JPH04272226A - High-tenacity high-modulus conjugate fiber - Google Patents

High-tenacity high-modulus conjugate fiber

Info

Publication number
JPH04272226A
JPH04272226A JP5825391A JP5825391A JPH04272226A JP H04272226 A JPH04272226 A JP H04272226A JP 5825391 A JP5825391 A JP 5825391A JP 5825391 A JP5825391 A JP 5825391A JP H04272226 A JPH04272226 A JP H04272226A
Authority
JP
Japan
Prior art keywords
component
polymer
fiber
fibers
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5825391A
Other languages
Japanese (ja)
Inventor
Junyo Nakagawa
潤洋 中川
Toru Saneto
徹 実藤
Yukio Sugita
杉田 幸男
Yoshio Kishino
岸野 喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP5825391A priority Critical patent/JPH04272226A/en
Publication of JPH04272226A publication Critical patent/JPH04272226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having high strength and modulus and improved abrasion resistance, compressive fatigue resistance, etc., by using a core component consisting of an aromatic polyester capable of forming an optically anisotropic molten phase and a sheath component consisting of an oriented and crystallized flexible polymer. CONSTITUTION:The objective fiber is composed of (A) a core component consisting of an aromatic polyester capable of forming an optically anisotropic molten phase and (B) a sheath component consisting of an oriented and crystallized flexible polymer. The component A is preferably a polymer containing >=65wt.% of segments composed of the units of formula I and formula II, especially an aromatic polyester containing 5-45wt.% of the component of formula II. The component B is preferably polybutylene terephthalate, polyethylene terephthalate, etc. when the component A is a copolymer of the units of formula I and formula II.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、耐疲労性、染色性に優
れた高強力・高弾性率繊維に関するものであり、本発明
繊維は一般産業資材用途のみならず、スポーツ、防護衣
料等の分野においても広く用いられるものである。
[Industrial Application Field] The present invention relates to high-strength, high-modulus fibers with excellent fatigue resistance and dyeability. The fibers of the present invention are used not only for general industrial materials, but also for sports, protective clothing, etc. It is also widely used in the field.

【0002】0002

【従来の技術】従来、溶融液晶ポリマーの研究開発が盛
んとなり、これらのポリマーを溶融紡糸した高強力・高
弾性率繊維が知られている(例えば、特開昭61−17
4408号公報)。
[Prior Art] Research and development of molten liquid crystal polymers has been active, and high strength and high elastic modulus fibers made by melt spinning these polymers are known (for example, Japanese Patent Application Laid-Open No. 1986-17
Publication No. 4408).

【0003】0003

【発明が解決しようとする課題】前述の繊維化方法、す
なわち溶融液晶からの紡糸によると従来の汎用合成繊維
に比べ著しく高い強度と弾性率を有する有機繊維を得る
ことができるが、これらの繊維は何ずれもポリマー分子
鎖が繊維軸方向に高度に配向している。一方、繊維軸に
対し直角の断面方向では、弱い分子間力が働くだけで力
学的に弱い繊維構造となる。このように、繊維の強度、
弾性率を上げるため、ポリマー分子鎖の配向度を極度に
向上させると、繊維軸方向にフィブリルが発達する。フ
ィブリル間の相互作用は小さいため、繰返し屈曲変形や
摩擦の負荷がかかるようなところで使用される用途分野
においては耐久性の点で問題となる。
[Problems to be Solved by the Invention] According to the above-mentioned fiberization method, that is, spinning from molten liquid crystal, it is possible to obtain organic fibers having significantly higher strength and elastic modulus than conventional general-purpose synthetic fibers. In both cases, the polymer molecular chains are highly oriented in the fiber axis direction. On the other hand, in the cross-sectional direction perpendicular to the fiber axis, only weak intermolecular forces act, resulting in a mechanically weak fiber structure. In this way, the strength of the fiber,
In order to increase the elastic modulus, when the degree of orientation of polymer molecular chains is extremely improved, fibrils develop in the fiber axis direction. Since the interaction between fibrils is small, durability becomes a problem in applications where the material is subjected to repeated bending deformation or frictional loads.

【0004】一方、屈曲性高分子からなるナイロン繊維
、ポリエステル繊維は比較的屈曲変形、摩擦に対して優
れた耐久性を示すが、引張強度、弾性率等の力学的性質
が液晶繊維等と比較すると著しく低い。これらの問題を
解決するため、例えば鞘成分をポリエステル、ナイロン
等の屈曲性高分子とし、芯成分を液晶ポリマーとする複
合繊維も考えられるが、芯成分の液晶性ポリマーは延伸
が実質的に出来ないため、鞘成分ポリマーは、未配向で
実質的に結晶化していない状態であり、本来の性能が発
揮されず、簡単な摩耗で芯鞘の剥離をおこし実用に耐え
ないものであった。
On the other hand, nylon fibers and polyester fibers made of flexible polymers exhibit relatively excellent durability against bending deformation and friction, but their mechanical properties such as tensile strength and elastic modulus are inferior to those of liquid crystal fibers. Then it is noticeably lower. To solve these problems, composite fibers can be considered, for example, in which the sheath component is a flexible polymer such as polyester or nylon, and the core component is a liquid crystal polymer, but the liquid crystal polymer in the core component cannot be stretched substantially. As a result, the sheath component polymer was in an unoriented and substantially non-crystallized state, and its original performance was not exhibited, and the core-sheath peeled off due to simple abrasion, making it unusable for practical use.

【0005】本発明者らは、延伸することなしに屈曲性
高分子からなる鞘成分を配向結晶化することについて鋭
意研究を進めて本発明を見出したものである。以下、本
発明をさらに詳細にかつ具体的に説明する。
[0005] The present inventors have conducted extensive research into oriented crystallization of a sheath component made of a flexible polymer without stretching, and have discovered the present invention. Hereinafter, the present invention will be explained in more detail and specifically.

【0006】[0006]

【課題を解決するための手段】本発明は芯成分が光学的
異方性溶融相を形成し得る芳香族ポリエステル、鞘成分
が配向結晶化している屈曲性高分子からなる高強力・高
弾性率複合繊維である。
[Means for Solving the Problems] The present invention provides a high-strength, high-elastic modulus comprising a core component of an aromatic polyester capable of forming an optically anisotropic melt phase and a sheath component of a flexible polymer having oriented crystallization. It is a composite fiber.

【0007】本発明に言う異方性溶融相を形成し得る芳
香族ポリエステルとは、芳香族ジオール、芳香族ジカル
ボン酸、芳香族ヒドロキシカルボン酸等より得られるポ
リマーであり、溶融相で光学的異方性(液晶性)を示す
ものである。このような特性はホットステージ上の試料
を窒素雰囲気下で昇温しその透過光を観察することによ
り容易に認定することができる。本発明に用いられる異
方性溶融成分Aは下記に示す反復成分の組合せからなる
ものである。
The aromatic polyester capable of forming an anisotropic melt phase as used in the present invention is a polymer obtained from an aromatic diol, an aromatic dicarboxylic acid, an aromatic hydroxycarboxylic acid, etc., and exhibits optical anisotropy in the melt phase. It shows orientation (liquid crystallinity). Such characteristics can be easily recognized by heating a sample on a hot stage in a nitrogen atmosphere and observing the transmitted light. The anisotropic melt component A used in the present invention consists of a combination of repeating components shown below.

【0008】[0008]

【化1】[Chemical formula 1]

【0009】また、上記反復成分に10モル%以下の他
の成分を共重合していてもよい。特に好ましくは、次に
示す(E),(F)の反復構成単位から成る部分が65
重量%以上であるポリマーであり、特に(F)の成分が
5〜45%である芳香族ポリエステルが好ましい。
[0009] Further, the above-mentioned repeating component may be copolymerized with 10 mol% or less of other components. Particularly preferably, the portion consisting of the following repeating structural units (E) and (F) is 65
Aromatic polyesters in which the component (F) accounts for 5 to 45% by weight are particularly preferred.

【0010】0010

【化2】[Case 2]

【0011】A成分中には、その強力が実質的に低下し
ない範囲で他のポリマーあるいは添加剤等を含んでいて
も良い。本発明に言う屈曲性高分子とは、ポリオレフィ
ン、ポリアミド、ポリエステル、ポリアリレート、ポリ
カーボネイト、ボリフェニレンサイファイド、ポリエス
テルエーテルケトン等の繊維形成能を有するポリマーで
ある。好ましい鞘成分としては、芯成分の紡糸温度で、
分解等がおこらず複合紡糸が可能であるポリマーであり
、芯成分として、[E]と[F]の共重合体を用いた場
合、ポリブチレンテレフタレート、ポリエチレンテレフ
タレート、ポリエチレンナフタレート、ポリフェニレン
サルファイド、ポリエステルエーテルケトン等である。 これらの鞘成分のポリマーには通常使用される添加剤(
顔料、カーボン、熱安定剤、紫外線吸収剤、滑剤、螢光
増白剤等)が含まれていてもよい。
[0011] Component A may contain other polymers or additives as long as its strength is not substantially reduced. The flexible polymer referred to in the present invention is a polymer having fiber-forming ability such as polyolefin, polyamide, polyester, polyarylate, polycarbonate, polyphenylene sulfide, and polyester ether ketone. As a preferable sheath component, at the spinning temperature of the core component,
It is a polymer that can be composite-spun without decomposition, etc. When a copolymer of [E] and [F] is used as the core component, polybutylene terephthalate, polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyester Ether ketones, etc. Additives commonly used in these sheath component polymers (
(pigments, carbon, heat stabilizers, ultraviolet absorbers, lubricants, fluorescent whitening agents, etc.) may also be included.

【0012】本発明に言う複合繊維の好ましい複合比率
は、芯成分の断面積をA、鞘成分の断面積をBとすると
き、B/(A+B)=0.05〜0.6の範囲である。 面積比は、繊維横断面の顕微鏡写真から求めた芯、鞘部
の面積から求める。ここで面積比が0.05未満では鞘
成分による被覆が十分でなく、一部芯が露出したり、摩
擦、摩耗により容易に鞘成分が剥れたりする場合があり
、逆に0.6を越えると芯成分の比率が減少し、結果と
して強度、弾性率が低下し本発明の主旨からはずれる場
合がある。
[0012] A preferred composite ratio of the composite fiber according to the present invention is in the range of B/(A+B) = 0.05 to 0.6, where A is the cross-sectional area of the core component and B is the cross-sectional area of the sheath component. be. The area ratio is determined from the areas of the core and sheath portions determined from a microscopic photograph of the cross section of the fiber. If the area ratio is less than 0.05, the covering by the sheath component will not be sufficient, and a portion of the core may be exposed or the sheath component may peel off easily due to friction or wear. If it exceeds this, the ratio of the core component decreases, resulting in a decrease in strength and elastic modulus, which may deviate from the spirit of the present invention.

【0013】本発明に言う、鞘成分ポリマーが“配向結
晶化している”とは、繊維を平行に並べ広角X線回折を
行ったとき、ハローあるいはリング状の回折パターンで
はなく、明らかに微結晶の配向を示す繊維図を与えるこ
とである。配向結晶性の著しく低い繊維の広角X線回折
像は、散漫な非晶性ハローを示し、配向結晶化の進行に
伴ない非晶性ハローが赤道方向に集中してくる。この様
な異方性の出現は、配向中間相と呼ばれる構造が形成さ
れ、それが発達し配向結晶化構造に移ると考えられる。 本発明に言う配向結晶化をより明確にするには、結晶配
向度の実用的簡便法として、呉,久保等により提案され
ている(工業化学39,929(1939))次のfc
で示すことができる。すなわち、赤道線上に最も強い反
射のデバイ環に沿って測定された強度分布の半価幅Hを
求め、次式より算出する。 fc=(180−H)/180 本発明に言う配向結晶化とは、fcが0.7以上を言う
In the present invention, the term "orientated crystallization" of the sheath component polymer means that when the fibers are arranged in parallel and wide-angle X-ray diffraction is performed, there is no halo or ring-shaped diffraction pattern, but clearly microcrystals. The purpose is to provide a fiber diagram showing the orientation of the fibers. A wide-angle X-ray diffraction image of a fiber with significantly low oriented crystallinity shows a diffuse amorphous halo, and as oriented crystallization progresses, the amorphous halo becomes concentrated in the equator direction. The appearance of such anisotropy is thought to be due to the formation of a structure called an oriented intermediate phase, which develops and shifts to an oriented crystallized structure. In order to clarify the oriented crystallization referred to in the present invention, as a practical and simple method for determining the degree of crystal orientation, the following fc has been proposed by Kure, Kubo et al.
It can be shown as That is, the half-width H of the intensity distribution measured along the Debye ring of the strongest reflection on the equator line is determined and calculated using the following equation. fc=(180-H)/180 Oriented crystallization as used in the present invention refers to fc of 0.7 or more.

【0014】配向結晶化した繊維は次の方法によって得
られる。複合繊維を得るには、公知の方法、例えば図1
の装置で紡糸される。断面形状は図2に示す如く、鞘成
分が表面をほぼ覆っている形状であれば良い。紡糸温度
は、芯鞘各成分の融点の高い方より更に10℃以上高い
温度で行うことが好ましい。芯成分は、高配向度を得る
ため吐出時の剪断速度(γ)を103sec−1以上に
することが好ましい。より好ましくは104sec−1
以上である。本発明に言う剪断速度(γ)とは、ノズル
径をr(cm)、単孔当りのポリマー吐出量をQ(cm
3/sec)とするとき γ=4Q/πr3(sec−1) で計算される。
[0014] Oriented crystallized fibers are obtained by the following method. Composite fibers can be obtained by known methods, for example in FIG.
The fibers are spun using the following equipment. The cross-sectional shape may be any shape as shown in FIG. 2, as long as the sheath component substantially covers the surface. The spinning temperature is preferably 10° C. or more higher than the higher melting point of each component of the core and sheath. In order to obtain a high degree of orientation, the core component preferably has a shear rate (γ) of 103 sec-1 or more during discharge. More preferably 104sec-1
That's all. The shear rate (γ) referred to in the present invention refers to the nozzle diameter r (cm) and the polymer discharge amount per single hole Q (cm).
3/sec), it is calculated as γ=4Q/πr3(sec-1).

【0015】本発明者らの検討によると芯成分は、紡糸
ドラフト(D)による再配向はほとんどなく、ドラフト
による急激な配向を生ずるのは、屈曲性ポリマーである
鞘成分のみである。本発明による紡糸ドラフト(D)と
は、次式で示される値である。 D=Vt/Vo ただし、Vo:ノズルを出るポリマーの吐出速度(m/
分) Vt:紡糸巻取速度(紡糸速度)(m/分)本発明の繊
維を得るにはD>30とすることが好ましい。更に、本
発明の鞘成分が配向結晶化した複合繊維を得るには、紡
糸速度が重要な因子であり、鞘成分ポリマーの配向結晶
化速度によっても異なるが例えば、ポリエチレンテレフ
タレートの場合はVt>4000m/分、ポリエチレン
ナフタレートはVt>5000m/分、ポリフェニレン
サルファイドはVt>2500m/分である。
According to studies conducted by the present inventors, the core component hardly undergoes reorientation due to the spinning draft (D), and only the sheath component, which is a flexible polymer, undergoes rapid orientation due to the draft. The spinning draft (D) according to the present invention is a value expressed by the following formula. D=Vt/Vo, where Vo: discharge speed of polymer exiting the nozzle (m/
(min) Vt: Spin take-up speed (spinning speed) (m/min) In order to obtain the fiber of the present invention, it is preferable that D>30. Furthermore, in order to obtain a composite fiber in which the sheath component of the present invention is oriented and crystallized, the spinning speed is an important factor, and although it varies depending on the oriented crystallization speed of the sheath component polymer, for example, in the case of polyethylene terephthalate, Vt > 4000 m. /min, polyethylene naphthalate has a Vt>5000 m/min, and polyphenylene sulfide has a Vt>2500 m/min.

【0016】本発明の複合繊維は、紡糸しただけで既に
十分な強度、弾性率を有しているが、弛緩熱処理や緊張
熱処理により性能をさらに向上させることができる。熱
処理は、窒素等の不活性雰囲気や、空気の如き酸素含有
の活性雰囲気中または、減圧下で行うことが可能である
。熱処理雰囲気は露点が−40℃以下の気体が好ましい
。好ましい温度条件としては、鞘成分の融点以下でかつ
、芯成分の融点マイナス40℃以下から順次昇温して行
くパターンが挙げられる。処理時間は、目的の性能によ
り数秒が数十時間行うことが出来る。
The composite fiber of the present invention already has sufficient strength and elastic modulus after being spun, but its performance can be further improved by relaxing heat treatment or tension heat treatment. The heat treatment can be carried out in an inert atmosphere such as nitrogen, an active atmosphere containing oxygen such as air, or under reduced pressure. The heat treatment atmosphere is preferably a gas having a dew point of -40°C or lower. Preferred temperature conditions include a pattern in which the temperature is gradually increased from below the melting point of the sheath component and below the melting point of the core component -40°C. The processing time can range from several seconds to several tens of hours depending on the desired performance.

【0017】熱の供給は、気体等の媒体を行う場合、加
熱板、赤外ヒーター等による輻射を利用する方法、熱ロ
ーラ、プレート等に接触して行う方法、高周波等を利用
した内部加熱方法等がある。処理は、目的により、緊張
下あるいは無緊張下で行なわれる。処理の形状は、カセ
状、チーズ状、トウ状(例えば金網等にのせて行う)、
あるいはローラ間の連続処理によって行なわれる。繊維
の形態は、フィラメント、カットファイバーいずれも可
能である。緊張熱処理は、芯成分の融点より60℃以上
低い温度で、切断強力の10〜50%の張力で行うこと
が好都合であり、この処理で弾性率および耐疲労性が更
に改善される。
[0017] When heat is supplied using a medium such as gas, a method using radiation from a heating plate, an infrared heater, etc., a method by contacting with a heat roller, a plate, etc., an internal heating method using high frequency, etc. etc. Processing is carried out under tension or without tension, depending on the purpose. The shape of the treatment is skein-like, cheese-like, tow-like (for example, placed on a wire mesh, etc.),
Alternatively, continuous processing between rollers is performed. The fibers can be either filaments or cut fibers. The tension heat treatment is conveniently carried out at a temperature of at least 60° C. below the melting point of the core component and at a tension of 10 to 50% of the cutting strength, which further improves the elastic modulus and fatigue resistance.

【0018】本発明は、芯成分が溶融液晶ポリマーから
なり、鞘成分が配向結晶化した屈曲性ポリマーからなっ
ているため、高強度、高弾性率、寸法安定性等の性能を
保持し、溶融液晶ポリマーからなる繊維の最大の欠点で
あった表面フィブリル化、耐摩耗性、耐圧縮疲労性、耐
候性等を著しく改良された繊維である。
In the present invention, the core component is made of a molten liquid crystal polymer, and the sheath component is made of a flexible polymer that has been crystallized in an oriented manner. This fiber has significantly improved surface fibrillation, abrasion resistance, compression fatigue resistance, weather resistance, etc., which are the biggest drawbacks of fibers made of liquid crystal polymers.

【0019】本発明繊維を用いた産業上の利用例として
は次の様なものが挙げられる。 1.樹脂補強用(カーボン、ガラス繊維との複合化)に
使用されるもの スキー板、ゴルフクラブやゲートボールのヘッドおよび
シャフト、テニスやバトミントンのラケットフレーム、
ヘルメット、バット、メガネフレーム、プリント基盤、
モーター回転子のスロット、絶縁物、パイプ、高圧容器
、自動車、自動二輪車、二輪車、列車、船、飛行機、宇
宙船等の一次あるいは二次構造体 2.ゴム補強用に使用されるもの タイヤ、ベルト、各種タイミングベルト、ホースのゴム
補強用資材 3.パルプ状で使用されるもの 1)摩耗材(他繊維との混合使用、樹脂の補強)、ブレ
ーキライニング、クラッチフェーシング、軸受け2)そ
の他 パッキン材、ガスケット、濾過材、研磨材4.カットフ
ァイバー、チョップドヤーン状で使用されるもの 紙(絶縁紙、耐熱紙)、スピーカー用振動材、セメント
補強材、樹脂補強材 5.フィラメント、紡績糸ヤーン状で使用されるものコ
ントロールケーブル、ヒーター線芯糸、テンションメン
バー(光ファイバー、ヘッドホーンコード等)、ロープ
、コード、ザイル、命綱、釣糸、延網6.織物あるいは
編物状で使用されるものスクリーン紗、コンベアベルト
、ヨットセール、テント、膜類、防弾チョッキ、安全手
袋、安全ネット、耐熱耐炎服、前掛け等保護具、ゴム補
強用基布、自動車、列車、船、飛行機、宇宙船等の内張
等が挙げられる。
Examples of industrial applications using the fiber of the present invention include the following. 1. Items used for resin reinforcement (composite with carbon and glass fibers) Skis, golf club and gateball heads and shafts, tennis and badminton racket frames,
Helmets, bats, glasses frames, printed circuit boards,
Primary or secondary structures such as motor rotor slots, insulators, pipes, high pressure vessels, automobiles, motorcycles, two-wheeled vehicles, trains, ships, airplanes, spacecraft, etc. 2. Items used for rubber reinforcement Materials for rubber reinforcement of tires, belts, various timing belts, and hoses 3. Items used in pulp form 1) Wear materials (mixed with other fibers, reinforcing resin), brake linings, clutch facings, bearings 2) Other packing materials, gaskets, filter materials, abrasive materials 4. Paper used in cut fiber, chopped yarn form (insulating paper, heat-resistant paper), vibrating material for speakers, cement reinforcing material, resin reinforcing material5. Filaments, spun yarns used in the form of yarn Control cables, heater wire core yarns, tension members (optical fibers, headphone cords, etc.), ropes, cords, ropes, life lines, fishing lines, nets 6. Items used in woven or knitted form Screen gauze, conveyor belts, yacht sails, tents, membranes, bulletproof vests, safety gloves, safety nets, heat-resistant and flame-resistant clothing, protective equipment such as aprons, rubber reinforcement base fabrics, automobiles, trains, Examples include the lining of ships, airplanes, spacecraft, etc.

【0020】本発明に言うフィブリル化とは、ヤーンを
100gの張力下で三点のチタンガイドに通し、100
m/minで1時間走行させた時のガイドに付着するフ
ィブリルの量により、多いものを×、全く出ないものを
○、中間を△として評価した。本発明に言う耐疲労性強
力保持率とは、約1500dr(500dr×3本)の
ヤーンを、下撚280T/m、上撚280T/mの双糸
とし、コードをつくり、ゴム中に包埋して行うベルト屈
曲テスト法で25万回処理した後の強力保持率で評価し
た。
[0020] Fibrillation as referred to in the present invention means that the yarn is passed through three titanium guides under a tension of 100 g.
The amount of fibrils adhering to the guide when running at m/min for 1 hour was evaluated as × for a large amount, ○ for no fibrils, and Δ for an intermediate amount. The fatigue resistance and strength retention rate referred to in the present invention means that yarns of approximately 1500 dr (500 dr The strength retention rate after 250,000 times of processing was evaluated using the belt bending test method.

【0021】本発明に言う摩耗性とは、試料ヤーンを1
0本引揃え、反転回転体と他端の滑車とに1.5回ヨリ
合せ、8の字状にセットし滑車に3kgの荷重をかけ、
反転回転体でヤーンを往復ヨリ合せ摩耗させ切断までの
回数を求める繊維間摩耗と、1/10g/dの荷重をか
け、直径10cmの丸砥石(回転数:100回/分、接
触角:100度)で切断までの回数で示すグラインダー
摩耗テストの両者で評価した。以下、実施例により本発
明をより具体的に説明するが、本発明は、これにより限
定されるものではない。
[0021] The abrasiveness referred to in the present invention refers to
Align the 0 wires, twist the inversion rotating body and the pulley at the other end 1.5 times, set it in a figure 8 shape, and apply a load of 3 kg to the pulley.
Interfiber abrasion, which calculates the number of times it takes to twist and break the yarn by reciprocating it with a reversing rotating body, and applying a load of 1/10 g/d to a round grindstone with a diameter of 10 cm (rotation speed: 100 times/min, contact angle: 100 The grinder wear test was evaluated in terms of the number of times it took to cut (degrees) and the number of cuts. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

【0022】[0022]

【実施例】実施例1 芯成分として前記構成単位(E)と(F)が73/27
モル%比である全芳香族ポリエステルポリマーを用いた
。このポリマーの物性は、 ηinh=5.6dl/g Mp    =279℃ である。対数粘度(ηinh)は次のようにして求めた
。試料をペンタフルオロフェノールに0.1重量%溶解
し(60〜80℃)、60℃の恒温槽中でウベローデ型
毛管粘度計(例えば高分子学会編“高分子科学実験法”
東京化学同人P179(1986)東京)で測定する。 溶媒の流下時間は107秒である。 ηinh=[ln(ηrel)]/C また芯ポリマーの融点(Mp)は、メトラー社製TA−
3000DSCで求めた吸熱ピーク温度である。
[Example] Example 1 The above structural units (E) and (F) are 73/27 as core components.
A fully aromatic polyester polymer with a mole % ratio was used. The physical properties of this polymer are: ηinh=5.6 dl/g Mp=279°C. Logarithmic viscosity (ηinh) was determined as follows. Dissolve 0.1% by weight of the sample in pentafluorophenol (60 to 80°C), and use an Ubbelohde capillary viscometer (for example, "Polymer Science Experimental Methods" edited by the Society of Polymer Science and Technology) in a constant temperature bath at 60°C.
Measured with Tokyo Kagaku Doujin P179 (1986) Tokyo). The solvent flow time is 107 seconds. ηinh=[ln(ηrel)]/C The melting point (Mp) of the core polymer is TA-
This is the endothermic peak temperature determined by 3000DSC.

【0023】鞘成分として[η](フェノールとテトラ
クロロエタンの等量混合溶媒を用い30℃の恒温槽中で
ウッペローデ型粘度計を使用して測定した極限粘度)=
0.72dl/gのポリエチレンテレフタレートを用い
、芯成分と鞘成分の重量比3:1で、図1に示す50ホ
ールの口金より温度310℃で複合紡糸した。ノズル径
は、0.25mmφで、巻取速度4500m/分で25
0デニールのフィラメントを得た。γ=21.7×10
3sec−1、D=111倍、Vt=4500m/分で
あり、得られた繊維性能は 強度(DT)      :9.3g/d伸度(DE)
      :2.3% 弾性率(IM)    :480g/d断面積比   
       :0.25結節強度(KT)  :5.
6g/d ループ強度(LT):7.3g/d であった。このものを平行に並べ厚み約0.5mmの短
冊状の試料をつくり、広角X線回折写真を撮った。鞘成
分のポリエチレンテレフタレートは明らかに配向結晶化
した繊維図を与えており、(−1,1,0)面の方位角
方向の強度分布より測定したfcは0.81であった。
As the sheath component, [η] (intrinsic viscosity measured using an Upperohde viscometer in a constant temperature bath at 30°C using a mixed solvent of equal amounts of phenol and tetrachloroethane) =
Using 0.72 dl/g of polyethylene terephthalate, composite spinning was carried out at a temperature of 310° C. using a 50-hole spindle shown in FIG. 1 at a weight ratio of core component to sheath component of 3:1. The nozzle diameter is 0.25 mmφ, and the winding speed is 4500 m/min.
A filament of 0 denier was obtained. γ=21.7×10
3sec-1, D=111 times, Vt=4500m/min, and the obtained fiber performance is strength (DT): 9.3g/d elongation (DE)
:2.3% Elastic modulus (IM) :480g/d cross-sectional area ratio
:0.25 Nodule strength (KT) :5.
6 g/d Loop strength (LT): 7.3 g/d. A rectangular sample with a thickness of about 0.5 mm was prepared by arranging this material in parallel, and a wide-angle X-ray diffraction photograph was taken. Polyethylene terephthalate, the sheath component, clearly showed an oriented crystallized fiber pattern, and the fc measured from the intensity distribution in the azimuthal direction of the (-1,1,0) plane was 0.81.

【0024】比較例1 実施例1と同様の芯鞘成分を用い、紡糸ドラフトD=2
5倍、巻取速度3500m/分で行ったこと以外、本質
的に同様の方法で250デニールのフィラメントを得た
。得られた繊維の性能は、 強度(DT)      :8.2g/d伸度(DE)
      :1.9% 弾性率(IM)    :447g/d断面積比   
       :0.25結節強度(KT)  :2.
3g/d ループ強度(LT):4.7g/d であった。このものを実施例1と同様の広角X線回折写
真を撮ったところ、ポリエチレンテレフタレートの回折
は、散漫な非晶性ハローからなるリング状パターンから
なっていた。最大強度を与える2θ=21°の方位角方
向の強度分布より測定したfcは0.52であり、配向
結晶化が十分行なわれていないことがわかった。性能面
では、結節強度、ループ強度が著しく劣っていた。
Comparative Example 1 Using the same core-sheath components as in Example 1, spinning draft D=2
A 250 denier filament was obtained in essentially the same manner, except that the winding speed was 5x and the winding speed was 3500 m/min. The properties of the obtained fibers are as follows: Strength (DT): 8.2 g/d Elongation (DE)
: 1.9% Elastic modulus (IM) : 447 g/d cross-sectional area ratio
:0.25 Nodule strength (KT) :2.
3 g/d Loop strength (LT): 4.7 g/d. When a wide-angle X-ray diffraction photograph was taken of this product in the same manner as in Example 1, the diffraction of polyethylene terephthalate consisted of a ring-shaped pattern consisting of diffuse amorphous halos. The fc measured from the intensity distribution in the azimuthal direction of 2θ=21°, which gives the maximum intensity, was 0.52, indicating that oriented crystallization was not sufficiently performed. In terms of performance, the knot strength and loop strength were significantly inferior.

【0025】実施例2 芯成分として、実施例1と同一の溶融液晶性ポリマーを
用い、鞘成分として[η](パラクロロフェノールとテ
トラクロロエタンの等量混合溶媒を用い30℃の恒温槽
中でウッペローデ型粘度計を使用して測定した極限粘度
)=0.68dl/gのポリエチレンナフタレートを用
い、芯成分と鞘成分の重量比3:1で50ホールの口金
を用い、温度318℃で複合紡糸した。巻取速度630
0m/分で250デニールのフィラメントを得た。紡糸
ドラフトはD=173倍であった。得られた繊維の性能
は、 強度(DT)      :10.2g/d伸度(DE
)      :2.3% 弾性率(IM)    :502g/d断面積比   
       :0.25結節強度(KT)  :6.
2g/d ループ強度(LT):8.7g/d であった。実施例1と同様の方法で広角X線回折を行な
いfcを求めたところ0.93であった。この原糸をネ
ット上に乗せ、上部より加熱されたN2ガスを吹きつけ
る方法で230℃で10時間、270℃で10時間熱処
理した。熱処理後もfcに変化は認められなかった。得
られた繊維の物性を表1に示す。
Example 2 The same molten liquid crystalline polymer as in Example 1 was used as the core component, and [η] was used as the sheath component (in a constant temperature bath at 30°C using a mixed solvent of equal amounts of parachlorophenol and tetrachloroethane). Polyethylene naphthalate (intrinsic viscosity measured using an Upperohde viscometer) = 0.68 dl/g was used, the weight ratio of the core component and the sheath component was 3:1, a 50-hole cap was used, and the composite was heated at a temperature of 318°C. spun. Winding speed 630
A filament of 250 denier was obtained at 0 m/min. The spinning draft was D=173 times. The performance of the obtained fibers is as follows: Strength (DT): 10.2 g/d Elongation (DE
): 2.3% Elastic modulus (IM): 502 g/d cross-sectional area ratio
:0.25 Nodule strength (KT) :6.
2g/d Loop strength (LT): 8.7g/d. Wide-angle X-ray diffraction was performed in the same manner as in Example 1 to determine fc, which was 0.93. This yarn was placed on a net and heated at 230° C. for 10 hours and at 270° C. for 10 hours by blowing heated N2 gas from above. No change in fc was observed even after heat treatment. Table 1 shows the physical properties of the obtained fibers.

【0026】比較例2 実施例2と同様の芯鞘成分を用い、巻取速度1000m
/分で行ったこと以外、本質的に同様の方法で250デ
ニールフィラメントを得た。得られた繊維の性能は、強
度(DT)      :8.8g/d伸度(DE) 
     :2.2% 弾性率(IM)    :438g/d断面積比   
       :0.25結節強度(KT)  :3.
2g/d ループ強度(LT):5.9g/d であった。このものの広角X線回折は、鞘成分のポリエ
チレンナフタレートの回折は、リング状のハローをなし
ており、比較例1と同様の方法で求めたfcは0.46
であった。この原糸を実施例2と同様の方法で熱処理を
行った。熱処理中にヤーン間の微膠着がおこり工程中で
鞘成分が剥離し毛羽立つ部分が見られた。この繊維の広
角X線回折では、ポリエチレンテレフタレートの回折は
、リング状をなしており、結晶化はしているが配向はし
ていないと判断される。得られた繊維の性能を表1に示
す。
Comparative Example 2 Using the same core and sheath components as in Example 2, the winding speed was 1000 m.
A 250 denier filament was obtained in essentially the same manner except that it was run at 1/min. The performance of the obtained fibers is as follows: strength (DT): 8.8 g/d elongation (DE)
:2.2% Elastic modulus (IM) :438g/d cross-sectional area ratio
:0.25 Nodule strength (KT) :3.
2g/d Loop strength (LT): 5.9g/d. Wide-angle X-ray diffraction of this product shows that the diffraction of polyethylene naphthalate, which is a sheath component, forms a ring-shaped halo, and the fc obtained by the same method as Comparative Example 1 is 0.46.
Met. This yarn was heat treated in the same manner as in Example 2. Slight adhesion between the yarns occurred during the heat treatment, and the sheath component was peeled off during the process, resulting in some fluffy areas. In wide-angle X-ray diffraction of this fiber, the diffraction of polyethylene terephthalate is ring-shaped, indicating that it is crystallized but not oriented. Table 1 shows the performance of the obtained fibers.

【0027】[0027]

【表1】[Table 1]

【0028】比較例2では、鞘成分が配向結晶化してい
ないため、脆く、かつ膠着部があるため、摩耗等で鞘成
分の剥離をおこすためか、期待された性能が発揮されて
いない。
In Comparative Example 2, the sheath component was not oriented and crystallized, so it was brittle and had adhesive parts, so the expected performance was not exhibited, probably because the sheath component peeled off due to wear or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の複合繊維製造に用いられる紡糸装置の
一例の模式図である。
FIG. 1 is a schematic diagram of an example of a spinning device used for producing composite fibers of the present invention.

【図2】本発明の代表的な複合繊維の断面図である。FIG. 2 is a cross-sectional view of a typical composite fiber of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  芯成分が光学的異方性溶融相を形成し
得る芳香族ポリエステル、鞘成分が配向結晶化している
屈曲性高分子である複合繊維。
1. A composite fiber whose core component is an aromatic polyester capable of forming an optically anisotropic melt phase and whose sheath component is a flexible polymer that is oriented and crystallized.
JP5825391A 1991-02-27 1991-02-27 High-tenacity high-modulus conjugate fiber Pending JPH04272226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5825391A JPH04272226A (en) 1991-02-27 1991-02-27 High-tenacity high-modulus conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5825391A JPH04272226A (en) 1991-02-27 1991-02-27 High-tenacity high-modulus conjugate fiber

Publications (1)

Publication Number Publication Date
JPH04272226A true JPH04272226A (en) 1992-09-29

Family

ID=13078976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5825391A Pending JPH04272226A (en) 1991-02-27 1991-02-27 High-tenacity high-modulus conjugate fiber

Country Status (1)

Country Link
JP (1) JPH04272226A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623765A1 (en) * 1993-02-19 1994-11-09 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in power transmission belts
FR2707553A1 (en) * 1993-07-13 1995-01-20 Hutchinson Elastomeric component and its method of production
JPH07243128A (en) * 1994-03-04 1995-09-19 Kuraray Co Ltd Sheath-core type conjugate fiber and fishline made therefrom
JPH08209449A (en) * 1995-02-07 1996-08-13 Mosho Tei Method for opening of conjugate fiber
EP0976854A1 (en) * 1998-07-29 2000-02-02 Johns Manville International, Inc. Monofilamentary bicomponent core-sheath fibres
CN113265721A (en) * 2021-04-19 2021-08-17 浙江大学 Fibrous dielectric elastomer driver and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0623765A1 (en) * 1993-02-19 1994-11-09 Hoechst Celanese Corporation Heterofilaments for cord reinforcement in power transmission belts
FR2707553A1 (en) * 1993-07-13 1995-01-20 Hutchinson Elastomeric component and its method of production
JPH07243128A (en) * 1994-03-04 1995-09-19 Kuraray Co Ltd Sheath-core type conjugate fiber and fishline made therefrom
JPH08209449A (en) * 1995-02-07 1996-08-13 Mosho Tei Method for opening of conjugate fiber
EP0976854A1 (en) * 1998-07-29 2000-02-02 Johns Manville International, Inc. Monofilamentary bicomponent core-sheath fibres
US6254987B1 (en) 1998-07-29 2001-07-03 Johns Manville International, Inc. Monofil bicomponent fibres of the sheath/core type
CN113265721A (en) * 2021-04-19 2021-08-17 浙江大学 Fibrous dielectric elastomer driver and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2569720B2 (en) Industrial polyester fiber, method for producing the same, and processing cord for tire cord
US5045257A (en) Process for producing aromatic polyester fiber
JP3016494B2 (en) Method for producing high-strength high-modulus fiber
JPH04272226A (en) High-tenacity high-modulus conjugate fiber
JPS6141320A (en) Polyester fiber
JPS6119812A (en) Polyester fiber
JPH02200813A (en) Production of aromatic polyester fiber
JP2593908B2 (en) High strength high modulus fiber with improved fatigue resistance
JP3795930B2 (en) Aromatic polyesteramide fiber with improved wear resistance
JP2744302B2 (en) Original fiber with high strength and high elastic modulus
JP2858981B2 (en) High strength and high modulus fiber with excellent fatigue resistance
JP2744303B2 (en) High strength and high modulus fiber with excellent fatigue resistance
JPH01229816A (en) High-tenacity and high-elastic modulus fiber improved in abrasion resistance
EP0295147A2 (en) High strength polyester yarn
JPH06123013A (en) High strength high elastic modulus fiber improved in fatigue resistance
JP4706120B2 (en) High strength composite fiber
JP3266712B2 (en) Composite fiber
JPS61289115A (en) Polyester fiber
JPS6134216A (en) Nylon 66 fiber having high strength and high fatigue resistance, and its manufacture
JPH0532492B2 (en)
JPS588121A (en) Mixed spun fiber and its production
JPH04289218A (en) Melt anisotropic aromatic polyester fiber having excellent vibration-damping property and production thereof
JPH10251919A (en) Polyester fiber and its production
JPH0321647B2 (en)
JPH062236A (en) Conjugate stringy material