JPH04274175A - Charging method and device - Google Patents

Charging method and device

Info

Publication number
JPH04274175A
JPH04274175A JP3034435A JP3443591A JPH04274175A JP H04274175 A JPH04274175 A JP H04274175A JP 3034435 A JP3034435 A JP 3034435A JP 3443591 A JP3443591 A JP 3443591A JP H04274175 A JPH04274175 A JP H04274175A
Authority
JP
Japan
Prior art keywords
battery
charging
vibration
current
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3034435A
Other languages
Japanese (ja)
Inventor
Yoshio Sato
良夫 佐藤
Toshihiro Suzuki
敏弘 鈴木
Keiichi Betsui
圭一 別井
Yasuhiro Iijima
飯島 泰裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3034435A priority Critical patent/JPH04274175A/en
Publication of JPH04274175A publication Critical patent/JPH04274175A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a quick charging technique without requiring a special device in a battery structure or reducing the life. CONSTITUTION:For a quick charging method, a secondary battery is charged, with a high frequency vibration given to the battery, and a quick charging device far that comprises, as illustrated, a vibration generating means to generate the high frequency vibration, a vibration transmitting means to transmit the vibration to the battery, and a current supplying means to supply a charging current to the battery.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、充電方法およびその装
置に関し、特に、2次電池に対して急速充電を行う方法
およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging method and apparatus, and more particularly to a method and apparatus for rapidly charging a secondary battery.

【0002】近年、各種電子機器の小型化や軽量化およ
び消電力化に伴って、持ち運びのできる多種多様な電子
機器が作られている。
In recent years, as various electronic devices have become smaller, lighter, and consume less power, a wide variety of portable electronic devices have been manufactured.

【0003】こうした可搬型機器の電源は一般に「電池
」であるが、これには使い捨ての電池(1次電池)と、
充電によって再使用できる電池(2次電池)の2つの種
類に分けられる。
[0003] The power source for these portable devices is generally a "battery," which includes disposable batteries (primary batteries),
There are two types of batteries (secondary batteries) that can be reused by charging.

【0004】1次電池の長所は安価であること、入手次
第直ちに使用できることである。これに対して2次電池
は再使用できるという長所を持つものの、充電に長い時
間がかかり即応性に劣るといった欠点を持つ。
[0004] The advantages of primary batteries are that they are inexpensive and can be used as soon as they are obtained. On the other hand, although secondary batteries have the advantage of being reusable, they have the disadvantage that they take a long time to charge and are less responsive.

【0005】しかしながら、1次電池は、使用後の棄却
に注意が必要であり、例えば一般のゴミと一緒に捨てた
場合に自然環境を壊す恐れがある。こうしたことから社
会的には2次電池の使用が望まれており、2次電池の欠
点(充電時間が長いこと)を克服する技術の開発が求め
られている。
However, care must be taken when disposing of primary batteries after use; for example, if they are thrown away with general garbage, there is a risk of damaging the natural environment. For these reasons, the use of secondary batteries is socially desired, and there is a demand for the development of technology that overcomes the disadvantages of secondary batteries (long charging time).

【0006】[0006]

【従来の技術】従来の急速充電方法としては、充電電圧
を高めに設定し、通常の充電電流よりも数10倍も大き
な充電電流を電池に流すことにより、充電時間を短くす
る方法が知られている。
[Prior Art] As a conventional quick charging method, a method is known in which the charging voltage is set high and a charging current several ten times larger than the normal charging current is passed through the battery to shorten the charging time. ing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、かかる
従来の方法にあっては、大きな充電電流によって充電時
間を短縮化する構成となっていたため(1)充電末期や
過充電時において電池内部にガスが発生し易く、電池の
構造に特別な工夫(触媒作用でガスを中和する等)が必
要になる、また、(2)高い電圧を印加するために電極
が劣化し易く、寿命が短くなる、といった諸問題点があ
った。
[Problems to be Solved by the Invention] However, in this conventional method, since the charging time is shortened by using a large charging current, (1) gas is generated inside the battery at the end of charging or during overcharging. (2) Due to the application of high voltage, the electrodes tend to deteriorate and the lifespan is shortened. There were various problems.

【0008】本発明は、このような問題点に鑑みてなさ
れたもので、電池構造に特別な工夫を必要とせず、且つ
寿命を短くしない急速充電技術を提供することを目的と
している。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a rapid charging technique that does not require any special modifications to the battery structure and does not shorten the battery life.

【0009】[0009]

【課題を解決するための手段】本発明の急速充電方法は
、2次電池を充電するに際し、該電池に高周波振動を与
えることを特徴し、また、その急速充電装置は、その原
理図を図1に示すように、高周波振動を発生する振動発
生手段と、該振動を電池に伝達する振動伝達手段と、該
電池に充電電流を供給する電流供給手段と、を備えたこ
とを特徴とする。
[Means for Solving the Problems] The quick charging method of the present invention is characterized in that when charging a secondary battery, high frequency vibration is applied to the battery, and the quick charging device has a principle diagram as shown in FIG. As shown in FIG. 1, the present invention is characterized by comprising a vibration generating means for generating high-frequency vibrations, a vibration transmitting means for transmitting the vibration to a battery, and a current supply means for supplying a charging current to the battery.

【0010】0010

【作用】本発明では、充電速度を律速する電池内部のい
くつかの条件(詳細は実施例で説明)が、高周波振動の
加振力によって緩和され、高電圧や大電流に依ることな
く、充電時間の短縮化が図られる。
[Function] In the present invention, several conditions inside the battery that determine the charging speed (details will be explained in the examples) are alleviated by the excitation force of high-frequency vibration, and charging can be performed without relying on high voltage or large current. Time can be shortened.

【0011】[0011]

【実施例】以下、本発明を図面に基づいて説明する。 基本説明 (1)2次電池の構造 2次電池は、図2にNiCd電池の例を示すように、正
・負の両電極間に電解液を含浸させたセパレータを挟み
込んで構成する。電極材料には、多孔質の材料(正極:
Ni、負極:Cd)が用いられ、この電極材料に活物質
と呼ばれる所定の材料を含浸させる。 (2)2次電池の充電メカニズム 図2の2次電池に対して正電極に+電圧を、負電極に−
電圧を印加すると、正極側では、活物質[Ni(OH)
2]のNi2+基から電子[e−]が奪われる結果、次
式■に示すような化学反応が起こる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the drawings. Basic Description (1) Structure of Secondary Battery A secondary battery is constructed by sandwiching a separator impregnated with an electrolyte between positive and negative electrodes, as shown in an example of a NiCd battery in FIG. The electrode material is a porous material (positive electrode:
Ni, negative electrode: Cd) is used, and this electrode material is impregnated with a predetermined material called an active material. (2) Charging mechanism of secondary battery For the secondary battery shown in Figure 2, apply + voltage to the positive electrode and - to the negative electrode.
When a voltage is applied, the active material [Ni(OH)
As a result of the electron [e-] being taken away from the Ni2+ group in [2], a chemical reaction as shown in the following formula (2) occurs.

【0012】       Ni2+2OH−  →  Ni3++O
2−+OH−+H++e−  ……■[e−]は電極か
ら電池外へと流れ出るが、[H+]は活物質中を拡散し
てさらにセパレータ中の電解液(KOH)をくぐり抜け
て移動する。移動は、負極側の活物質中の過剰になった
OH−基に出会うまで継続する。一方、負極側では、そ
の活物質[Cd(OH)2]のCd2+基に電子[e−
]が2個与えられ、次式■に示すような化学反応が起こ
る。
[0012] Ni2+2OH− → Ni3++O
2-+OH-+H++e-... ■[e-] flows out of the battery from the electrode, but [H+] diffuses in the active material and further passes through the electrolyte (KOH) in the separator and moves. The movement continues until it encounters excess OH- groups in the active material on the negative electrode side. On the other hand, on the negative electrode side, electrons [e-
] are given, and a chemical reaction as shown in the following formula (■) occurs.

【0013】 Cd2+2OH−+2e−  →  Cd+2OH− 
 ……■すなわち、充電は、負極側での水素イオンの過
剰に伴い、この負極側にH+が受け入れられることで行
われる。
[0013] Cd2+2OH−+2e− → Cd+2OH−
...■ That is, charging is performed by accepting H+ into the negative electrode side due to an excess of hydrogen ions on the negative electrode side.

【0014】ここで、充電時間を律速する条件としては
、正極で作られる水素イオンが負極へ到達するまでの「
拡散時間」、および、両電極内の活物質(Niイオン、
Cdイオン)の「移動速度」、並びに、電極に近い部分
の活物質中に発生する「電気2重層」(electri
c double layer)の影響などがある。拡
散時間や移動時間が長いほど、または、電気2重層が強
いほど充電時間が長くなる。
[0014] Here, the condition that determines the charging time is the time required for hydrogen ions produced at the positive electrode to reach the negative electrode.
diffusion time” and the active material in both electrodes (Ni ions,
The "moving speed" of Cd ions) and the "electric double layer" that occurs in the active material near the electrode
c double layer). The longer the diffusion time or travel time, or the stronger the electric double layer, the longer the charging time.

【0015】本願発明者は、かかる律速条件を緩和すれ
ば高電圧・大電流を用いずとも充電時間を短縮できるこ
とに着目し、鋭意実験等を繰り返した結果、高周波振動
の印加が最も効果的であることを見い出した。 実施例説明 図3、図4は上記原理に基づいて実現した本発明に係る
充電装置の一実施例を示す図である。
[0015] The inventor of the present application focused on the fact that charging time can be shortened without using high voltage and large current by relaxing such rate-determining conditions, and as a result of repeated experiments etc., the application of high frequency vibration was found to be the most effective. I discovered something. Embodiment FIGS. 3 and 4 are diagrams showing an embodiment of a charging device according to the present invention realized based on the above principle.

【0016】図3において、10は2個の2次電池(例
えばNiCd:ニッカド電池、以下単に電池ということ
もある)であり、電池10は超音波発振子11を埋め込
んだケース12の内部に置かれている。ケース12の内
部には電気絶縁性の高い液体(例えば純水)が入れられ
ており、電池10の大部分を水没させている。なお、ケ
ース12と超音波発振子11は一体でいわゆる超音波洗
浄器(振動発生手段、振動伝達手段)13を構成する。
In FIG. 3, reference numeral 10 denotes two secondary batteries (for example, NiCd batteries, hereinafter also simply referred to as batteries), and the batteries 10 are placed inside a case 12 in which an ultrasonic oscillator 11 is embedded. It's dark. A highly electrically insulating liquid (for example, pure water) is contained inside the case 12, and most of the battery 10 is submerged in water. The case 12 and the ultrasonic oscillator 11 together constitute a so-called ultrasonic cleaner (vibration generating means, vibration transmitting means) 13.

【0017】各電池10の水没している側の電極(+、
−)は、導線14によって互いに接続されており、また
、水没していない側の電極は(−、+)は各々導線15
、16によって充電回路(電流供給手段)17に接続さ
れている。充電回路17は、直流電圧源17aと直流電
流計17bからなり、電圧源17aの電圧Eに応じた大
きさの充電電流iを導線15、16を介して電池10に
供給する。なお、電流計17bは充電電流iを表示する
ためのもので、この表示値から充電完了を判定するため
のものである。なお、超音波発振子11の電源は図示を
略している。
The submerged side electrode (+,
-) are connected to each other by a conductor 14, and the electrodes (-, +) on the side that are not submerged are connected to each other by a conductor 15.
, 16 are connected to a charging circuit (current supply means) 17. The charging circuit 17 includes a DC voltage source 17a and a DC ammeter 17b, and supplies a charging current i corresponding to the voltage E of the voltage source 17a to the battery 10 via conductive wires 15 and 16. Note that the ammeter 17b is for displaying the charging current i, and is for determining the completion of charging from this displayed value. Note that the power supply for the ultrasonic oscillator 11 is not shown.

【0018】このような構成において、充電回路17か
らの充電電流iは導線15、16を介して電池10に流
れ込み、これによって電池10が充電される。充電電流
iは、図4に示すように、充電開始の直後から減少を始
め、およそ数10分程度経過した後、殆ど変化しない値
に安定する。この安定期間における充電電流値は約50
mA程度であり、充電初期の値よりも大幅に少ない。従
って、充電を完了するまでには相当に長い時間を必要と
する。
In this configuration, the charging current i from the charging circuit 17 flows into the battery 10 via the conductors 15 and 16, thereby charging the battery 10. As shown in FIG. 4, the charging current i starts to decrease immediately after the start of charging, and stabilizes to a value that hardly changes after about several tens of minutes. The charging current value during this stable period is approximately 50
It is about mA, which is significantly lower than the value at the initial stage of charging. Therefore, it takes a considerably long time to complete charging.

【0019】充電電流が減少する原因は前述の律速条件
、すなわち「拡散時間」「移動時間」および「電気2重
層」にある。そこで、本実施例では、律速条件の緩和を
狙いとして、充電中の電池10に超音波振動を印加する
。図4では、充電開始から約120分後に超音波振動子
11を動作させている。動作直後から充電電流が増大し
始め、およそ30分の後に約100mAで安定している
。これは超音波振動を印加する前の50mAに比べて2
倍の増加であり、これにより、充電時間を半減すること
ができる。
The reason why the charging current decreases is due to the rate-determining conditions mentioned above, namely, "diffusion time", "transfer time", and "electrical double layer". Therefore, in this embodiment, ultrasonic vibration is applied to the battery 10 during charging with the aim of relaxing the rate-determining condition. In FIG. 4, the ultrasonic transducer 11 is operated approximately 120 minutes after the start of charging. Immediately after operation, the charging current begins to increase and stabilizes at about 100 mA after about 30 minutes. This is 2 mA compared to 50 mA before applying ultrasonic vibration.
This is a two-fold increase, which can cut charging time in half.

【0020】なお、図4の実験では、電池10にNiC
dの単3型電池を用い、電圧源17aに10V/2A仕
様のものを使用(但し、2.8Vの定電圧動作)してい
る。また、超音波洗浄器13に発振周波数45KHz、
発振電力60Wのものを使用している。
In the experiment shown in FIG. 4, the battery 10 was made of NiC.
d is used, and a 10V/2A specification voltage source 17a is used (however, it operates at a constant voltage of 2.8V). In addition, the ultrasonic cleaner 13 has an oscillation frequency of 45 KHz,
I am using one with an oscillation power of 60W.

【0021】このように、本実施例によれば、高周波振
動源に超音波振動子11を用い、その振動加振力をケー
ス12および液体を介して電池10に印加しつつ充電を
行うので、充電速度を律速する電池内部の条件を緩和で
き、高速充電を実現することができる。従って、従来の
急速充電よりも低い充電電圧、少ない充電電流で良いか
ら、ガスの発生を少なくして特別な構造工夫を不要にで
きると共に、電極劣化を回避して寿命を延ばすことがで
きる。
As described above, according to this embodiment, the ultrasonic vibrator 11 is used as a high-frequency vibration source, and charging is performed while applying the vibration excitation force to the battery 10 via the case 12 and the liquid. The conditions inside the battery that limit the charging speed can be relaxed, and high-speed charging can be achieved. Therefore, since a lower charging voltage and a smaller charging current are required than in conventional quick charging, gas generation can be reduced, making special structural improvements unnecessary, and electrode deterioration can be avoided to extend the service life.

【0022】なお、実施例では、超音波振動を利用して
いるが、これに限るものではなく、例えば商用周波数の
交流電圧による振動であっても良い。 他の実施例説明 本願発明の実施態様としては上記実施例に限るものでは
なく、以下に列挙するような様々な変形態様が考えられ
る。
Although ultrasonic vibrations are used in the embodiments, the present invention is not limited to this; for example, vibrations caused by AC voltage at a commercial frequency may be used. DESCRIPTION OF OTHER EMBODIMENTS The embodiments of the present invention are not limited to the above-mentioned embodiments, and various modifications as listed below are possible.

【0023】図5は電池20の電極20a、20bを介
して高周波振動を印加するようにした例である。すなわ
ち、電池ホルダ21に取り付けられた2個の圧電トラン
スデューサ22、23は、振動発生手段および振動伝達
手段としての機能を備えると共に、電池20に対して充
電電流iを流し込むためのホルダー側端子としての機能
も備えている。
FIG. 5 shows an example in which high frequency vibrations are applied through the electrodes 20a and 20b of the battery 20. That is, the two piezoelectric transducers 22 and 23 attached to the battery holder 21 have functions as vibration generation means and vibration transmission means, and also function as holder side terminals for flowing charging current i into the battery 20. It also has functions.

【0024】電流供給手段24からの電流は、一方の圧
電トランスデューサ23と低抵抗で接触する電極20b
を介して電池20の正極側に流れ込み、負極側から流れ
出た電流は、電極20aと低抵抗で接触する他方の圧電
トランスデューサ22を介して電流供給手段24へ還流
する。
The current from the current supply means 24 is applied to an electrode 20b that contacts one piezoelectric transducer 23 with low resistance.
The current flowing into the positive electrode side of the battery 20 through the battery 20 and flowing out from the negative electrode side flows back to the current supply means 24 via the other piezoelectric transducer 22 that contacts the electrode 20a with low resistance.

【0025】圧電トランスデューサ22、23は、2枚
の金属膜(例えばアルミ)の間に圧電セラミックス(例
えばPlZt)をサンドイッチ状に挟み込んで構成し、
電極膜間に作用する高周波電界によって圧電セラミック
スが振動する。振動の周波数は電界の周波数に依存し、
振動の強さは電界の大きさに依存する。
The piezoelectric transducers 22 and 23 are constructed by sandwiching piezoelectric ceramics (for example, PlZt) between two metal films (for example, aluminum), and
The piezoelectric ceramic vibrates due to the high-frequency electric field that acts between the electrode films. The frequency of vibration depends on the frequency of the electric field,
The strength of the vibration depends on the magnitude of the electric field.

【0026】なお、25、26は圧電トランスデューサ
22、23を駆動するための高周波発振器、Ca、Cb
は直流成分阻止用コンデンサ、Lは交流成分阻止用チョ
ークコイルである。
Note that 25 and 26 are high frequency oscillators Ca and Cb for driving the piezoelectric transducers 22 and 23.
is a capacitor for blocking DC components, and L is a choke coil for blocking AC components.

【0027】ここで、2個の圧電トランスデューサ22
、23の振動位相を揃えるのが望ましい。
Here, two piezoelectric transducers 22
, 23 are preferably aligned in vibration phase.

【0028】すなわち、図6は、ある時点での圧電トラ
ンスデューサの変形状態を摸式化した図である。位相を
揃えると、電池20の両極に同一方向の力を加えること
ができる。従って、この例によれは、圧電トランスデュ
ーサ22、23の振動エネルギーを無駄なく電池20に
伝えることができ、電池20をその軸方向(両極を結ぶ
軸)に大きく加振することができる。また、電池20に
無理な力(特に圧縮方向の力)がかからないので、スト
レスを緩和できる。さらに、圧電トランスデューサ22
、23と電極20a、20bとの接触力を維持しつつ振
動を印加でき、接触抵抗の増大を抑制して充電電流の低
下を阻止できる。
That is, FIG. 6 is a schematic diagram of the deformed state of the piezoelectric transducer at a certain point in time. When the phases are aligned, force can be applied to both poles of the battery 20 in the same direction. Therefore, in this example, the vibration energy of the piezoelectric transducers 22 and 23 can be transmitted to the battery 20 without waste, and the battery 20 can be greatly vibrated in its axial direction (the axis connecting the two poles). Further, since no unreasonable force (particularly force in a compressive direction) is applied to the battery 20, stress can be alleviated. Furthermore, the piezoelectric transducer 22
, 23 and the electrodes 20a, 20b while maintaining the contact force, it is possible to suppress an increase in contact resistance and prevent a decrease in charging current.

【0029】図7は電池の電極以外の部分(例として電
池ボディ)に高周波振動を伝えるようにした例である。 すなわち、電池ボディ40の外壁面に2個の圧電トラン
スデューサ41、42を当接させ、ボディ外壁を直接加
振する。なお、この例の場合には圧電トランスデューサ
の数は特に2個に限定されない。1個でも良く、あるい
は3個以上であってもよい。要はボディ外壁を直接加振
できれば良い。
FIG. 7 shows an example in which high-frequency vibrations are transmitted to parts of the battery other than the electrodes (for example, the battery body). That is, two piezoelectric transducers 41 and 42 are brought into contact with the outer wall surface of the battery body 40, and the outer wall of the body is directly vibrated. Note that in this example, the number of piezoelectric transducers is not particularly limited to two. The number may be one, or the number may be three or more. The key is to be able to directly excite the outer wall of the body.

【0030】また、この例の場合、電池の電極40a、
40bと電流供給手段43側の端子44、45との接続
に工夫を要する。電池ボディ40の振動する方向に接点
がずれるからである。この対策としては、端子44、4
5に柔軟性を持たせれば良く、例えばスプリングを用い
たり、導電性ゴムなどの弾性体を使用したりすれば良い
。応用例説明 次に、本願発明の急速充電装置を利用した応用製品につ
いて説明する。
In this example, the battery electrodes 40a,
The connection between 40b and the terminals 44 and 45 on the current supply means 43 side requires some effort. This is because the contacts are shifted in the direction in which the battery body 40 vibrates. As a countermeasure for this, terminals 44 and 4
5 may be made flexible; for example, a spring or an elastic body such as conductive rubber may be used. Description of Application Examples Next, application products using the quick charging device of the present invention will be described.

【0031】図8はその応用製品のシステム構成図であ
り、電池の充電サービスを自動で行う装置の例である。 図8において、金銭投入部50は、投入された金券もし
くは硬貨(あるいはプリペイカード)の種類や金額など
を判定して識別信号S1を出力し、電池投入部を兼ねる
電池ホルダー51は、電池52の投入を感知して投入信
号S2を出力する。制御部53は、信号S1、S2に従
って充電開始指令信号S3を出力すると共に、充電部5
4からの充電電流信号S4をモニタして充電完了を判定
し、充電完了指令信号S5および電池放出指令信号S6
を出力する。充電部54は、信号S3に従って投入され
た電池52を充電すると共に、信号S6に従って電池5
2を放出する。
FIG. 8 is a system configuration diagram of an applied product, and is an example of a device that automatically performs battery charging service. In FIG. 8, a money insertion section 50 determines the type and amount of the inserted coupon or coin (or prepaid card) and outputs an identification signal S1, and a battery holder 51, which also serves as a battery insertion section, stores a battery 52. It senses the injection and outputs the injection signal S2. The control unit 53 outputs the charging start command signal S3 according to the signals S1 and S2, and also outputs the charging start command signal S3.
The charging current signal S4 from 4 is monitored to determine charging completion, and the charging completion command signal S5 and battery discharge command signal S6 are
Output. The charging unit 54 charges the inserted battery 52 according to the signal S3, and also charges the battery 52 according to the signal S6.
Releases 2.

【0032】このような構成によれば、定められた金額
と放電電池を投入するだけで、2次電池の急速充電サー
ビスを行うことができ、2次電池の充電作業を簡便化で
きる。従って、1次電池からの移行を促進でき、市場に
おける2次電池の占有率を高めることができる。
[0032] According to such a configuration, a quick charging service for a secondary battery can be performed by simply inserting a predetermined amount of money and a discharged battery, thereby simplifying the task of charging the secondary battery. Therefore, it is possible to promote the transition from primary batteries and increase the share of secondary batteries in the market.

【0033】ところで、上記のサービスシステムでは、
投入電池の充電が完了するまで待機する必要があり、極
めて短時間に充電が完了しない限り実用化の点で難しい
By the way, in the above service system,
It is necessary to wait until charging of the inserted battery is completed, and it is difficult to put it into practical use unless charging is completed in an extremely short time.

【0034】図9はかかる難点を改良したもので、電池
投入と同時に充電完了済みの別の電池を放出するように
したものである。すなわち、図9において、投入電池6
0は、投入部61から放電電池蓄積部62へと移され、
既に投入されていた電池と一緒に蓄えられる。これと同
時に、充電済み電池蓄積部63に蓄えられていた電池の
1つが取り出し部64に移され、この充電済み電池65
が投入者によって取り出される。
FIG. 9 is an improved version of this problem, in which a fully charged battery is ejected at the same time as a battery is inserted. That is, in FIG. 9, the input battery 6
0 is transferred from the input section 61 to the discharged battery storage section 62,
It is stored together with the batteries that were already installed. At the same time, one of the batteries stored in the charged battery storage section 63 is transferred to the takeout section 64, and this charged battery 65
is taken out by the inputter.

【0035】従って、放電電池の投入と同時に充電済み
電池を入手することができ、実用上好ましい急速充電サ
ービス装置を実現することができる。
[0035] Therefore, a charged battery can be obtained at the same time as a discharged battery is inserted, and a practically preferable rapid charging service device can be realized.

【0036】[0036]

【発明の効果】本発明によれば、高周波振動を与えなが
ら2次電池を充電するので、電池構造に特別な工夫を必
要とせず、且つ寿命を短くしない急速充電技術を提供す
ることができる。
According to the present invention, since a secondary battery is charged while applying high-frequency vibrations, it is possible to provide a rapid charging technique that does not require any special modifications to the battery structure and does not shorten its life.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】2次電池の内部構造の摸式図である。FIG. 2 is a schematic diagram of the internal structure of a secondary battery.

【図3】一実施例の構成図である。FIG. 3 is a configuration diagram of an embodiment.

【図4】一実施例の充電電流のグラフである。FIG. 4 is a graph of charging current in one embodiment.

【図5】他の実施例の構成図である。FIG. 5 is a configuration diagram of another embodiment.

【図6】他の実施例の摸式図である。FIG. 6 is a schematic diagram of another embodiment.

【図7】さらに他の実施例の構成図である。FIG. 7 is a configuration diagram of still another embodiment.

【図8】本願発明を応用した急速充電サービス装置のシ
ステム構成図である。
FIG. 8 is a system configuration diagram of a quick charging service device to which the present invention is applied.

【図9】本願発明を応用した急速充電サービス装置の改
良システム構成図である。
FIG. 9 is an improved system configuration diagram of a quick charging service device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

10、20:2次電池 13:超音波洗浄器(振動発生手段、振動伝達手段)1
7:充電回路(電流供給手段) 24、43:電流供給手段 22、23、41、42:圧電トランスデューサ(振動
発生手段、振動伝達手段)
10, 20: Secondary battery 13: Ultrasonic cleaner (vibration generation means, vibration transmission means) 1
7: Charging circuit (current supply means) 24, 43: Current supply means 22, 23, 41, 42: Piezoelectric transducer (vibration generation means, vibration transmission means)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】2次電池を充電するに際し、該電池に高周
波振動を与えることを特徴とする充電方法。
1. A charging method comprising applying high frequency vibration to a secondary battery when charging the battery.
【請求項2】高周波振動を発生する振動発生手段と、該
振動を電池に伝達する振動伝達手段と、該電池に充電電
流を供給する電流供給手段と、を備えたことを特徴とす
る充電装置。
2. A charging device comprising: vibration generation means for generating high-frequency vibrations; vibration transmission means for transmitting the vibrations to a battery; and current supply means for supplying charging current to the battery. .
【請求項3】電池の電極を介して振動を伝達する振動伝
達手段を備えたことを特徴とする請求項2記載の充電装
置。
3. The charging device according to claim 2, further comprising vibration transmitting means for transmitting vibrations through electrodes of the battery.
【請求項4】振動の伝達経路と充電電流の流れる経路と
を共通化したことを特徴とする請求項2記載の充電装置
4. The charging device according to claim 2, wherein the vibration transmission path and the charging current flow path are shared.
【請求項5】電流供給手段と電池の電極との間を柔軟に
連結すると共に、該電池の電極以外の部分に高周波振動
を伝えることを特徴とする請求項2記載の充電装置。
5. The charging device according to claim 2, wherein the current supply means and the electrodes of the battery are flexibly connected, and high-frequency vibrations are transmitted to parts other than the electrodes of the battery.
JP3034435A 1991-02-28 1991-02-28 Charging method and device Withdrawn JPH04274175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3034435A JPH04274175A (en) 1991-02-28 1991-02-28 Charging method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034435A JPH04274175A (en) 1991-02-28 1991-02-28 Charging method and device

Publications (1)

Publication Number Publication Date
JPH04274175A true JPH04274175A (en) 1992-09-30

Family

ID=12414147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034435A Withdrawn JPH04274175A (en) 1991-02-28 1991-02-28 Charging method and device

Country Status (1)

Country Link
JP (1) JPH04274175A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013050A1 (en) * 1992-11-25 1994-06-09 Motorola, Inc. Battery charging and discharging system and corresponding method
EP0629016A1 (en) * 1993-05-27 1994-12-14 Tai-Her Yang Vibration type bubble floating promotion means and device used during the process of battery charge/discharge
US5378551A (en) * 1993-07-19 1995-01-03 Motorola, Inc. Rechargeable battery cell having integral vibrating means
WO1998034317A1 (en) * 1997-01-31 1998-08-06 Georgia Tech Research Corporation System and method for battery charging with acoustic excitation
NL1022784C2 (en) * 2003-02-26 2004-08-30 Tendris Solutions Bv Charging device, system and method for charging a battery.
JP2015185501A (en) * 2014-03-26 2015-10-22 三菱自動車工業株式会社 Excitation device
JP2015185483A (en) * 2014-03-26 2015-10-22 三菱自動車工業株式会社 Secondary battery charger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994013050A1 (en) * 1992-11-25 1994-06-09 Motorola, Inc. Battery charging and discharging system and corresponding method
US5436548A (en) * 1992-11-25 1995-07-25 Motorola, Inc. Battery charging and discharging system and corresponding method
AU671341B2 (en) * 1992-11-25 1996-08-22 Motorola, Inc. Battery charging and discharging system and corresponding method
EP0629016A1 (en) * 1993-05-27 1994-12-14 Tai-Her Yang Vibration type bubble floating promotion means and device used during the process of battery charge/discharge
US5378551A (en) * 1993-07-19 1995-01-03 Motorola, Inc. Rechargeable battery cell having integral vibrating means
WO1998034317A1 (en) * 1997-01-31 1998-08-06 Georgia Tech Research Corporation System and method for battery charging with acoustic excitation
US5932991A (en) * 1997-01-31 1999-08-03 Georgia Tech Research Corporation System and method for battery charging with acoustic excitation
NL1022784C2 (en) * 2003-02-26 2004-08-30 Tendris Solutions Bv Charging device, system and method for charging a battery.
WO2004077636A2 (en) * 2003-02-26 2004-09-10 Tendris Solutions B.V. Charging apparatus, system and method for charging an accumulator
WO2004077636A3 (en) * 2003-02-26 2004-12-02 Tendris Solutions Bv Charging apparatus, system and method for charging an accumulator
JP2015185501A (en) * 2014-03-26 2015-10-22 三菱自動車工業株式会社 Excitation device
JP2015185483A (en) * 2014-03-26 2015-10-22 三菱自動車工業株式会社 Secondary battery charger

Similar Documents

Publication Publication Date Title
AU671341B2 (en) Battery charging and discharging system and corresponding method
KR960702193A (en) Electrical energy storage device and method of charging and discharging same
EP0913224A3 (en) Resistance-welding power supply apparatus
EP1296435A2 (en) Accumulator power supply unit and method for controlling a charge of the accumulator block
KR20030076374A (en) Battery pack
JPH04274175A (en) Charging method and device
US5932991A (en) System and method for battery charging with acoustic excitation
KR101952017B1 (en) An Apparatus for Capacity Recovery of Battery
SU922923A1 (en) Device for power supply of load
SU995163A1 (en) Device for power supply of load
JPH10248171A (en) Power supply and portable terminal device
JP2000092783A (en) Dry cell-type power supply apparatus
JPH10111370A (en) Power supply device, power generator, electronic equipment, and controlling method of the power supply device
JP2000012257A (en) Discharge lamp lighting device
CN101453042B (en) Lead sulfate compound reduction method and apparatus for lead-acid cell
JP2002171341A (en) Portable telephone set
AU2004215028A1 (en) Conversion circuit, system and method of executing an electrochemical process
JPS57121172A (en) Metal-halogen battery
JP2000315505A (en) Primary battery, secondary battery, charging method and device for secondary battery
CN213912308U (en) Electronic handle
KR101057886B1 (en) Lead storage battery recycling device
RU2069929C1 (en) Gas laser exciting device
JPH07326390A (en) Charging type battery and charging device therefor
JPH08287941A (en) Battery
KR200369823Y1 (en) Apparatus of portable AC power supply

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514