JPH04272155A - High strength hot-rolled steel sheet and production thereof - Google Patents

High strength hot-rolled steel sheet and production thereof

Info

Publication number
JPH04272155A
JPH04272155A JP5558091A JP5558091A JPH04272155A JP H04272155 A JPH04272155 A JP H04272155A JP 5558091 A JP5558091 A JP 5558091A JP 5558091 A JP5558091 A JP 5558091A JP H04272155 A JPH04272155 A JP H04272155A
Authority
JP
Japan
Prior art keywords
less
hot
steel
rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5558091A
Other languages
Japanese (ja)
Other versions
JP3197571B2 (en
Inventor
Susumu Masui
進 増井
Takashi Sakata
敬 坂田
Masahiko Morita
正彦 森田
Toshiyuki Kato
俊之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP05558091A priority Critical patent/JP3197571B2/en
Publication of JPH04272155A publication Critical patent/JPH04272155A/en
Application granted granted Critical
Publication of JP3197571B2 publication Critical patent/JP3197571B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To relieve rolling load at the time of hot finish rolling and to obtain a hot-rolled sheet having a bainite-based structure, >=80kgf/mm<2> tensile strength and very small anisotropy of stretch flanging property. CONSTITUTION:A steel slab chiefly contg., by weight, 0.08-0.20% C, 1.50-3.50% Mn, 0.50-1.50% Cr and 0.01-0.10% Al is hot-rolled at a finishing temp. between the Ar3 point and the Ar3 point +70 deg.C. Within 6sec after this hot rolling, cooling is started at a proper cooling rate and coiling is carried out at a proper coiling temp. to produce a hot-rolled steel sheet.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、自動車のバンパーや
ドアーガードバーなどの比較的軽加工の強度部材に用い
て好適な、特に伸びフランジ性の異方性の極めて小さい
引張り強さが80Kgf/mm2 以上の高強度熱延鋼
板及びその製造方法を提案するものである。 【0002】自動車用の強度部材などに使用れる鋼板は
、車体重量が軽減でき、より一層の高強度化による安全
性の向上などを目的として、種々の特性が要求されてい
る。さらに、近年に至っては、経済性の観点から、従来
使用されていた冷却鋼板にかわり、コスト的に有利な高
強度熱延鋼板が注目され、その需要が高まりつつある。 なお、高強度熱延鋼板に要求される主な特性としては、
■  材質のばらつきが少ないこと。■  各種機械的
性質の面内異方性が小さいこと。■  スポット溶接性
が良好なこと。■  製造上の問題として、過酷な熱延
条件を必要としないこと。などがあげられる。 【0003】 【従来の技術】従来から知られている高強度熱延鋼板と
して最も一般的をものに、低C鋼に0.2wt%以下程
度のNb、TiあるいはVなどを添加したいわゆる低合
金高張力鋼(HSLA鋼) がある。このHSLA鋼は
、その製造は比較的に容易であるものの、降伏比が高い
ため成形加工後の形状凍結性におとるとともに、低合金
鋼ゆえに80Kgf/mm2 以上の引張り強さを得る
ことがむずかしい。さらに、上記のほか、フェライトと
マルテンサイトの2相混合組織を有するデュアルフェズ
鋼(DP鋼)や残留オーステナイトを利用したいわゆる
TRIP鋼(Transformation indu
ced plasticity steel)なども知
られている。しかし、上記DP鋼の場合、80Kgf/
mm2 以上の引張り強さを得るためには、製造条件が
過酷となり、その製造が困難になることのほか、合金成
分の多量添加が必要となることなどあって、製造過程に
おいて形状不良を招いたり、材質のばらつきが生じるほ
か、コスト上昇も免れ得なくなる。一方、TRIP鋼に
ついては良好な延性を示すが、引張り特性が鋼の相分率
、主として残留オーステナイト量によって大きく左右さ
れるため、鋼帯の幅方向、長手方向で均一な材質とする
ことが極めて困難となり、しかも、0.2wt%以上、
望ましくは0.4wt%程度のCの添加が必須であり、
通常の条件でのスポット溶接性が劣るなどの問題がある
。加えて、これらDP鋼やTRIP鋼は、伸びフランジ
性や成形後の耐衝撃性にも劣ることが発現し大きな問題
となっている。 【0004】上記のようなことから、現在では、降伏比
は高いものの、伸びフランジ性や成形後の耐衝撃性にす
ぐれる、ベイナイトを主体としたベイナイト鋼が注目さ
れるようになってきた。 【0005】 【発明が解決しようとする課題】この発明は、成分組成
及び製造条件を適正化して、前記した問題を有利に解決
しようとするもので、過酷な熱延・冷却条件を必要とし
ないで、しかも、最終製品の伸びフランジ性の特にC方
向割れに対して従来よりも良好な、引張り強さが80K
gf/mm2 以上のベイナイト組織主体の高強度熱延
鋼板及びその製造方法を提案することを目的とする。な
お、ベイナイト鋼については、出願人会社は先に、特願
平1−192713号においてC−Mn−Nb−Bの成
分系を有する良加工性高強度熱延鋼板及びその製造方法
を提案した。しかし、この提案による熱延鋼板は種々良
好な特性を有するものの、Nb添加鋼であることから、
圧延荷重が高くなり圧延機にかかる負荷が大きいこと、
熱延後直ちに急冷する必要があること、熱延工程の大部
分が未再結晶オーステナイト域で行われるため、最終製
品の組織は圧延方向に延伸した組織となり、特にC方向
の加工性に問題があることなど、未だ解決すべき問題を
残している。 【0006】 【課題を解決するための手段】この発明は、Nbを含有
させないで、Cr及び必要に応じてBを含有させること
により、熱延時の圧延荷重の低減ができること、ならび
に、未再結晶オーステナイト域での圧延を極力少なくす
ることができ、これによって変形帯の減少に起因するフ
ェライト形成サイト低減によるフェライト変態の抑制、
熱延後の冷却条件の緩和、及び、材質の異方性の改善な
どに効果があることを見い出したことによるもので、そ
の要旨は以下の通りである。 【0007】■  第1発明として、C:0.08wt
% 以上0.20wt% 以下、 Mn:1.50wt% 以上3.50wt% 以下、C
r:0.50wt% 以上1.50wt% 以下、Al
:0.01wt% 以上0.10wt% 以下、P:0
.010wt%以下及び S:0.001wt%以下 を満足する範囲で含有し、残部は鉄及び不可避不純物の
組成になる高強度熱延鋼板。 【0008】■  第2発明として、■の第1発明の成
分組成に加えて、B:0.0005wt% 以上0.0
10wt% 以下を含有する高強度熱延鋼板。 【0009】■  第3発明として、■の第1発明の成
分組成、第4発明として、■の成分組成に、それぞれ調
製した鋼スラブを素材として、仕上げ圧延温度をAr3
変態点以上Ar3変態点+70℃以下の温度範囲で熱延
した後、6秒以内に下記式(1) で計算される冷却速
度(V) ℃/Sで冷却を開始し、下記式(2) で計
算される巻き取り温度(T) ℃で巻き取ることを特徴
とする高強度熱延鋼板の製造方法。               記 (V) ≧15+ 50×〔C 〕−3×〔Mn〕−2
×〔Cr〕−15 ×〔B 〕      …  (1
) 513−65×〔C 〕−9×〔Mn〕−7〔Cr
〕≧(T) >325−30×〔C 〕−6.5〔Mn
〕−5×〔Cr〕                 
     …   (2)ここに、〔  〕内は元素記
号で, その成分の鋼中含有量(wt%) をあらわす
。 【0009】 【作用】まず、この発明の基礎となった実験結果につい
て以下に述べる。表1に示す成分組成を有する2種類の
鋼スラブを、ほぼ同一のこの発明に適合する条件で熱延
(スラブ寸法、仕上げ寸法も同一)し、引張り強さがほ
ぼ等しい板厚2.3mm の熱延板を製造した。 【0010】 【表1】 【0011】上記2種類の鋼について、熱延時の仕上げ
圧延スタンドごとの圧延荷重を測定した。仕上げ圧延ス
タンドNoと、Nb添加鋼(A鋼)とCr添加鋼(B鋼
…Nb無添加)との圧延荷重比の関係を図1に示す。こ
こに圧延荷重比は、Nb添加鋼の圧延荷重/Cr添加鋼
の圧延荷重としたものである。 【0012】図1から明らかなように、仕上げ圧延後段
になると圧延荷重比は大きくなっており、Nb添加鋼に
くらべCr添加鋼は圧延荷重が小さくなることを示して
いる。 【0013】つぎに、上記の2種類の熱延板について伸
びフランジ性を評価するものとしてサイドベンド伸び(
L方向、C方向)を測定した。その結果を表2に示す。 【0014】 【表2】       【0015】ここに、サイドベンド伸びは
、試験片寸法を、長さ:200mm 、幅:40mm、
厚さ:2.3mm とし、図2のサイドベンド試験方法
を示す模式図にのっとり、支点間距離:150mm 、
標点間距離:l0= 50mmとして、曲げにより割れ
が発生した時点の標点間距離:l1を測定し、次式より
算出した。 サイドベンド伸び(%)= (l1−l0)/ l0×
100【0016】表2から明らかなように、サイドベ
ンド伸びは、Cr添加(Nb無添加)のB鋼では、L方
向とC方向との差は殆んどないが、Nb添加のA鋼では
C方向の値が著しく低下している。このように、Crを
添加してNbを無添加とすることにより、Nb添加の場
合にくらべ、仕上げ圧延における圧延荷重を軽減でき、
曲げ加工に対する面内異方性を大幅に改善することがで
きる。 【0017】以下に、鋼の成分組成範囲及び製造条件の
限定理由について以下に述べる。 【0018】■  鋼の成分組成 C:0.08wt% 〜0.20wt%Cは、含有量が
0.08wt% 未満ではγ→αの変態速度が大きくな
り、ベイナイト主体の組織とすることが困難であり、目
標とする引張り強さを得ることができない。一方、0.
2wt%を超えるとスポット溶接性が劣化する。したが
って、その含有量は0.08wt% 以上0.20wt
% 以下とする。 Mn:1.50wt% 〜3.50wt%Mnは、熱延
後における冷却過程でフェライト変態を抑制してベイナ
イトを出現し易くする成分であって、この発明において
は重要な成分である。含有量が1.5wt% 未満では
高強度を得ることができなく、3.5wt%を超えて含
有した場合には添加コストに見合うだけの材質の向上は
見られない。したがって、その含有量は1.5wt%以
上3.5wt%未満とする。 【0019】Cr:0.50wt% 〜1.50wt%
Crは、この発明において重要な成分である。適性範囲
内で含有させることにより、フェライト変態、パーライ
ト変態が顕著に抑制され、ベイナイト主体の組織を容易
に得ることができる。すなわち、含有量が0.50wt
% 未満ではその効果を得ることができなく、逆に1.
50wt% を超えるとその効果は飽和し添加コストに
見合うだけの材質向上は見られない。したがって、その
含有量は0.50wt% 以上1.50wt% 以下と
する。 【0020】Al:0.01wt% 〜0.10wt%
Alは、鋼の清浄化のために必要であり、特に高強度化
を目指すためには清浄度の向上は必須である。含有量が
0.01wt% 以上でその効果が得られるが、0.1
wt%を超えて含有させるとアルミナクラスターによる
表面欠陥などの原因となるので好ましくない。したがっ
て、その含有量は0.01wt% 以上0.10wt%
 以下とする。 【0021】P:0.010wt%以下Pは、この発明
において有害な成分である。多量に含有すると、スポッ
ト溶接性の劣化、中心偏析に起因するフェライトバンド
形成による特にC方向での曲げ加工性の劣化などを引き
起す。これらの現象は0.01wt% を超えて含有す
ると顕著に現れることから、その含有量の上限を0.0
1wt% とする。 【0022】S:0.001wt%以下Sは、Pと同様
有害な成分である。多量に含有すると、スポット溶接性
の劣化、MnS を形成することによる伸びフランジ性
の劣化を招く。この発明においてはMnを比較的多量に
含有させることから特に低S化が重要になる。 上記特性の劣化は、0.001wt%を超えて含有する
と顕著に現われることから、その含有量の上限を0.0
01wt%とする。 【0023】B:0.0005wt% 〜0.010 
wt%Bは、ベイナイト主体の組織の出現を容易にする
成分であり、含有量が0.0005wt% 以上でその
効果が得られるが、0.010wt%を超えるとその効
果が飽和してしまうばかりでなく、熱延時に割れが発生
し易くなる。したがって、その含有量は0.0005w
t% 以上0.010 wt% 以下とする。 【0024】■  製造条件 上記の成分組成範囲を満たす鋼スラブを素材として、ベ
イナイト主体の組織を有する熱延板を製造するもので、
熱延条件は一般的なものと大きく異なるわけではないが
、いくつかの制限が必要である。 【0025】 仕上げ圧延温度: Ar3変態点〜 Ar3変態点+7
0℃仕上げ圧延温度が Ar3変態点+70℃を超える
と最終的なベイナイト組織が粗大となり、延性の面で好
ましくない。またその温度が Ar3変態点以下では圧
延方向に延伸した組織が顕著に現われ、特にC方向の加
工性が劣化する。したがって、仕上げ圧延温度は Ar
3変態点以上Ar3変態点+70℃以下とする。 【0026】熱延後冷却開始までの時間:6秒以内熱延
後冷却開始までの時間は、この成分系では熱延後直ちに
急冷しなくともよい。しかし、その時間が6秒を超える
と、フェライト変態が進行してしまい、目標の引張り強
さを得ることができない。したがって、熱延後冷却開始
までの時間は6秒以内とする。 【0027】熱延後の冷却速度(V) ℃/S :  
(V) :15 + 50 ×〔C 〕−3×〔Mn〕
−2×〔Cr〕−15 ×〔B 〕  …   1  
ここに、〔  〕内は元素記号で、その成分の鋼中含有
量(wt%) をあらわす。熱延後の冷却は、材質のば
らつきや鋼板の形状の乱れを防止するという観点からは
、冷却速度は小さい方がよいが、小さすぎるとパーライ
トが出現し、目標とするベイナイト組織及び強度が得ら
れなくなる。したがって、ベイナイト主体の組織及び強
度を得るためには、冷却速度(V) ℃/S  は、上
記式(1) で計算されるものとする必要がある。ここ
に、式(1)は以下の手順に従って求めた。この発明範
囲を満たす含有成分の数種類の鋼について、連続冷却変
態挙動を調査し、パーライト変態が発現しない最小の冷
却速度、いわゆる上部臨界冷却速度を求めた。この上部
臨界冷却速度と、含有成分のうちのC,Mn, Crお
よびBとの間に相関関係があることを見出し、上部臨界
冷却速度を、C,Mn, CRおよびBで重回帰した。 【0028】   巻き取り温度(T) ℃:513 − 65×〔C
 〕− 9 ×〔Mn〕− 7 〔Cr〕≧T >  
                    325− 
30 〔C 〕−6.5〔Mn〕−5×〔Cr〕…  
 (2)ここに、〔  〕内は元素記号で、その成分の
鋼中含有量(wt%) をあらわす。巻き取り温度は、
この発明にとって重要であり、上記(2) 式の上限を
超えるとパーライトが出現し、下限以下ではマルテンサ
イトが出現する。したがって、目標とするベイナイト主
体の組織及び強度、加工性を得るためには、巻取り温度
範囲(T) ℃は、上記式(2) で計算されるものと
する必要がある。ここに、式(2) は以下の手順に従
って求めた。この発明範囲を満たす含有成分の数種類の
鋼について、連続冷却変態挙動を調査し、まず、上部臨
界冷却速度を求めた。次に、その上部臨界冷却速度以上
の速度で冷却し、種々の温度で巻き取り、パーライトの
発現しない上限の温度と、マルテンサイトの発現しない
下限の温度を求めた。これらの温度と、含有成分のうち
のC,Mn, およびCrとの間に相関関係があること
を見出し、パーライトの発現しない上限の温度と、マル
テンサイトの発現しない下限の温度を、C,Mn, お
よびCrで重回帰した。 【0029】なお、この発明では、特に鋼組織の分率を
定めていないが、強度及び良好な伸びフランジ性を確保
するうえから、鋼組織中のベイナイト分率は85% 以
上が望ましい。 【0030】 【実施例】表3に示すこの発明の適合鋼6種類、比較鋼
5種類、計11種類の成分組成に調製した鋼スラブを、
種々の条件で熱延して、板厚2.3mm の熱延板を製
造し、得られた熱延板について、引張り特性、サイドベ
ンド伸び(L、C方向)及び組織などを調査した。 【0031】 【表3】 【0032】ここに、引張り試験は、JIS 5 号試
験片を用いて通常の方法で行い、サイドベンド伸びは、
前記した方法と同じ方法で行なった。これらの熱延条件
及び調査結果をまとめて表4に示す。 【0033】 【表4】 【0034】表4から明らかなように、この発明の適合
例は、いずれも引張り強さが80Kgf/mm2 以上
で、かつ、L・C方向のサイドベンド伸び値に差がなく
、その値も良好である。さらに、これらの適合例は、別
途調査したスポット溶接部の強度も良好で、熱延時にお
いては圧延不能などのトラブルは発生しなかった。 【0035】一方、比較例において、試料No16はC
量が25wt% と高いため、スポット溶接部の強度劣
化が大きく、試料No18は、熱延中に鋼が硬質化して
圧延が困難となり、形状不良が発生した。 【0036】 【発明の効果】この発明によれば、Crを添加した成分
組成、及び製造条件を適正化することで、圧延機にかか
る負荷が軽減され、引張り強さが80Kgf/mm2 
以上の高強度冷却鋼板を容易に製造でき、この発明によ
って得られる熱延板は、高強度でありながら伸びフラン
ジ性に優れるとともに、その異方性が極めて小さく、自
動車の強度部材であるバンパーやドアガードバーなどに
有利に用いることができる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to an anisotropic stretch flange material suitable for relatively lightly processed strength members such as automobile bumpers and door guard bars. The present invention proposes a high-strength hot-rolled steel sheet having an extremely low tensile strength of 80 Kgf/mm2 or more, and a method for manufacturing the same. Steel plates used as strength members for automobiles are required to have various properties in order to reduce the weight of the vehicle and improve safety by further increasing the strength. Furthermore, in recent years, from the viewpoint of economic efficiency, high-strength hot-rolled steel sheets, which are advantageous in terms of cost, have attracted attention in place of conventionally used cooling steel sheets, and the demand for them has been increasing. The main properties required for high-strength hot-rolled steel sheets are:
■ There should be little variation in materials. ■ Small in-plane anisotropy of various mechanical properties. ■ Good spot weldability. ■ As a manufacturing issue, harsh hot rolling conditions are not required. etc. [Prior Art] The most common high-strength hot-rolled steel sheet known to date is a so-called low-alloy steel made by adding about 0.2 wt% or less of Nb, Ti, or V to low-C steel. There is high tensile strength steel (HSLA steel). Although this HSLA steel is relatively easy to manufacture, its high yield ratio makes it difficult to freeze the shape after forming, and because it is a low-alloy steel, it is difficult to obtain a tensile strength of 80 Kgf/mm2 or more. . Furthermore, in addition to the above, there are dual phase steels (DP steels) that have a two-phase mixed structure of ferrite and martensite, and so-called TRIP steels (Transformation industrial steels) that utilize retained austenite.
ced plasticity steel) are also known. However, in the case of the above DP steel, 80Kgf/
In order to obtain a tensile strength of mm2 or more, the manufacturing conditions become harsh, making it difficult to manufacture, and it also requires the addition of large amounts of alloying components, which may lead to shape defects during the manufacturing process. , there will be variations in materials, and an increase in costs will also be inevitable. On the other hand, TRIP steel shows good ductility, but its tensile properties are greatly affected by the phase fraction of the steel, mainly the amount of retained austenite, so it is extremely difficult to make the material uniform in the width and length directions of the steel strip. becomes difficult, and moreover, 0.2 wt% or more,
Desirably, it is essential to add about 0.4 wt% of C,
There are problems such as poor spot weldability under normal conditions. In addition, these DP steels and TRIP steels are also inferior in stretch flangeability and impact resistance after forming, which is a major problem. [0004] Due to the above reasons, bainite steel, which is mainly composed of bainite, is currently attracting attention because it has a high yield ratio but has excellent stretch flangeability and impact resistance after forming. Problems to be Solved by the Invention This invention aims to advantageously solve the above-mentioned problems by optimizing the component composition and manufacturing conditions, and does not require harsh hot rolling and cooling conditions. Moreover, it has a tensile strength of 80K, which is better than conventional products against stretch flangeability, especially cracking in the C direction, of the final product.
The purpose of the present invention is to propose a high-strength hot-rolled steel sheet mainly having a bainite structure of gf/mm2 or more and a method for manufacturing the same. Regarding bainitic steel, the applicant company previously proposed a high-strength hot-rolled steel sheet with good workability and a method for producing the same having a C--Mn--Nb--B composition system in Japanese Patent Application No. 1-192713. However, although the hot-rolled steel sheet proposed by this proposal has various good properties, since it is Nb-added steel,
The rolling load is high and the load on the rolling mill is large;
Because it is necessary to rapidly cool the product immediately after hot rolling, and because most of the hot rolling process is carried out in the unrecrystallized austenite region, the structure of the final product is stretched in the rolling direction, which poses problems particularly in workability in the C direction. There are still some issues that need to be resolved. [Means for Solving the Problems] The present invention is capable of reducing the rolling load during hot rolling by not containing Nb but containing Cr and, if necessary, B. Rolling in the austenite region can be minimized, thereby suppressing ferrite transformation by reducing ferrite formation sites due to a reduction in deformation bands.
This is based on the discovery that it is effective in relaxing the cooling conditions after hot rolling and improving the anisotropy of the material, and the summary is as follows. ■ As the first invention, C: 0.08wt
% or more and 0.20wt% or less, Mn: 1.50wt% or more and 3.50wt% or less, C
r: 0.50wt% or more and 1.50wt% or less, Al
:0.01wt% or more, 0.10wt% or less, P:0
.. A high-strength hot-rolled steel sheet containing S: 0.010 wt% or less and S: 0.001 wt% or less, with the balance being iron and inevitable impurities. ■ As a second invention, in addition to the component composition of the first invention of (■), B: 0.0005 wt% or more 0.0
A high-strength hot-rolled steel sheet containing 10 wt% or less. [0009] As a third invention, as a fourth invention, steel slabs prepared to have the component composition of the first invention as raw material and the component composition as shown in
After hot rolling in a temperature range from the transformation point to the Ar3 transformation point + 70°C, cooling was started within 6 seconds at a cooling rate (V) ℃/S calculated by the following formula (1), and the following formula (2) was applied. A method for producing a high-strength hot-rolled steel sheet, characterized by winding at a winding temperature (T) calculated at °C. (V) ≧15+ 50×[C]-3×[Mn]-2
× [Cr]-15 × [B] … (1
) 513-65×[C]-9×[Mn]-7[Cr
]≧(T) >325-30×[C]-6.5[Mn
]-5×[Cr]
... (2) Here, the symbol in [ ] is the element symbol and represents the content (wt%) of that component in the steel. [Operation] First, the experimental results that formed the basis of this invention will be described below. Two types of steel slabs having the compositions shown in Table 1 were hot-rolled under almost the same conditions conforming to the present invention (slab dimensions and finished dimensions are also the same), and a plate thickness of 2.3 mm with almost equal tensile strength was obtained. A hot rolled sheet was manufactured. [0010] [Table 1] [0011] Regarding the above two types of steel, the rolling load for each finish rolling stand during hot rolling was measured. FIG. 1 shows the relationship between the finish rolling stand No. and the rolling load ratio of Nb-added steel (A steel) and Cr-added steel (B steel...no Nb added). The rolling load ratio here is the rolling load of Nb-added steel/rolling load of Cr-added steel. As is clear from FIG. 1, the rolling load ratio increases in the latter stages of finish rolling, indicating that the rolling load of Cr-added steel is smaller than that of Nb-added steel. Next, side bend elongation (
L direction, C direction) were measured. The results are shown in Table 2. [Table 2] [0015] Here, the side bend elongation is the test piece dimensions: length: 200 mm, width: 40 mm,
Thickness: 2.3 mm, distance between fulcrums: 150 mm, according to the schematic diagram showing the side bend test method in Figure 2.
Assuming that the gauge distance: l0 = 50 mm, the gauge distance: l1 at the time when cracking occurred due to bending was measured, and calculated from the following formula. Side bend elongation (%) = (l1-l0)/l0×
As is clear from Table 2, there is almost no difference in side bend elongation between the L direction and the C direction in steel B with Cr addition (no Nb addition), but in steel A with Nb addition. The value in the C direction has decreased significantly. In this way, by adding Cr and not adding Nb, the rolling load in finish rolling can be reduced compared to the case of adding Nb,
In-plane anisotropy for bending can be significantly improved. [0017] The reason for limiting the composition range of steel and manufacturing conditions will be described below. ■ Steel composition C: 0.08 wt% to 0.20 wt% If the C content is less than 0.08 wt%, the transformation rate of γ→α increases, making it difficult to form a bainite-based structure. Therefore, the target tensile strength cannot be obtained. On the other hand, 0.
If it exceeds 2 wt%, spot weldability will deteriorate. Therefore, its content is 0.08wt% or more and 0.20wt
% or less. Mn: 1.50 wt% to 3.50 wt% Mn is a component that suppresses ferrite transformation and facilitates the appearance of bainite in the cooling process after hot rolling, and is an important component in this invention. If the content is less than 1.5 wt%, high strength cannot be obtained, and if the content exceeds 3.5 wt%, no improvement in material quality commensurate with the cost of addition will be observed. Therefore, its content is set to 1.5 wt% or more and less than 3.5 wt%. [0019] Cr: 0.50wt% to 1.50wt%
Cr is an important component in this invention. By containing it within an appropriate range, ferrite transformation and pearlite transformation are significantly suppressed, and a bainite-based structure can be easily obtained. That is, the content is 0.50wt
%, the effect cannot be obtained, and conversely, if it is less than 1.
If it exceeds 50 wt%, the effect will be saturated and the material quality will not improve enough to justify the cost of addition. Therefore, its content is set to 0.50 wt% or more and 1.50 wt% or less. [0020] Al: 0.01wt% to 0.10wt%
Al is necessary for cleaning steel, and in particular, improving the cleanliness is essential for aiming at high strength. This effect can be obtained when the content is 0.01 wt% or more, but 0.1
If the content exceeds wt%, it is not preferable because it causes surface defects due to alumina clusters. Therefore, its content is 0.01wt% or more and 0.10wt%
The following shall apply. P: 0.010 wt% or less P is a harmful component in the present invention. If it is contained in a large amount, it causes deterioration of spot weldability and deterioration of bending workability, especially in the C direction, due to the formation of ferrite bands due to center segregation. These phenomena become noticeable when the content exceeds 0.01wt%, so the upper limit of the content is set to 0.0%.
It is assumed to be 1wt%. S: 0.001 wt% or less S, like P, is a harmful component. If it is contained in a large amount, it causes deterioration of spot weldability and deterioration of stretch flangeability due to the formation of MnS. In this invention, since a relatively large amount of Mn is contained, it is particularly important to reduce S. Since the deterioration of the above properties becomes noticeable when the content exceeds 0.001wt%, the upper limit of the content is set at 0.0%.
01wt%. [0023] B: 0.0005wt% ~ 0.010
wt%B is a component that facilitates the appearance of a bainite-based structure, and this effect can be obtained when the content is 0.0005wt% or more, but when it exceeds 0.010wt%, the effect is just saturated. However, cracks are more likely to occur during hot rolling. Therefore, its content is 0.0005w
t% or more and 0.010 wt% or less. [0024] Manufacturing conditions A hot-rolled sheet having a bainite-based structure is manufactured using a steel slab that satisfies the above-mentioned composition range.
Although the hot rolling conditions are not significantly different from those in general, some restrictions are necessary. Finish rolling temperature: Ar3 transformation point ~ Ar3 transformation point +7
If the 0°C finish rolling temperature exceeds the Ar3 transformation point +70°C, the final bainite structure will become coarse, which is unfavorable in terms of ductility. Furthermore, when the temperature is below the Ar3 transformation point, a structure stretched in the rolling direction appears significantly, and workability, particularly in the C direction, deteriorates. Therefore, the finish rolling temperature is Ar
3 transformation point or more and Ar3 transformation point +70°C or less. Time until the start of cooling after hot rolling: within 6 seconds Regarding the time until the start of cooling after hot rolling, in this component system, it is not necessary to rapidly cool immediately after hot rolling. However, if the time exceeds 6 seconds, ferrite transformation progresses and the target tensile strength cannot be obtained. Therefore, the time after hot rolling until the start of cooling is within 6 seconds. Cooling rate after hot rolling (V) °C/S:
(V): 15 + 50 × [C] - 3 × [Mn]
-2×[Cr]-15×[B] … 1
Here, the element symbol in [ ] represents the content (wt%) of that component in the steel. In terms of cooling after hot rolling, it is better to keep the cooling rate low from the perspective of preventing variations in material quality and disturbances in the shape of the steel sheet, but if it is too slow, pearlite will appear, making it difficult to achieve the target bainite structure and strength. I won't be able to do it. Therefore, in order to obtain a bainite-based structure and strength, the cooling rate (V) °C/S needs to be calculated using the above formula (1). Here, formula (1) was obtained according to the following procedure. Continuous cooling transformation behavior was investigated for several types of steels whose content satisfies the range of this invention, and the minimum cooling rate at which pearlite transformation does not occur, the so-called upper critical cooling rate, was determined. It was found that there is a correlation between this upper critical cooling rate and C, Mn, Cr, and B among the contained components, and the upper critical cooling rate was subjected to multiple regression using C, Mn, CR, and B. [0028] Winding temperature (T) °C: 513 - 65 × [C
]-9 × [Mn]-7 [Cr]≧T>
325-
30 [C]-6.5 [Mn]-5×[Cr]...
(2) Here, the symbol in parentheses is an element symbol and represents the content (wt%) of that component in the steel. The winding temperature is
This is important for this invention; when the upper limit of the above formula (2) is exceeded, pearlite appears, and below the lower limit, martensite appears. Therefore, in order to obtain the target bainite-based structure, strength, and workability, the winding temperature range (T)° C. needs to be calculated using the above formula (2). Here, equation (2) was obtained according to the following procedure. Continuous cooling transformation behavior was investigated for several types of steels whose content satisfies the invention range, and the upper critical cooling rate was first determined. Next, it was cooled at a rate higher than the upper critical cooling rate and wound up at various temperatures, and the upper limit temperature at which pearlite does not appear and the lower limit temperature at which martensite does not appear were determined. It was found that there is a correlation between these temperatures and C, Mn, and Cr among the contained components, and the upper limit temperature at which pearlite does not appear and the lower limit temperature at which martensite does not appear are determined by C, Mn. , and Cr. [0029] In this invention, the fraction of steel structure is not particularly determined, but in order to ensure strength and good stretch flangeability, it is desirable that the bainite fraction in the steel structure is 85% or more. [Example] Steel slabs prepared with a total of 11 types of compositions, 6 types of compatible steels of the present invention and 5 types of comparative steels, shown in Table 3, were
Hot rolled sheets with a thickness of 2.3 mm were produced by hot rolling under various conditions, and the tensile properties, side bend elongation (L and C directions), structure, etc. of the obtained hot rolled sheets were investigated. [Table 3] [0032] Here, the tensile test was conducted using a JIS No. 5 test piece in the usual manner, and the side bend elongation was
This was done in the same manner as described above. These hot rolling conditions and investigation results are summarized in Table 4. [Table 4] [0034] As is clear from Table 4, all of the examples conforming to the present invention have a tensile strength of 80 Kgf/mm2 or more, and have a difference in side bend elongation values in the L and C directions. The value is also good. Furthermore, in these conforming examples, the strength of the spot welds, which was separately investigated, was also good, and no troubles such as inability to roll occurred during hot rolling. On the other hand, in the comparative example, sample No. 16 was C
Since the amount was as high as 25 wt%, the strength of the spot welded portion was significantly deteriorated, and in sample No. 18, the steel became hard during hot rolling, making it difficult to roll, resulting in shape defects. [0036] According to the present invention, by optimizing the component composition including Cr and the manufacturing conditions, the load on the rolling mill is reduced and the tensile strength is increased to 80 Kgf/mm2.
The above-mentioned high-strength cooling steel sheet can be easily produced, and the hot-rolled sheet obtained by this invention has high strength and excellent stretch flangeability, and has extremely small anisotropy, such as bumpers and other strength members of automobiles. It can be advantageously used for door guard bars, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】熱延における仕上げ圧延スタンドNoと、Nb
添加鋼とCr添加鋼との圧延荷重比の関係を示すグラフ
である。
[Figure 1] Finish rolling stand No. in hot rolling and Nb
It is a graph showing the relationship between rolling load ratios of additive steel and Cr-added steel.

【図2】サイドベンド試験方法を示す模式図である。FIG. 2 is a schematic diagram showing a side bend test method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  C:0.08wt% 以上0.20w
t% 以下、Mn:1.50wt% 以上3.50wt
% 以下、Cr:0.50wt% 以上1.50wt%
 以下、Al:0.01wt% 以上0.10wt% 
以下、P:0.010wt%以下及び S:0.001wt%以下 を満足する範囲で含有し、残部は鉄及び不可避不純物の
組成になる高強度熱延鋼板。
[Claim 1] C: 0.08wt% or more 0.20w
t% or less, Mn: 1.50wt% or more 3.50wt
% or less, Cr: 0.50wt% or more 1.50wt%
Below, Al: 0.01wt% or more 0.10wt%
Hereinafter, a high-strength hot-rolled steel sheet containing P: 0.010 wt% or less and S: 0.001 wt% or less, with the balance being iron and inevitable impurities.
【請求項2】  C:0.08wt% 以上0.20w
t% 以下、Mn:1.50wt% 以上3.50wt
% 以下、Cr:0.50wt% 以上1.50wt%
 以下、B:0.0005wt% 以上0.010wt
%以下、Al:0.01wt% 以上0.10wt% 
以下、P:0.010wt%以下及び S:0.001wt%以下 を満足する範囲で含有し、残部は鉄及び不可避不純物の
組成になる高強度熱延鋼板。
[Claim 2] C: 0.08wt% or more 0.20w
t% or less, Mn: 1.50wt% or more 3.50wt
% or less, Cr: 0.50wt% or more 1.50wt%
Below, B: 0.0005wt% or more 0.010wt
% or less, Al: 0.01wt% or more 0.10wt%
Hereinafter, a high-strength hot-rolled steel sheet containing P: 0.010 wt% or less and S: 0.001 wt% or less, with the balance being iron and inevitable impurities.
【請求項3】  C:0.08wt% 以上0.20w
t% 以下、Mn:1.50wt% 以上3.50wt
% 以下、Cr:0.50wt% 以上1.50wt%
 以下、Al:0.01wt% 以上0.10wt% 
以下、P:0.010wt%以下及び S:0.001wt%以下 を含有し、残部は鉄及び不可避不純物の組成に調製した
鋼スラブを素材として、仕上げ圧延温度を Ar3変態
点以上 Ar3変態点+70℃以下の温度範囲で熱延し
た後、6秒以内に下記式(1) で計算される冷却速度
(V) ℃/Sで冷却を開始し、下記式(2) で計算
される巻き取り温度(T) ℃で巻き取ることを特徴と
する高強度熱延鋼板の製造方法。               記 (V) ≧15+ 50×〔C〕−3×〔Mn〕−2×
〔Cr〕−15 ×〔B 〕      …  (1)
 513−65×〔C〕−9×〔Mn〕−7〔Cr〕≧
(T) >325−30×〔C 〕−6.5〔Mn〕−
5×〔Cr〕                   
   …   (2)ここに、〔  〕内は元素記号で
, その成分の鋼中含有量(wt%) をあらわす。
[Claim 3] C: 0.08wt% or more 0.20w
t% or less, Mn: 1.50wt% or more 3.50wt
% or less, Cr: 0.50wt% or more 1.50wt%
Below, Al: 0.01wt% or more 0.10wt%
Hereinafter, a steel slab containing P: 0.010 wt% or less and S: 0.001 wt% or less, with the remainder being iron and unavoidable impurities, is used as a raw material, and the finish rolling temperature is set to Ar3 transformation point or higher Ar3 transformation point +70 After hot rolling in a temperature range below ℃, the cooling rate (V) is calculated by the following formula (1) within 6 seconds. Cooling is started at ℃/S, and the winding temperature is calculated by the following formula (2). (T) A method for producing a high-strength hot-rolled steel sheet, characterized by winding at °C. (V) ≧15+ 50×[C]-3×[Mn]-2×
[Cr]-15 × [B] … (1)
513-65×[C]-9×[Mn]-7[Cr]≧
(T) >325-30×[C]-6.5[Mn]-
5×[Cr]
... (2) Here, the symbol in [ ] is the element symbol and represents the content (wt%) of that component in the steel.
【請求項4】  C:0.08wt% 以上0.20w
t% 以下、Mn:1.50wt% 以上3.50wt
% 以下、Cr:0.50wt% 以上1.50wt%
 以下、B:0.0005wt% 以上0.010wt
%以下、Al:0.01wt% 以上0.10wt% 
以下、P:0.010wt%以下及び S:0.001wt%以下 を含有し、残部は鉄及び不可避不純物の組成に調製した
鋼スラブを素材として、仕上げ圧延温度を Ar3変態
点以上 Ar3変態点+70℃以下の温度範囲で熱延し
た後、6秒以内に下記式(1) で計算される冷却速度
(V) ℃/Sで冷却を開始し、下記式(2) で計算
される巻き取り温度(T) ℃で巻き取ることを特徴と
する高強度熱延鋼板の製造方法。               記 (V) ≧15+ 50×〔C〕−3×〔Mn〕−2×
〔Cr〕−15 ×〔B 〕      …  (1)
 513−65×〔C〕−9×〔Mn〕−7〔Cr〕≧
(T) >325−30×〔C〕−6.5〔Mn〕−5
×〔Cr〕                    
  …   (2)ここに、〔  〕内は元素記号で,
 その成分の鋼中含有量(wt%) をあらわす。
[Claim 4] C: 0.08wt% or more 0.20w
t% or less, Mn: 1.50wt% or more 3.50wt
% or less, Cr: 0.50wt% or more 1.50wt%
Below, B: 0.0005wt% or more 0.010wt
% or less, Al: 0.01wt% or more 0.10wt%
Hereinafter, a steel slab containing P: 0.010 wt% or less and S: 0.001 wt% or less, with the remainder being iron and unavoidable impurities, is used as a raw material, and the finish rolling temperature is set to Ar3 transformation point or higher Ar3 transformation point +70 After hot rolling in a temperature range below ℃, the cooling rate (V) is calculated by the following formula (1) within 6 seconds. Cooling is started at ℃/S, and the winding temperature is calculated by the following formula (2). (T) A method for producing a high-strength hot-rolled steel sheet, characterized by winding at °C. (V) ≧15+ 50×[C]-3×[Mn]-2×
[Cr]-15 × [B] … (1)
513-65×[C]-9×[Mn]-7[Cr]≧
(T) >325-30×[C]-6.5[Mn]-5
× [Cr]
... (2) Here, the symbol in [ ] is the element symbol,
It represents the content (wt%) of the component in the steel.
JP05558091A 1991-02-28 1991-02-28 High-strength hot-rolled steel sheet with low stretch flangeability anisotropy and method for producing the same Expired - Fee Related JP3197571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05558091A JP3197571B2 (en) 1991-02-28 1991-02-28 High-strength hot-rolled steel sheet with low stretch flangeability anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05558091A JP3197571B2 (en) 1991-02-28 1991-02-28 High-strength hot-rolled steel sheet with low stretch flangeability anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04272155A true JPH04272155A (en) 1992-09-28
JP3197571B2 JP3197571B2 (en) 2001-08-13

Family

ID=13002679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05558091A Expired - Fee Related JP3197571B2 (en) 1991-02-28 1991-02-28 High-strength hot-rolled steel sheet with low stretch flangeability anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP3197571B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269606A (en) * 1998-03-19 1999-10-05 Kobe Steel Ltd High strength hot rolled steel plate excellent in impact resistance and its production
JP2001207234A (en) * 2000-01-25 2001-07-31 Sumitomo Metal Ind Ltd High tensile strength steel sheet having high ductility and high hole expansibility, and its producing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11269606A (en) * 1998-03-19 1999-10-05 Kobe Steel Ltd High strength hot rolled steel plate excellent in impact resistance and its production
JP2001207234A (en) * 2000-01-25 2001-07-31 Sumitomo Metal Ind Ltd High tensile strength steel sheet having high ductility and high hole expansibility, and its producing method

Also Published As

Publication number Publication date
JP3197571B2 (en) 2001-08-13

Similar Documents

Publication Publication Date Title
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JPH04235253A (en) Ultrahigh strength cold rolled steel sheet having good bendability and impact property and its manufacture
KR102098482B1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
KR20150075307A (en) Ultra-high strength hot-rolled steel sheet with solid diffusion bonding properties, and method for producing the same
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3540134B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2002226943A (en) High-yield-ratio and high-tensile hot-rolled steel plate having excellent workability, and its manufacturing method
JP3864663B2 (en) Manufacturing method of high strength steel sheet
JP2000336455A (en) High ductility hot rolled steel sheet and its production
KR100276308B1 (en) The manufacturing method ofsuper high strength cold rolling steel sheet with workability
JPS6237089B2 (en)
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JPH04272155A (en) High strength hot-rolled steel sheet and production thereof
JPH0790482A (en) Thin steel sheet excellent in impact resistance and its production
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3169293B2 (en) Automotive thin steel sheet excellent in impact resistance and method for producing the same
JPS586937A (en) Production of hot-rolled high-tensile steel plate for working
JPS5852441A (en) Production of high strength cold rolled steel plate having good press formability
JPH0583607B2 (en)
KR20120049992A (en) Method for manufacturing tensile strength 590mpa class hot rolled high burring steel with excellent variation of mechanical property
JP3697573B2 (en) Manufacturing method of high workability and high strength hot-rolled steel sheet with less material fluctuation in the coil.
KR20120063194A (en) Hot dip coated steel sheet having excellent uniformity and workability and method for manufacturing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees