JPH0427198B2 - - Google Patents

Info

Publication number
JPH0427198B2
JPH0427198B2 JP58151353A JP15135383A JPH0427198B2 JP H0427198 B2 JPH0427198 B2 JP H0427198B2 JP 58151353 A JP58151353 A JP 58151353A JP 15135383 A JP15135383 A JP 15135383A JP H0427198 B2 JPH0427198 B2 JP H0427198B2
Authority
JP
Japan
Prior art keywords
substrate
holding member
holding
molecular beam
epitaxial growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58151353A
Other languages
Japanese (ja)
Other versions
JPS6042297A (en
Inventor
Shunichi Murakami
Tetsuo Ishida
Sumio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP15135383A priority Critical patent/JPS6042297A/en
Publication of JPS6042297A publication Critical patent/JPS6042297A/en
Publication of JPH0427198B2 publication Critical patent/JPH0427198B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 この発明は分子線エピタキシヤル成長装置にお
ける化合物半導体基板の保持装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a holding device for a compound semiconductor substrate in a molecular beam epitaxial growth apparatus.

化合物半導体の分子線エピタキシヤル成長装
置、およびその基板保持装置の基本的な構成、動
作原理、および必要な特性、を示す文献として
は、American Institute of Physics発行のAppl.
Phys.Lett.38(5),1March 1981の360頁以降に
掲載のある、 Growth of extremely uniform layers by
rotating substrate holder with molecular
beam epitaxy for applications to electro−
optic and microwave devices A.Y.Cho and K.Y.Cheng を挙げることができる。この文献に図示、説明さ
れている装置は、化合物半導体の分子線エピタキ
シヤル成長装置の標準を示すということができ
る。
Appl., published by the American Institute of Physics, describes the basic structure, operating principle, and necessary characteristics of a compound semiconductor molecular beam epitaxial growth device and its substrate holding device.
Growth of extremely uniform layers by Phys.Lett.38(5), 1March 1981, page 360 onwards.
rotating substrate holder with molecular
beam epitaxy for applications to electro−
Optic and microwave devices AYCho and KYCheng can be mentioned. The apparatus illustrated and described in this document can be said to represent the standard for molecular beam epitaxial growth apparatus for compound semiconductors.

さて、従来この基板の保持は専ら、インジウ
ム、ガリウム等の低融点金属を基板と基板保持台
の間に敷いて熱を加え、両者を接着する低融点金
属接着法か、基板保持台上に基板を載せ、その縁
端部の数ケ所で金属の小片を使つてこれを圧接固
定する金属小片固定法が採用されて来たが、これ
らの方法には次の欠点がある。即ち、低融点金属
接着法では大面積の基板の裏面に均一に低融点金
属を敷き気泡を完全になくしてむらのない接着を
行なうことは困難であつて、このため接着部が不
純物ガスの発生源となり易く、また接着剤の熱伝
導度が高いため、気泡等混在の接着の不均一は熱
伝導性にむらを生じ、基板温度の面内分布の均一
性が確保されないうらみがある。また接着に要す
る時間が長いため、その間の基板表面の汚染が大
きいという欠点がある。
Conventionally, this substrate has been held using either a low melting point metal bonding method, in which a low melting point metal such as indium or gallium is placed between the substrate and the substrate holder, and heat is applied to bond the two. A small metal piece fixing method has been adopted, in which a small piece of metal is placed on top of the metal and fixed by pressure at several places on its edge, but these methods have the following drawbacks. In other words, with the low melting point metal bonding method, it is difficult to uniformly spread the low melting point metal on the back surface of a large area substrate and completely eliminate air bubbles to achieve an even bond. Moreover, since the adhesive has a high thermal conductivity, nonuniform adhesion caused by the presence of air bubbles and the like causes uneven thermal conductivity, which makes it difficult to ensure uniformity in the in-plane substrate temperature distribution. Furthermore, since the time required for adhesion is long, there is a drawback that the surface of the substrate is heavily contaminated during that time.

更にエピタキシヤル成長完了後の基板を半導体
デバイス製造プロセスに投入使用するためには、
基板裏面の低融点金属を完全に除去する必要があ
るが、この除去作業では低融点金属は酸で除去す
るため、成長膜表面がこの金属で汚染する欠点が
ある。
Furthermore, in order to use the substrate after epitaxial growth is completed in the semiconductor device manufacturing process,
It is necessary to completely remove the low melting point metal on the back surface of the substrate, but since the low melting point metal is removed with acid in this removal process, there is a drawback that the surface of the grown film is contaminated with this metal.

更にまた、エピタキシヤル膜成長中等に基板温
度が例えば750℃を越えるとインジウムでは蒸発
が起り、この金属が基板中に不純物として取り込
まれるおそれがあり、厳重な温度管理を必要とす
る欠点もある。
Furthermore, when the substrate temperature exceeds, for example, 750° C. during epitaxial film growth, indium evaporates, and this metal may be incorporated into the substrate as an impurity, thus requiring strict temperature control.

一方、金属小片固定法では、基板の縁端部の数
ケ所を高熱伝導性の金属小片で圧接固定するもの
であるため、圧接固定部分の近傍にて著るしい基
板温度の不均一を生ずる。また、機械的に圧接固
定しているため、熱膨脹・収縮の際基板にストレ
スが加わり、基板上の成長膜に欠陥が入るという
不都合も生じている。
On the other hand, in the small metal piece fixing method, several parts of the edge of the board are pressure-bonded and fixed with small metal pieces of high thermal conductivity, which causes significant non-uniformity in the substrate temperature in the vicinity of the pressure-bonded and fixed parts. Furthermore, since the substrate is mechanically fixed by pressure, stress is applied to the substrate during thermal expansion and contraction, causing defects in the grown film on the substrate.

本発明は、これら従来の欠点を持たない基板保
持装置の提供を目的とする。本発明は従来よりも
はるかに脱着の容易な簡便で安価な基板保持装置
の提供を目的とする。更にまた、本発明は、ガス
抜きが容易で、高温の処理にもストレスを生ぜ
ず、基板に温度不均一を生むことのない新規の基
板保持装置の提供を目的とする。
The present invention aims to provide a substrate holding device that does not have these conventional drawbacks. An object of the present invention is to provide a simple and inexpensive substrate holding device that is much easier to attach and detach than conventional ones. A further object of the present invention is to provide a novel substrate holding device that allows easy degassing, does not cause stress during high-temperature processing, and does not cause temperature non-uniformity on the substrate.

以下図を用い、実施例によつて本発明を説明す
る。第1図は本発明の実施例であつて、1は環状
の基板押え板、2はその断面に段差21を有する
環状の押え板であり、ともに石英まあたはサフア
イヤを素材として作られ、いわゆる耐熱性保持部
材を構成している。3はモリブテン製の基板保持
台、4は円板状の化合物半導体基板、5は基板加
熱用ヒーター、9は分子線の飛来方向である。本
発明では、基板支え板2が石英材であつて基板保
持台3にこれを緊締すると、熱膨張によつて加熱
中に割れを生ずるおそれがあるため、基板支え板
2とネジ8の外径の間、およびネジ8の頭部と基
板保持台3の間に、熱変化分以上の間隙を持たせ
てこれを基板保持台3上に載置し、円板状基板4
を段差21内にやはり間隙をもたせて挿入し、更
にその上に基板押え板1を置き、この基板押え板
1及び基板支え板2の周縁部数ケ所に設けられた
孔10及び20を貫きビス8によつてこの基板押
え板1を基板保持台3にネジ止めする。このとき
基板4は、その面に垂直な方向についても遊〓を
与えられている。即ち、本発明の基板保持は、基
板を前記保持部材で挟持したときに、保持部材の
挟持部に基板面に沿う方向についても、基板面に
垂直な方向についても、前記保持部材との間です
べて若干の間隙を有して無圧力状態で行われるも
のである。従つて、基板は自重で自らの位置を占
め、高温に加熱してもストレスを生ずることはな
く、また、当該間隙の存在と石英またはサフアイ
アの低熱伝導度のために基板全面に亘つてほぼ均
一な温度を確保することが容易となる。温度の均
一性確保のためには、基板4に接触乃至接近する
保持部材1,2の面は平滑で凹凸を持たないのを
理想とする。
The present invention will be explained below by way of examples using the figures. FIG. 1 shows an embodiment of the present invention, in which 1 is an annular substrate holding plate, and 2 is an annular holding plate having a step 21 in its cross section, both of which are made of quartz or sapphire. It constitutes a heat-resistant holding member. 3 is a substrate holding stand made of molybdenum, 4 is a disk-shaped compound semiconductor substrate, 5 is a heater for heating the substrate, and 9 is the direction in which the molecular beam comes. In the present invention, if the substrate support plate 2 is made of quartz and is tightened to the substrate holding stand 3, there is a risk of cracking during heating due to thermal expansion. and between the head of the screw 8 and the substrate holder 3, place it on the substrate holder 3 with a gap equal to or more than the thermal change.
is inserted into the step 21 with a gap therebetween, and the board holding plate 1 is placed on top of it, and the screws 8 are inserted through the holes 10 and 20 provided at several places on the periphery of the board holding plate 1 and the board supporting plate 2. This substrate holding plate 1 is screwed to the substrate holding stand 3 by means of screws. At this time, the substrate 4 is also given some slack in the direction perpendicular to its surface. That is, in the substrate holding of the present invention, when the substrate is held between the holding members, the holding portion of the holding member has a gap between the holding member and the holding member both in the direction along the substrate surface and in the direction perpendicular to the substrate surface. All of this is done under no pressure with a slight gap. Therefore, the substrate assumes its own position under its own weight, does not generate stress even when heated to high temperatures, and is almost uniform over the entire surface of the substrate due to the presence of the gaps and the low thermal conductivity of quartz or sapphire. This makes it easy to maintain a suitable temperature. In order to ensure temperature uniformity, the surfaces of the holding members 1 and 2 that come into contact with or approach the substrate 4 are ideally smooth and free of irregularities.

第2図には本発明の別の実施例を示す。この場
合は保持部材を、環状の基板押え板1と環状の基
板位置規制板6と円板状の基板支え板7の三者で
構成している。基板4の面に垂直な方向について
は保持部材1,7で挾持規制され、基板4の面に
沿う方向については環状の基板位置規制板6が挾
持規制する。
FIG. 2 shows another embodiment of the invention. In this case, the holding member is composed of three members: an annular substrate holding plate 1, an annular substrate position regulating plate 6, and a disk-shaped substrate support plate 7. The direction perpendicular to the surface of the substrate 4 is clamped and regulated by the holding members 1 and 7, and the direction along the surface of the substrate 4 is clamped and regulated by the annular substrate position regulating plate 6.

この実施例の場合は基板4は基板支え板7を経
由して間接的にヒーター5で加熱されるようにな
つている。
In this embodiment, the substrate 4 is indirectly heated by the heater 5 via the substrate support plate 7.

なお、本発明の保持部材は実施例の石英、サフ
アイアを素材とするものに限定されない。ガス抜
きが容易で、高温に耐え、熱伝導度の低いもので
あればすべて素材とすることができる。
Note that the holding member of the present invention is not limited to those made of quartz or sapphire as used in the embodiments. Any material can be used as long as it is easily degassed, can withstand high temperatures, and has low thermal conductivity.

また、保持部材の形状、構成、個数もこれら実
施例のものに限定されるものではなく、本発明の
趣旨を尊重した応用変形が可能である。保持部材
と基板保持台3との結合法も同様であり、ビス止
めに拘束されるものではない。
Furthermore, the shape, structure, and number of the holding members are not limited to those of these embodiments, and may be modified while respecting the spirit of the present invention. The method of connecting the holding member and the substrate holding stand 3 is the same, and is not limited to screwing.

本発明の基板保持装置は上記の通りであるた
め、高温の熱サイクルに対しても基板にストレス
を発生せず、均一に分布した基板温度を容易に確
保できる。装置が簡単であるため半導体デバイス
製造プロセスでの基板の取扱いが簡単になつて自
動化を可能にする利点もあり、工業上極めて有益
な発明ということができる。
Since the substrate holding device of the present invention is as described above, stress is not generated on the substrate even during high-temperature thermal cycles, and a uniformly distributed substrate temperature can be easily ensured. Since the apparatus is simple, the handling of substrates in the semiconductor device manufacturing process is easy and automation is possible, so it can be said to be an extremely useful invention industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はともに本発明の実施例の側断
面図である。 1……基板押え板、2,7……基板支え板、6
……基板位置規制板、3……基板保持台、4……
基板、5……ヒーター。
1 and 2 are both side sectional views of an embodiment of the present invention. 1... Board holding plate, 2, 7... Board supporting plate, 6
... Board position regulation plate, 3 ... Board holding stand, 4 ...
Board, 5...heater.

Claims (1)

【特許請求の範囲】 1 基板加熱手段を備える化合物半導体用分子線
エピタキシヤル成長装置における基板保持装置に
おいて、化合物半導体基板の端部を挟持して前記
基板を保持する耐熱性保持部材を備え、前記基板
を挟持したときに前記保持部材の挟持部に、前記
基板の面に沿う方向及び前記基板に垂直な方向に
つき、前記保持部材との間で間隙が形成されるよ
うに構成したことを特徴とする分子線エピタキシ
ヤル成長装置用の基板保持装置。 2 耐熱性保持部材が、前記基板を挟持したとき
に前記保持部材の挟持部に、基板面に沿う方向に
つき、前記保持部材との間で形成される間隙を調
節する間隙量規制手段を備えることを特徴とする
特許請求の範囲第1項記載の分子線エピタキシヤ
ル成長装置用の基板保持装置。 3 耐熱性保持部材が、石英またはサフアイアを
素材とするものであることを特徴とする特許請求
の範囲第1または2項記載の分子線エピタキシヤ
ル成長装置用の基板保持装置。
[Scope of Claims] 1. A substrate holding device in a molecular beam epitaxial growth apparatus for compound semiconductors that includes a substrate heating means, comprising a heat-resistant holding member that holds an end of a compound semiconductor substrate and holds the substrate; The holding member is configured such that when the substrate is held, a gap is formed between the holding member and the holding member in a direction along the surface of the substrate and in a direction perpendicular to the substrate. Substrate holding device for molecular beam epitaxial growth equipment. 2. When the heat-resistant holding member clamps the substrate, a gap amount regulating means is provided in the holding portion of the holding member for adjusting the gap formed between the heat-resistant holding member and the holding member in a direction along the substrate surface. A substrate holding device for a molecular beam epitaxial growth apparatus according to claim 1, characterized in that: 3. A substrate holding device for a molecular beam epitaxial growth apparatus according to claim 1 or 2, wherein the heat-resistant holding member is made of quartz or sapphire.
JP15135383A 1983-08-19 1983-08-19 Substrate holder for molecular beam epitaxial growing apparatus Granted JPS6042297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15135383A JPS6042297A (en) 1983-08-19 1983-08-19 Substrate holder for molecular beam epitaxial growing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15135383A JPS6042297A (en) 1983-08-19 1983-08-19 Substrate holder for molecular beam epitaxial growing apparatus

Publications (2)

Publication Number Publication Date
JPS6042297A JPS6042297A (en) 1985-03-06
JPH0427198B2 true JPH0427198B2 (en) 1992-05-11

Family

ID=15516694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15135383A Granted JPS6042297A (en) 1983-08-19 1983-08-19 Substrate holder for molecular beam epitaxial growing apparatus

Country Status (1)

Country Link
JP (1) JPS6042297A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0227228A3 (en) * 1985-12-19 1990-01-10 Litton Systems, Inc. Substrate holder for wafers during mbe growth
JP2012184489A (en) * 2011-03-08 2012-09-27 Sumitomo Electric Ind Ltd Vacuum deposition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565682A (en) * 1979-06-25 1981-01-21 Takeya Kk Pinball air feeding dustproof device of pinball

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565682A (en) * 1979-06-25 1981-01-21 Takeya Kk Pinball air feeding dustproof device of pinball

Also Published As

Publication number Publication date
JPS6042297A (en) 1985-03-06

Similar Documents

Publication Publication Date Title
JPH042552B2 (en)
US5509464A (en) Method and apparatus for cooling rectangular substrates
JPH0427198B2 (en)
DE3669418D1 (en) SUPPORT DISC FOR SEMICONDUCTOR ARRANGEMENT MADE OF SILICON CARBIDE.
JPS636520B2 (en)
JPH11291168A (en) Substrate polishing jig and polishing method of semiconductor wafer
JPS62123093A (en) Mounting of substrate on molecular beam epitaxial growth apparatus
JPS61177712A (en) Structure of substrate holder in vacuum device
JPH02248388A (en) Molecular beam crystal growing device
JPS60123025A (en) Heating device
JPH01153596A (en) Base plate holder for molecular beam epitaxy apparatus
JPS62274618A (en) Epitaxial crystal growth
JPS598698A (en) Apparatus for vertical liquid-phase epitaxial growth
JPS6049637A (en) Mounting method of semiconductor substrate
JP3936987B2 (en) Processing method of workpiece
JPS61101488A (en) Molecular beam crystal growth apparatus
JPS59125611A (en) Heat treating device for substrate
JPH04365317A (en) Semiconductor growth apparatus
JPS6037122A (en) Annealing method of semiconductor substrate
JPH022284B2 (en)
JPS6292428A (en) Substrate for epitaxial crystal growth
JPS6223104A (en) Molecular beam epitaxial growing process
JPS62245622A (en) Substrate heating device for molecular beam epitaxy apparatus
JPH0136978B2 (en)
JPS587818A (en) Vapor growth method for silicon semiconductor and spacer for vapor growth