. 8 is a flowchart showing a flow of a travel control process executed by the control unit 60 of the vehicle travel control apparatus according to the third embodiment.
Similar to the first and second embodiments, in the third embodiment, the target travel line (route information) is set based on the map information and the like in the target travel line setting unit 61 separately from the control flow shown in FIG. Is done.
The control flow shown in FIG. 8 is repeatedly executed at predetermined intervals (for example, 10 to 50 milliseconds) from the start to the end of the travel control of the host vehicle.
The processing from step S31 to S35 is the same as the processing from step S11 to S15 in FIG.
Since the processes of steps S36 and S37 are the same as the processes of steps S24 and S25 of FIG. 6 of the second embodiment, description thereof will be omitted.
In step S38, the forward gaze distance setting unit 64 sets the minimum value among the forward gaze distance candidates x1 to x5 obtained in steps S32 to S37 as the front gaze distance X.
Since the processes of steps S39 and S40 are the same as the processes of steps S17 and S18 of FIG. 3 of the first embodiment, description thereof will be omitted.
FIG. 9 shows the own vehicle position, target travel line, left / right road boundary line, contact point P on the left road boundary line, intersection C between the traveling direction of the own vehicle and the right road boundary line, vehicle speed in the travel control of the third embodiment. A forward gazing point distance candidate x1 corresponding to V, a forward gazing point distance candidate x2 corresponding to the contact point P, a forward gazing point distance candidate x5 corresponding to the intersection C, the forward gazing point distance X, and the target travel position TP are shown. In the example shown in FIG. 9, there is no tangent to the right road boundary line within the predetermined range in front of the vehicle and the intersection of the traveling direction of the own vehicle and the left road boundary line, so that it corresponds to a contact point on the right road boundary line. There is no forward gazing point distance candidate x3 corresponding to the intersection of the forward gazing point distance candidate x3, the traveling direction of the own vehicle, and the left road boundary line.
In the example shown in FIG. 9, the tangent line from the reference point of the host vehicle to the left road boundary line within a predetermined distance range in front of the vehicle (in this example, the range up to the forward gazing point distance candidate x1 according to the vehicle speed V). This is a case where there is an intersection C between the contact point P of the vehicle and the traveling direction of the vehicle and the right road boundary line. In such a case, a forward gazing point distance candidate x1 corresponding to the vehicle speed V, a forward gazing point distance candidate x2 corresponding to the contact point P on the left road boundary line, and the intersection C between the vehicle traveling direction and the right road boundary line The forward gazing point distance candidate x2 corresponding to the contact point P which is the minimum value among the forward gazing point distance candidates x5 corresponding to is set as the forward gazing point distance X. Accordingly, as shown in FIG. 9, the forward gazing distance corresponding to the target traveling position TP ′ based on the forward gazing distance candidate x1 corresponding to the vehicle speed V and the intersection C between the own vehicle traveling direction and the right road boundary line. Compared with the target travel position TP ″ based on the candidate x5, the target travel position TP is set at a position closer to the own vehicle. Therefore, the target curve is a curve toward the target travel position TP set at a position close to the own vehicle. It is possible to avoid that the host vehicle is too close to the left road boundary line.
Further, in this embodiment, when the host vehicle is facing the outside of the road, the forward gazing distance is corrected to a small value based on the intersection C between the host vehicle traveling direction and the outer road boundary line, and the target travel The speed of following the line is increased, and approach to the outer road boundary line can be avoided. As in this embodiment, by detecting both the contact point on the road boundary line, the traveling direction, and the intersection of the road boundary line and performing the traveling control, avoiding the approach to the traveling road boundary and the driver on the traveling road of various shapes It is possible to more surely achieve a balance with the reduction of the uncomfortable feeling given to the user.
Although the travel control device and the travel control of the present invention have been described in detail above, the present invention is not limited to the above embodiment. It goes without saying that various improvements and modifications may be made without departing from the spirit of the present invention.
For example, in the first to third embodiments, the left / right road boundary line information is obtained from the map information of the navigation system 50. However, the present invention is not limited to this configuration. For example, the left and right road boundary lines may be detected by actually detecting road / lane boundaries, curbs, road lane markings, and the like from the detection results of the radar 20 and the captured image obtained from the camera 30. good. Alternatively, if the left and right road boundary information cannot be obtained from the map information or radar / camera detection results, or if there is no boundary line such as a parking lot, a virtual boundary line can be set and It is also possible to perform the travel control of the first to third embodiments.
In the first to third embodiments, the forward gazing point distance X is set to the minimum value among the forward gazing point distance candidates x1 to x5, but is not limited to this configuration. That is, at least one of the forward gazing point distance candidates x2 and x3 corresponding to the contact point P on the road boundary line and the forward gazing point distance candidates x4 and x5 corresponding to the intersection C between the own vehicle traveling direction and the road boundary line becomes the vehicle speed V. The forward gazing point distance X may be set to a shorter distance than the forward gazing point distance candidate x1 corresponding to the vehicle speed V when it is smaller than the corresponding forward gazing point distance candidate x1. Therefore, it is not always necessary to set the forward gazing point distance X based on the position of the contact point P or the intersection C or the distance from the host vehicle. For example, when at least one of the forward gaze distance candidates x2 and x3 corresponding to the contact point P and the forward gaze distance candidates x4 and x5 corresponding to the intersection C is smaller than the forward gaze distance candidate x1 corresponding to the vehicle speed V The forward gazing point distance X may be set to a value obtained by shortening the forward gazing point distance candidate x1 corresponding to the vehicle speed V by a predetermined distance. That is, the forward gazing point distance setting unit 64 intersects the distance (first distance) from the own vehicle position to the contact point of the tangent to the travel path boundary line, the intersection of the own vehicle traveling direction and the travel path boundary line from the own vehicle position. If at least one of the distance to the distance (second distance) is shorter than the forward gazing distance according to the vehicle speed (target forward gazing distance), a predetermined distance is subtracted from the forward gazing distance according to the vehicle speed The distance obtained in this way can be set as the forward gaze distance. Thereby, arithmetic processing can be simplified more. In this case, the predetermined distance can be made variable based on the magnitude of the vehicle speed V, or the front gaze distance candidate x1 corresponding to the vehicle speed V and the front gaze distance candidate x2, x3 corresponding to the contact point P or the intersection C can be handled. The predetermined distance may be variable based on the deviation from the forward gazing point distance candidates x4 and x5.
In the first to third embodiments, an example is described in which a coordinate system is used in which the reference point of the host vehicle is the origin (0, 0), the forward traveling direction is the x-axis positive direction, and the left side of the vehicle is the y-axis positive direction. However, the present invention is not limited to this configuration. For example, a coordinate system based on the target travel line can be used.
10   走行制御装置
20   レーダー
30   カメラ
40   車速センサ
50   ナビゲーションシステム
60   コントロールユニット
70   走行制御アクチュエータ
61   目標走行ライン設定部
62   車速検出部
63   目標走行位置設定部
64   前方注視点距離設定部
65   操舵制御部
DESCRIPTION OF SYMBOLS 10 Travel control apparatus 20 Radar 30 Camera 40 Vehicle speed sensor 50 Navigation system 60 Control unit 70 Travel control actuator 61 Target travel line setting part 62 Vehicle speed detection part 63 Target travel position setting part 64 Front gaze distance setting part 65 Steering control part

Claims (10)

  1.  自車前方の走行路上に目標走行位置を設定するための前方注視点距離を設定する前方注視点距離設定装置であって、
     車速に応じた目標前方注視点距離を設定する目標前方注視点距離算出部と、
     自車位置から走行路境界線への接線の接点までの第1の距離と、前記自車位置から自車進行方向と前記走行路境界線の交差点までの第2の距離との少なくともいずれかが、前記目標前方注視点距離よりも短い場合は、前記前方注視点距離を前記目標前方注視点距離よりも短い距離に設定する前方注視点距離決定部と
     を備えることを特徴とする前方注視点距離設定装置。
    A forward gazing distance setting device for setting a forward gazing distance for setting a target traveling position on a traveling road ahead of the host vehicle,
    A target forward gazing distance calculation unit for setting a target forward gazing distance according to the vehicle speed;
    At least one of the first distance from the own vehicle position to the contact point of the tangent line to the traveling road boundary line and the second distance from the own vehicle position to the intersection of the own vehicle traveling direction and the traveling road boundary line is A forward gazing point distance determining unit configured to set the forward gazing point distance to a distance shorter than the target forward gazing point distance when shorter than the target forward gazing point distance. Setting device.
  2.  前記前方注視点距離決定部は、前記第1の距離と前記第2の距離との少なくともいずれかが前記目標前方注視点距離よりも短い場合に、前記前方注視点距離を、前記第1の距離と前記第2の距離との少なくともいずれかに対応した距離に設定することを特徴とする請求項1に記載の前方注視点距離設定装置。 The front gaze distance determination unit determines the front gaze distance as the first distance when at least one of the first distance and the second distance is shorter than the target front gaze distance. The forward gaze distance setting device according to claim 1, wherein the distance is set to a distance corresponding to at least one of the second distance and the second distance.
  3.  前記前方注視点距離決定部は、前記第1の距離が前記目標前方注視点距離よりも短い場合に、前記前方注視点距離を、前記第1の距離に対応した距離に設定することを特徴とする請求項1に記載の前方注視点距離設定装置。 The front gazing point distance determination unit sets the front gazing point distance to a distance corresponding to the first distance when the first distance is shorter than the target front gazing point distance. The forward gaze distance setting device according to claim 1.
  4.  前記前方注視点距離決定部は、前記第2の距離が前記目標前方注視点距離よりも短い場合に、前記前方注視点距離を、前記第2の距離に対応した距離に設定することを特徴とする請求項1に記載の前方注視点距離設定装置。 The forward gazing point distance determination unit sets the forward gazing point distance to a distance corresponding to the second distance when the second distance is shorter than the target forward gazing point distance. The forward gaze distance setting device according to claim 1.
  5.  前記前方注視点距離決定部は、前記第1の距離、前記第2の距離、前記目標前方注視点距離のうちの最小値に対応した距離に前記前方注視点距離を設定することを特徴とする請求項1に記載の前方注視点距離設定装置。 The front gaze distance determination unit sets the front gaze distance to a distance corresponding to a minimum value among the first distance, the second distance, and the target front gaze distance. The forward gaze distance setting device according to claim 1.
  6.  前記前方注視点距離決定部は、前記自車位置から左側走行路境界線への接線の接点までの距離と前記自車位置から右側走行路境界線への接線の接点までの距離のうち短い方を前記第1の距離とすることを特徴とする請求項1に記載の前方注視点距離設定装置。 The forward gazing distance determination unit is the shorter of the distance from the vehicle position to the contact point of the tangent line to the left road boundary line and the distance from the vehicle position to the contact point of the tangent line to the right road boundary line The forward gaze distance setting device according to claim 1, wherein the first distance is set as the first distance.
  7.  前記前方注視点距離決定部は、前記走行路上の前記自車位置から前方の前記目標注視点距離内の範囲において前記自車位置から前記走行路境界線への前記接線の前記接点が存在しない場合は、前記第1の距離は前記目標注視点距離以上であると判断することを特徴とする請求項1から請求項3及び請求項5及び請求項6のいずれかに記載の前方注視点距離設定装置。 When the forward gazing point distance determination unit does not have the contact point of the tangent line from the own vehicle position to the traveling road boundary line within a range within the target gazing point distance ahead of the own vehicle position on the traveling road. 7. The forward gaze distance setting according to claim 1, wherein the first distance is determined to be greater than or equal to the target gaze distance. 8. apparatus.
  8.  前記前方注視点距離決定部は、前記走行路上の前記自車位置から前方の前記目標注視点距離内の範囲において前記自車位置から前記自車進行方向と前記走行路境界線の前記交差点が存在しない場合は、前記第2の距離は前記目標注視点距離以上であると判断することを特徴とする請求項1及び請求項2及び請求項4から請求項7のいずれかに記載の前方注視点距離設定装置。 The forward gazing distance determination unit includes the intersection of the traveling direction and the traveling road boundary line from the own vehicle position within a range within the target gazing distance ahead of the own vehicle position on the traveling road. If not, it is determined that the second distance is greater than or equal to the target gazing distance. 8. The forward gazing point according to any one of claims 1, 2, and 4 to 7. Distance setting device.
  9.  前記前方注視点距離決定部は、前記第1の距離と前記第2の距離との少なくともいずれかが前記目標前方注視点距離よりも短い場合は、前記目標前方注視点距離から所定の距離を減算して得られる距離を前記前方注視点距離に設定することを特徴とする請求項1に記載の前方注視点距離設定装置。 The front gaze distance determination unit subtracts a predetermined distance from the target front gaze distance when at least one of the first distance and the second distance is shorter than the target front gaze distance The front gaze distance setting device according to claim 1, wherein the distance obtained by setting the distance to the front gaze distance is set.
  10.  前記前方注視点距離決定部は、前記所定の距離を可変に設定することを特徴とする請求項9に記載の前方注視点距離設定装置。 The front gaze distance setting device according to claim 9, wherein the front gaze distance determination unit variably sets the predetermined distance.
PCT/IB2015/001079 2015-01-05 2015-06-30 Forward fixation point distance setting device and travel control device WO2016110731A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016568152A JP6365688B2 (en) 2015-01-05 2015-06-30 Forward gaze distance setting device and travel control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562099650P 2015-01-05 2015-01-05
US62/099,650 2015-01-05

Publications (1)

Publication Number Publication Date
WO2016110731A1 true WO2016110731A1 (en) 2016-07-14

Family

ID=56355562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2015/001079 WO2016110731A1 (en) 2015-01-05 2015-06-30 Forward fixation point distance setting device and travel control device

Country Status (2)

Country Link
JP (1) JP6365688B2 (en)
WO (1) WO2016110731A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043395A (en) * 2017-09-04 2019-03-22 日産自動車株式会社 Travel control method and travel control apparatus for drive assist vehicle
JP7333763B2 (en) 2020-02-12 2023-08-25 株式会社Subaru Control device, control method and program
JP7333764B2 (en) 2020-02-12 2023-08-25 株式会社Subaru Control device, control method and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167100A (en) * 1996-12-09 1998-06-23 Toyota Motor Corp Vehicle steering control device
JP2005181114A (en) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd Preceding vehicle detection device and control method for same
JP2005182186A (en) * 2003-12-16 2005-07-07 Toyota Motor Corp Vehicular travel track setting system
JP2006092424A (en) * 2004-09-27 2006-04-06 Ishikawajima Harima Heavy Ind Co Ltd Track following control method and apparatus
JP2013086781A (en) * 2011-10-24 2013-05-13 Nissan Motor Co Ltd Vehicle travel support device
JP2014118000A (en) * 2012-12-14 2014-06-30 Nissan Motor Co Ltd Turning travel control device and turning travel control method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167100A (en) * 1996-12-09 1998-06-23 Toyota Motor Corp Vehicle steering control device
JP2005182186A (en) * 2003-12-16 2005-07-07 Toyota Motor Corp Vehicular travel track setting system
JP2005181114A (en) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd Preceding vehicle detection device and control method for same
JP2006092424A (en) * 2004-09-27 2006-04-06 Ishikawajima Harima Heavy Ind Co Ltd Track following control method and apparatus
JP2013086781A (en) * 2011-10-24 2013-05-13 Nissan Motor Co Ltd Vehicle travel support device
JP2014118000A (en) * 2012-12-14 2014-06-30 Nissan Motor Co Ltd Turning travel control device and turning travel control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019043395A (en) * 2017-09-04 2019-03-22 日産自動車株式会社 Travel control method and travel control apparatus for drive assist vehicle
JP7333763B2 (en) 2020-02-12 2023-08-25 株式会社Subaru Control device, control method and program
JP7333764B2 (en) 2020-02-12 2023-08-25 株式会社Subaru Control device, control method and program

Also Published As

Publication number Publication date
JPWO2016110731A1 (en) 2017-12-28
JP6365688B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
EP3611069B1 (en) Vehicle control device
EP3678110B1 (en) Method for correcting positional error and device for correcting positional error in a drive-assisted vehicle
US10386846B2 (en) Target path generating device and driving control device
JP6363517B2 (en) Vehicle travel control device
JP6323572B2 (en) Target vehicle speed generation device and travel control device
US10001782B2 (en) Target pathway generating device and driving control device
JP2019038314A (en) Vehicle driving support device
US20200108827A1 (en) Vehicle control apparatus and vehicle control method
JP6521487B2 (en) Vehicle control device
JP6631289B2 (en) Vehicle control system
JP6304011B2 (en) Vehicle travel control device
JP2005332192A (en) Steering support system
WO2016110732A1 (en) Target route generation device and travel control device
JP6365688B2 (en) Forward gaze distance setting device and travel control device
JP2008059366A (en) Steering angle determination device, automobile, and steering angle determination method
JP2019137283A (en) Operation support device, operation support method and operation support system
JP6451560B2 (en) Vehicle recognition device
JP6288305B2 (en) Target vehicle speed generation device and travel control device
GB2599309A (en) Vehicle control system and method
JP6525404B1 (en) Vehicle control device
JP2023080956A (en) Drive force control method and drive force control unit
JP2023049571A (en) Steering control method and steering control device
JP2023128845A (en) Steering control method and steering control apparatus
JP2023008220A (en) Vehicle speed control method and vehicle speed control device
JP2023160640A (en) Vehicle speed control method and vehicle speed control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876734

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016568152

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876734

Country of ref document: EP

Kind code of ref document: A1