JPH04271783A - New indole-3-pyruvic decarboxylase and its production - Google Patents

New indole-3-pyruvic decarboxylase and its production

Info

Publication number
JPH04271783A
JPH04271783A JP5319091A JP5319091A JPH04271783A JP H04271783 A JPH04271783 A JP H04271783A JP 5319091 A JP5319091 A JP 5319091A JP 5319091 A JP5319091 A JP 5319091A JP H04271783 A JPH04271783 A JP H04271783A
Authority
JP
Japan
Prior art keywords
indole
acid
pyruvate decarboxylase
range
iaa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5319091A
Other languages
Japanese (ja)
Other versions
JP2598718B2 (en
Inventor
Jinichiro Koga
仁一郎 古賀
Takashi Adachi
足立 堯
Hidemasa Hidaka
日高 秀昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP5319091A priority Critical patent/JP2598718B2/en
Publication of JPH04271783A publication Critical patent/JPH04271783A/en
Application granted granted Critical
Publication of JP2598718B2 publication Critical patent/JP2598718B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To provide a new indole-3-pyruvic decarboxylase and a method for producing the same. CONSTITUTION:It has been found that indoleacetic acid (IAA) is produced by Enterobacter cloacae through an indolepyruvic acid route which is one of biosynthetic routes for the IAA. Thereby, indole-3-pyruvic decarboxylase that is an entirely new enzyme catalyzing the second stage of the aforementioned route is isolated and a method for producing the enzyme is established.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は代表的な植物ホルモンの
1種で、植物の発根促進、茎葉伸長など多様な生理活性
を示すインドール酢酸(IAA)の生合成経路において
最も重要な役割を示している新規インドール−3−ピル
ビン酸デカルボキシラーゼおよびその製造法に関するも
のである。
[Industrial Application Field] The present invention is a typical plant hormone that plays the most important role in the biosynthetic pathway of indole acetic acid (IAA), which has various physiological activities such as promoting rooting and elongation of shoots and leaves. The present invention relates to a novel indole-3-pyruvate decarboxylase and a method for producing the same.

【0002】0002

【従来の技術及び発明が解決しようとする課題】IAA
は代表的な植物ホルモンの1種で、植物の発根促進、茎
葉伸長、単為結果、老化抑制等の作用が認められており
、植物生理学的に重要な意味をもつ物質である。一方、
IAAは植物ばかりでなく、微生物、動物によっても生
産されることが明らかにされており、特に微生物におい
ては、植物の茎葉や根圏に存在する菌が植物ホルモンを
生産する意味について種々の研究が進められている。
[Prior art and problems to be solved by the invention] IAA
It is one of the representative plant hormones, and has been recognized to have effects such as promoting plant rooting, stem and leaf elongation, parthenocarpy, and inhibiting aging, and is a substance with important plant physiological meaning. on the other hand,
It has been revealed that IAA is produced not only by plants, but also by microorganisms and animals, and with regard to microorganisms in particular, various studies have been conducted on the meaning of the production of plant hormones by bacteria present in the leaves and rhizosphere of plants. It is progressing.

【0003】一般にIAAは必須アミノ酸であるトリプ
トファンを前駆体として下記に示されるような3つの生
合成経路により生産されると考えられている。(Bio
l.Rev.,48,510−515 ’73)1)ト
リプトファン→インドールアセトアミド→IAA2)ト
リプトファン→トリプタミン→インドールアセトアルデ
ヒド→IAA 3)トリプトファン→インドールピルビン酸→インドー
ルアセトアルデヒド→IAA 特に、3)の経路(インドールピルビン酸経路)は植物
の主な生合成経路であると考えられているが、インドー
ルピルビン酸、インドールアセトアルデヒド等の中間体
が不安定であるため、その酵素の存在は確認されておら
ず、植物の生長に関与するIAAの生合成経路を制御す
ることによって農業生産に有益な物質を見出すことは不
可能であった。
[0003] IAA is generally thought to be produced using the essential amino acid tryptophan as a precursor through three biosynthetic pathways as shown below. (Bio
l. Rev. , 48, 510-515 '73) 1) Tryptophan → indole acetamide → IAA 2) Tryptophan → tryptamine → indole acetaldehyde → IAA 3) Tryptophan → indole pyruvate → indole acetaldehyde → IAA In particular, the pathway 3) (indole pyruvate pathway) is thought to be the main biosynthetic pathway in plants, but because intermediates such as indolepyruvate and indoleacetaldehyde are unstable, the existence of the enzyme has not been confirmed, and it is believed that it is involved in plant growth. It has not been possible to find substances useful for agricultural production by controlling the biosynthetic pathway of IAA.

【0004】0004

【問題を解決するための手段】発明者等はインドールピ
ルビン酸経路に関与し、植物のIAAの生合成経路にお
いて最も重要な作用をもつ酵素を単離し、その作用を明
らかにし、さらにまた本酵素の分離源を探索し、その製
法を確立することにより本酵素を産業上有用な手段とし
て利用することを目的として鋭意検討を行った。その結
果、生育の良好なキュウリの根圏から分離されたエンテ
ロバクター・クロアカ(本菌は工業技術院微生物工業研
究所にFERM−BP1529として寄託されている。 )が植物生長促進作用機作の1つとしてIAAを生産す
ることを見出すとともに、前駆体のIAAへの変換反応
および、中間体の同定により、その生合成経路は植物の
主な生合成経路と同じであるインドールピルビン酸経路
であることを明らかにした。さらに、エンテロバクター
・クロアカからIAA合成遺伝子を単離した結果(特願
平2−45718参照)、その遺伝子はインドールピル
ビン酸経路の第2段階を触媒するインドール−3−ピル
ビン酸デカルボキシラーゼをコードしていることが分っ
た。本酵素はインドール−3−ピルビン酸を脱炭酸し、
インドールアセトアルデヒドとCO2 を生成するもの
であり、IAA生合成経路の中で最も重要な位置を占め
るものである。発明者等は本酵素を精製し、その酵素化
学的性質を明らかにすることにより、酵素活性測定法を
新たに設定し、産業的に利用価値の高い酵素反応系を確
立した。さらに発明者等は本酵素の分離源につき広く検
索し、エンテロバクター属に所属する微生物がインドー
ルピルビン酸経路によってIAAを生産することを見出
し、本発明を完成させたのである。
[Means for solving the problem] The inventors isolated an enzyme that is involved in the indolepyruvate pathway and has the most important action in the biosynthetic pathway of IAA in plants, clarified its action, and further developed this enzyme. We conducted extensive research with the aim of using this enzyme as an industrially useful means by searching for the source of separation and establishing its production method. As a result, Enterobacter cloacae (this bacterium has been deposited as FERM-BP1529 at the National Institute of Microbiology, Agency of Industrial Science and Technology), which was isolated from the rhizosphere of a well-growing cucumber, was found to be one of the mechanisms of action for promoting plant growth. In addition to discovering that IAA is produced as a biosynthetic pathway, the conversion reaction of the precursor to IAA and the identification of intermediates revealed that the biosynthetic pathway is the indolepyruvate pathway, which is the same as the main biosynthetic pathway in plants. revealed. Furthermore, as a result of isolation of the IAA synthesis gene from Enterobacter cloacae (see Japanese Patent Application No. 2-45718), the gene encodes indole-3-pyruvate decarboxylase, which catalyzes the second step of the indolepyruvate pathway. I found out that This enzyme decarboxylates indole-3-pyruvate,
It generates indole acetaldehyde and CO2, and occupies the most important position in the IAA biosynthetic pathway. The inventors purified this enzyme and clarified its enzymatic chemical properties, established a new method for measuring enzyme activity, and established an enzyme reaction system with high industrial utility. Furthermore, the inventors conducted a wide search for the isolation source of this enzyme and found that a microorganism belonging to the genus Enterobacter produces IAA through the indolepyruvate pathway, thereby completing the present invention.

【0005】[0005]

【実施例】以下に実施例を挙げて、更に具体的に本発明
を説明するが、本発明は以下の実施例によって限定され
るものではない。 〔実施例1〕〔1〕エンテロバクター・クロアカ(工業
技術院微生物工業研究所寄託FERM−BP1529)
からのインドール−3−ピルビン酸デカルボキシラーゼ
の生成培養法 まず本菌をペプトン2%、イーストエキス1%、NaC
l、0.5%、0.1mMチアミンピロリン酸(TPP
)、0.2Mリン酸衝液(pH6.5)を含む液体培地
を用い、30℃で24時間好気的に培養した後、100
00rpm で40分間遠心分離により集菌した。この
ようにして得られた菌体50gにPMT溶液(50mM
リン酸緩衝液、5mMMgCl2 、1mMTPP、p
H6.5)200mlを加え、懸濁した後、4℃にて5
分間の超音波破砕を10回行った。この溶液を4℃にて
18000rpm で40分間の遠心分離を行って、沈
殿部を除いて粗酵素抽出液を得た。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples. [Example 1] [1] Enterobacter cloacae (FERM-BP1529, deposited with the Institute of Microbiology, Agency of Industrial Science and Technology)
Culture method for producing indole-3-pyruvate decarboxylase from
l, 0.5%, 0.1mM thiamine pyrophosphate (TPP
), aerobically cultured at 30°C for 24 hours using a liquid medium containing 0.2M phosphate buffer (pH 6.5),
Bacteria were collected by centrifugation at 00 rpm for 40 minutes. PMT solution (50mM
Phosphate buffer, 5mM MgCl2, 1mM TPP, p
After adding 200 ml of H6.5) and suspending,
Ultrasonic disruption for 10 minutes was performed 10 times. This solution was centrifuged at 4°C and 18,000 rpm for 40 minutes to remove the precipitate to obtain a crude enzyme extract.

【0006】〔2〕エンテロバクター・クロアカからの
インドール−3−ピルビン酸デカルボキシラーゼの精製
(1)インドール−3−ピルビン酸デカルボキシラーゼ
活性の測定法 酵素液0.1ml、0.1Mリン酸緩衝液(pH6.5
)0.1ml、50mMMgCl2 0.1ml、1m
MTPP0.1ml、10mMインドール−3−ピルビ
ン酸0.1ml、水0.5mlをそれぞれ混合し、25
℃で30分反応させた後、0.1NHClを4mlを加
え、酵素失活させた。その後、反応液中に生成したイン
ドール−3−アセトアルデヒドを高速液体クロマトグラ
フ法で定量した。反応液中に1分間で1μmol のイ
ンドール−3−アセトアルデヒドを生成する酵素量を1
単位とした。 (2)インドール−3−ピルビン酸デカルボキシラーゼ
の精製 〔1〕で得られた粗酵素液にPMT溶液を800ml加
え、混合後、硫安400gを添加し、生じた沈殿を除去
した。その上清に硫安200gを添加し、生じた沈殿を
遠心分離により回収した。沈殿物は100mlのPMT
溶液に溶解後、透析法により、脱塩を行った。次にPM
T溶液で平衡化したMONO−Q陰イオン交換樹脂(フ
ァルマシア社製)300mlを充てんしたカラムにこの
粗酵素液をチャージし、初発がPMT溶液で最終的に0
.5MのNaClを含むPMT溶液になるように濃度勾
配をつくり、溶出させた。得られた活性画分を限外瀘過
法(旭化成社製、ミニモジュールNM−3使用)により
100mlに濃縮した。この濃縮液を1Mの硫安を含む
PMT溶液で平衡化したPhenyl−Superos
eカラム(ファルマシア社製)にチャージし、初発が1
Mの硫安を含むPMT溶液で最終的にPMT溶液になる
ように濃度勾配をつくり、溶出させた。これより得られ
た活性画分を限外瀘過法により20mlに濃縮し、PM
T溶液で平衡化したDEAE−TOYOPEARL65
0Sカラム(東ソー株式会社製)にチャージし、初発が
PMT溶液で最終的に0.5MのNaClを含むPMT
溶液になるように濃度勾配をつくり、溶出させた。これ
より得られた活性画分を限外瀘過法により濃縮し、精製
インドール−3−ピルビン酸デカルボキシラーゼとした
。本酵素はSDS電気泳動法により、分子量60000
の単一な酵素であることが明らかとなった。
[2] Purification of indole-3-pyruvate decarboxylase from Enterobacter cloacae (1) Method for measuring indole-3-pyruvate decarboxylase activity Enzyme solution 0.1ml, 0.1M phosphate buffer (pH 6.5
)0.1ml, 50mM MgCl2 0.1ml, 1m
Mix 0.1 ml of MTPP, 0.1 ml of 10 mM indole-3-pyruvic acid, and 0.5 ml of water, and
After reacting at ℃ for 30 minutes, 4 ml of 0.1N HCl was added to inactivate the enzyme. Thereafter, indole-3-acetaldehyde produced in the reaction solution was quantified by high performance liquid chromatography. The amount of enzyme that produces 1 μmol of indole-3-acetaldehyde in 1 minute was added to the reaction solution.
It was taken as a unit. (2) Purification of indole-3-pyruvate decarboxylase 800 ml of PMT solution was added to the crude enzyme solution obtained in [1], and after mixing, 400 g of ammonium sulfate was added and the resulting precipitate was removed. 200 g of ammonium sulfate was added to the supernatant, and the resulting precipitate was collected by centrifugation. The precipitate is 100ml of PMT.
After dissolving in a solution, desalting was performed by dialysis. Then P.M.
This crude enzyme solution was charged into a column filled with 300 ml of MONO-Q anion exchange resin (manufactured by Pharmacia) equilibrated with T solution, and the initial reaction was PMT solution and finally 0.
.. A concentration gradient was created to obtain a PMT solution containing 5M NaCl for elution. The obtained active fraction was concentrated to 100 ml by ultrafiltration (manufactured by Asahi Kasei Corporation, using Mini Module NM-3). Phenyl-Superos was prepared by equilibrating this concentrate with a PMT solution containing 1M ammonium sulfate.
Charge the e-column (manufactured by Pharmacia), and the first shot is 1
Elution was performed by creating a concentration gradient using a PMT solution containing ammonium sulfate (M) so that a final PMT solution was obtained. The active fraction obtained from this was concentrated to 20 ml by ultrafiltration method, and the PM
DEAE-TOYOPEARL65 equilibrated with T solution
Charge the 0S column (manufactured by Tosoh Corporation), starting with PMT solution and finally PMT containing 0.5M NaCl.
A concentration gradient was created to create a solution and elution was performed. The active fraction thus obtained was concentrated by ultrafiltration to obtain purified indole-3-pyruvate decarboxylase. This enzyme was determined to have a molecular weight of 60,000 by SDS electrophoresis.
It was revealed that this is a single enzyme.

【0007】〔3〕エンテロバクター・クロアカ由来イ
ンドール−3−ピルビン酸デカルボキシラーゼの性質〔
2〕の工程により得られた精製インドール−3−ピルビ
ン酸デカルボキシラーゼの理化学的性質について述べる
。インドール−3−ピルビン酸デカルボキシラーゼの酵
素活性測定法は〔2〕の(1)に記載された方法に準じ
て行った。 (1)作用:インドール−3−ピルビン酸に作用し、カ
ルボン酸の部分を脱炭酸し、インドール−3−アセトア
ルデヒドと二酸化炭素を生成する。 (2)基質特異性:インドール−3−ピルビン酸によく
作用し、ピルビン酸にやや作用する。しかし、シュウ酸
、オキザロ酢酸、アセト酢酸、トリプトファン、インド
ール乳酸にはほとんど作用しない。 (3)至適pH:pH6.5付近に至適pHがあり、ア
ルカリ側ではほとんど作用しない。 (4)pH安定性:pH6.5付近ではかなり安定であ
るがアルカリ側では不安定である。 (5)耐熱性:pH6.5で10〜50℃の範囲で30
分間の加熱条件下でほとんど失活しない。 (6)金属イオンおよび補酵素の影響:TPPおよびM
gイオンを加えた場合、反応が活性化される。 (7)インドール−3−ピルビン酸に対するkm値10
mMのリン酸緩衝液にてpH6.5で25℃で作用させ
た場合、インドール−3−ピルビン酸に対するkm値は
約0.16mMである。 (8)阻害剤の影響:α−ケトグルタル酸により、活性
が阻害される。 (9)分子量:60000(SDS電気泳動法による)
[3] Properties of indole-3-pyruvate decarboxylase derived from Enterobacter cloacae [
The physicochemical properties of the purified indole-3-pyruvate decarboxylase obtained in step 2] will be described. The enzymatic activity measurement method for indole-3-pyruvate decarboxylase was carried out according to the method described in [2] (1). (1) Action: Acts on indole-3-pyruvic acid, decarboxylates the carboxylic acid moiety, and produces indole-3-acetaldehyde and carbon dioxide. (2) Substrate specificity: acts well on indole-3-pyruvate and slightly acts on pyruvic acid. However, it has little effect on oxalic acid, oxaloacetic acid, acetoacetic acid, tryptophan, and indole-lactic acid. (3) Optimum pH: The optimum pH is around pH 6.5, and there is almost no effect on the alkaline side. (4) pH stability: It is quite stable around pH 6.5, but unstable on the alkaline side. (5) Heat resistance: 30 in the range of 10 to 50°C at pH 6.5
It is hardly inactivated under heating conditions for 1 minute. (6) Effects of metal ions and coenzymes: TPP and M
When g ions are added, the reaction is activated. (7) km value 10 for indole-3-pyruvic acid
The km value for indole-3-pyruvate is approximately 0.16 mM when operated in mM phosphate buffer at pH 6.5 and 25°C. (8) Effect of inhibitor: Activity is inhibited by α-ketoglutaric acid. (9) Molecular weight: 60,000 (by SDS electrophoresis)

【0008】〔実施例2〕FERM−BP1529以外
のエンテロバクター・クロアカ(type  stra
in  IAM12349およびIAM1615,IA
M1624)およびエンテロバクター・アムニゲナ(E
nterobacter  amnigena:typ
e  strain  JCM1237)についても、
インドール−3−ピルビン酸デカルボキシラーゼ活性を
認めた。そこで、上記菌株についても実施例1と全く同
一の方法によりインドール−3−ピルビン酸デカルボキ
シラーゼを生産させ、精製することが可能であった。こ
れらの酵素の理化学的性質もエンテロバクター・クロア
カ(FERM−BP1529)の有するインドール−3
−ピルビン酸デカルボキシラーゼの理化学的性質と同じ
であった。
[Example 2] Enterobacter cloacae (type stra) other than FERM-BP1529
in IAM12349 and IAM1615, IA
M1624) and Enterobacter amnigena (E
nterobacter amnigena: typ.
Regarding e strain JCM1237),
Indole-3-pyruvate decarboxylase activity was observed. Therefore, it was possible to produce and purify indole-3-pyruvate decarboxylase using the same method as in Example 1 for the above bacterial strain. The physicochemical properties of these enzymes also differ from indole-3 possessed by Enterobacter cloacae (FERM-BP1529).
-The physicochemical properties were the same as those of pyruvate decarboxylase.

【0009】〔実施例3〕〔1〕エンテロバクター・ク
ロアカからの核DNAの単離 エンテロバクター・クロアカを100mlのLB培地に
て37℃で1日間液体振とう培養し、培養液を1000
0回転20分遠心し、菌体を回収した。菌体を16ml
のTESH溶液(0.2M  Tris−HCl、0.
02M  EDTA、0.05M  NaCl  pH
8.0)に懸濁し、4mlの0.5M  EDTA、0
.2mlの0.5%、RNaseA(シグマ社製)0.
2mlの卵白リゾチーム(シグマ社製)を加え、混合し
、37℃で2時間反応させた。次に1mlの5%SDS
溶液を加え、ゆっくり攪拌させながら、37℃で1晩反
応させた。この液に同量のフェノール飽和TESH溶液
を加え、室温で10分間振とうし、室温で3500回転
10分間した。中間層を取らないように、水層を移し換
え、上記と同様なフェノール処理を3回繰り返した。得
られた水層に2倍量のエタノールを加え、ガラス棒で攪
拌しながら核DNAを巻き取り、TE溶液(0.01M
  Tris−HCl、0.001M  EDTA  
pH8.0)に再溶解し核DNA溶液とした。 〔2〕エンテロバクター・クロアカからのゲノミックラ
イブラリーの調整 (1)上記〔1〕で得られたエンテロバクター・クロア
カより調整した核DNA溶液100μl (450μg
/ml)にそれぞれSau3AI(東洋紡株式会社製)
を0.25,0.5,1,2,4,8,16unit加
え、37℃/30分反応させた。各種反応液をアガロー
スゲル電気泳動に流し、1〜20kbp の長さのDN
Aを有する反応液のみをプールし、フェノール抽出(フ
ェノール:クロロホルムイソアミルアルコール=50:
49:1Vol比)を3回行った後、この溶液の1/1
0量の3NCH3 COONaと2倍量のエタノールを
加えて混合し、−20℃で20分冷却後、遠心を行い、
DNAを回収した。このDNAを90%冷エタノールで
洗浄し、減圧乾燥させ、100μl のTE溶液に溶解
した。
[Example 3] [1] Isolation of nuclear DNA from Enterobacter cloacae Enterobacter cloacae was cultured with liquid shaking in 100 ml of LB medium at 37°C for 1 day, and the culture solution was
The cells were centrifuged at 0 rpm for 20 minutes and the bacterial cells were collected. 16ml of bacterial cells
TESH solution (0.2M Tris-HCl, 0.
02M EDTA, 0.05M NaCl pH
8.0) and 4 ml of 0.5 M EDTA, 0
.. 2 ml of 0.5%, RNase A (manufactured by Sigma) 0.
2 ml of egg white lysozyme (manufactured by Sigma) was added, mixed, and reacted at 37° C. for 2 hours. Next, 1 ml of 5% SDS
The solution was added and reacted overnight at 37° C. with slow stirring. The same amount of phenol-saturated TESH solution was added to this solution, shaken at room temperature for 10 minutes, and then rotated at 3500 rpm for 10 minutes at room temperature. The aqueous layer was transferred so as not to remove the intermediate layer, and the same phenol treatment as above was repeated three times. Add twice the amount of ethanol to the resulting aqueous layer, roll up the nuclear DNA while stirring with a glass rod, and add TE solution (0.01M
Tris-HCl, 0.001M EDTA
(pH 8.0) to prepare a nuclear DNA solution. [2] Preparation of genomic library from Enterobacter cloacae (1) 100 μl (450 μg) of nuclear DNA solution prepared from Enterobacter cloacae obtained in [1] above
/ml) and Sau3AI (manufactured by Toyobo Co., Ltd.)
0.25, 0.5, 1, 2, 4, 8, 16 units of were added and reacted at 37°C for 30 minutes. Various reaction solutions were run on agarose gel electrophoresis, and DNA with a length of 1 to 20 kbp was detected.
Only the reaction solution containing A was pooled and subjected to phenol extraction (phenol: chloroform isoamyl alcohol = 50:
49:1 Vol ratio) three times, then 1/1 of this solution
Add 0 amount of 3NCH3 COONa and 2 times the amount of ethanol, mix, cool at -20°C for 20 minutes, and centrifuge.
DNA was collected. The DNA was washed with 90% cold ethanol, dried under reduced pressure, and dissolved in 100 μl of TE solution.

【0010】(2)プラスミドベクターPUC119 
 500μl (40μg/ml)にBamHI(東洋
紡株式会社製)160unitを加え、37℃/4hr
反応させ、2回のフェノール抽出の後、エタノール沈殿
を行い、減圧乾燥させた。回収したDNAに滅菌水40
0μl 、pH8.0  0.5M  Tris−HC
lを50μl 、アルカリフォスファターゼ(ベーリン
ガー社製)50μl (1unit/μl )を加え、
混合後37℃で3時間反応させた。その後3回のフェノ
ール抽出とエタノール沈殿を行い、DNAを回収し、5
0μl のTE溶液に溶解した。 (3)ゲノムDNAをSau3AIにより部分分解した
溶液10μl にPUC119をBamHIで切断した
溶液10μl 、T4リガーゼ(東洋紡株式会社製)7
μl (5unit/μl )、緩衝液3μl (66
0mM  Tris−HCl、pH7.6、66mMM
gCl2 、100mMジチオスレイトール、660μ
MATP)を加え、混合後16℃で16時間リガーゼ反
応を行った。
(2) Plasmid vector PUC119
Add 160 units of BamHI (manufactured by Toyobo Co., Ltd.) to 500 μl (40 μg/ml) and incubate at 37°C/4 hr.
After reaction and two phenol extractions, ethanol precipitation was performed and the mixture was dried under reduced pressure. Add 40% sterile water to the recovered DNA.
0μl, pH 8.0 0.5M Tris-HC
Add 50 μl of alkaline phosphatase (manufactured by Boehringer) (1 unit/μl),
After mixing, the mixture was reacted at 37°C for 3 hours. After that, phenol extraction and ethanol precipitation were performed three times to recover the DNA.
Dissolved in 0 μl of TE solution. (3) 10 μl of a solution where genomic DNA was partially digested with Sau3AI, 10 μl of a solution where PUC119 was digested with BamHI, T4 ligase (manufactured by Toyobo Co., Ltd.) 7
μl (5 units/μl), 3 μl buffer (66
0mM Tris-HCl, pH 7.6, 66mM
gCl2, 100mM dithiothreitol, 660μ
After mixing, ligase reaction was performed at 16° C. for 16 hours.

【0011】〔3〕IAA合成遺伝子をコードするクロ
ーンの同定 (1)上記リガーゼ反応を行った液をHanahanの
方法(J.Mol.Biol.,166,557, ’
83)で調整したコンピテントセルDH5αに加えて形
質転換を行い、100ppm アンピミリン、40pp
mXgal含有L寒天培地にまき37℃で24時間培養
した。得られた白色コロニーをピッキングし、100p
pm アンピミリンを含む液体培地にて培養した時に、
IAAを生産する菌株をIAA合成遺伝子を保持するク
ローンとして選抜した。IAA生産能の同定は形質転換
体を常法で培養し、その培養液中にIAAが生産される
か否かを高速液体クロマトグラフ法で判定することによ
り行った。 (2)上記のIAAを生産する菌株をL培地にて液体培
養し、集菌して得られた菌体からアルカリミニプレパレ
ーション法(Nucleic  Acids  Res
.,7,6,1513−1523 ’79)により、プ
ラスミドDNAを抽出した。このDNAをBamHIで
切断後、0.8%アガロースゲル電気泳動にかけたとこ
ろ、約4kbp の外来DNAが挿入されていることが
確認された。この約4kbp のインサートをもつPU
C119をPIA119とした(特願平2−45718
参照)。
[3] Identification of a clone encoding the IAA synthetic gene (1) The solution obtained by the above ligase reaction was subjected to the Hanahan method (J. Mol. Biol., 166, 557, '
In addition to the competent cells DH5α prepared in
The cells were plated on L agar medium containing mXgal and cultured at 37°C for 24 hours. The obtained white colonies were picked and 100p
When cultured in a liquid medium containing pm ampimiline,
A strain producing IAA was selected as a clone carrying the IAA synthesis gene. IAA production ability was determined by culturing the transformant in a conventional manner and determining whether IAA was produced in the culture solution using high performance liquid chromatography. (2) The above IAA-producing strain was cultured in liquid medium in L medium, and the resulting bacterial cells were subjected to alkaline minipreparation method (Nucleic Acids Res).
.. , 7, 6, 1513-1523 '79). When this DNA was cut with BamHI and subjected to 0.8% agarose gel electrophoresis, it was confirmed that about 4 kbp of foreign DNA had been inserted. PU with this approximately 4kbp insert
C119 was changed to PIA119 (Patent application Hei 2-45718
reference).

【0012】〔4〕IAA合成遺伝子を保持する大腸菌
からのインドール−3−ピルビン酸デカルボキシラーゼ
の精製とその性質 プラスミドPIA119を保持する大腸菌を実施例1に
記載された方法に従い、インドール−3−ピルビン酸デ
カルボキシラーゼを生産させ、精製した結果、その理化
学的性質はエンデロバクター・クロアカ(FERM  
BP−1529)のそれと同じであった。
[4] Purification and properties of indole-3-pyruvate decarboxylase from Escherichia coli harboring the IAA synthesis gene. As a result of producing and purifying acid decarboxylase, its physicochemical properties were determined to be similar to that of Endobacter cloacae (FERM).
BP-1529).

【0013】[0013]

【発明の効果】本酵素を用いることにより、IAA生合
成経路を制御する物質の探索が容易となり、また本酵素
をバイオリアクターに利用することによりIAAの新規
な製造法が可能となる。
[Effects of the Invention] By using this enzyme, it becomes easy to search for substances that control the IAA biosynthetic pathway, and by using this enzyme in a bioreactor, a new method for producing IAA becomes possible.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  以下の理化学的性質を有する新規イン
ドール−3−ピルビン酸デカルボキシラーゼ。 (イ)作用:インドール−3−ピルビン酸のカルボン酸
の部分を脱炭酸し、インドール−3−アセトアルデヒド
と二酸化炭素を生成する。 (ロ)基質特異性:インドール−3−ピルビン酸によく
作用し、ピルビン酸にはやや作用する。しかし、シュウ
酸、オキザロ酢酸、アセト酢酸、トリプトファン、イン
ドール乳酸にはほとんど作用しない。 (ハ)至適pHおよび安定pH範囲:至適pHは6.4
〜6.8であり、37℃で24時間反応させた場合pH
6.0〜7.5の範囲において安定である。 (ニ)作用適温の範囲:40℃〜50℃の範囲において
至適作用温度がある。 (ホ)耐熱性:pH6.5で10〜50℃の範囲で30
分間の加熱条件下でほとんど失活しない。 (ヘ)金属イオンおよび補酵素の影響:Mgイオンおよ
びチアミンピロリン酸を加えた場合、反応が活性化され
る。 (ト)阻害剤の影響:α−ケトグルタル酸で活性が阻害
される。 (チ)分子量:60000(SDS電気泳動法による。 )
Claim 1: A novel indole-3-pyruvate decarboxylase having the following physicochemical properties. (a) Action: The carboxylic acid part of indole-3-pyruvic acid is decarboxylated to produce indole-3-acetaldehyde and carbon dioxide. (b) Substrate specificity: acts well on indole-3-pyruvic acid, and acts slightly on pyruvic acid. However, it has little effect on oxalic acid, oxaloacetic acid, acetoacetic acid, tryptophan, and indole-lactic acid. (c) Optimal pH and stable pH range: Optimal pH is 6.4
~6.8, and when reacted at 37°C for 24 hours, the pH
It is stable in the range of 6.0 to 7.5. (d) Range of suitable temperature for action: There is an optimum temperature for action in the range of 40°C to 50°C. (e) Heat resistance: 30 in the range of 10 to 50°C at pH 6.5
It is hardly inactivated under heating conditions for 1 minute. (f) Effects of metal ions and coenzymes: When Mg ions and thiamine pyrophosphate are added, the reaction is activated. (g) Effect of inhibitors: Activity is inhibited by α-ketoglutaric acid. (h) Molecular weight: 60,000 (according to SDS electrophoresis method)
【請求項2】  エンテロバクター属に属する微生物を
培養し、その培養液から請求項1記載のインドール−3
−ピルビン酸デカルボキシラーゼを精製、単離すること
を特徴とする請求項1記載のインドール−3−ピルビン
酸デカルボキシラーゼの製造法。
[Claim 2] A microorganism belonging to the genus Enterobacter is cultivated, and the indole-3 according to claim 1 is obtained from the culture solution.
- The method for producing indole-3-pyruvate decarboxylase according to claim 1, characterized in that the pyruvate decarboxylase is purified and isolated.
【請求項3】  請求項1に記載された酵素をコードす
る遺伝子を導入して得られる微生物を培養し、その培養
液から請求項1記載のインドール−3−ピルビン酸デカ
ルボキシラーゼを精製、単離することを特徴とする請求
項1記載のインドール−3−ピルビン酸デカルボキシラ
ーゼの製造法。
3. Cultivating a microorganism obtained by introducing a gene encoding the enzyme according to claim 1, and purifying and isolating the indole-3-pyruvate decarboxylase according to claim 1 from the culture solution. 2. The method for producing indole-3-pyruvate decarboxylase according to claim 1.
JP5319091A 1991-02-26 1991-02-26 Novel indole-3-pyruvate decarboxylase and method for producing the same Expired - Fee Related JP2598718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5319091A JP2598718B2 (en) 1991-02-26 1991-02-26 Novel indole-3-pyruvate decarboxylase and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5319091A JP2598718B2 (en) 1991-02-26 1991-02-26 Novel indole-3-pyruvate decarboxylase and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04271783A true JPH04271783A (en) 1992-09-28
JP2598718B2 JP2598718B2 (en) 1997-04-09

Family

ID=12935960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5319091A Expired - Fee Related JP2598718B2 (en) 1991-02-26 1991-02-26 Novel indole-3-pyruvate decarboxylase and method for producing the same

Country Status (1)

Country Link
JP (1) JP2598718B2 (en)

Also Published As

Publication number Publication date
JP2598718B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
JP4561010B2 (en) DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid
CN106916857B (en) A method of producing L-glufosinate-ammonium
CN110387379B (en) Mixed culture process and application of recombinant escherichia coli for producing glutathione
CN110373370B (en) Catalytic system coupled with ATP regeneration system and application of catalytic system in glutathione production process
CN113621590B (en) Preparation method of S-nicotine
JP4529338B2 (en) DNA encoding hydantoinase, DNA encoding N-carbamyl-L-amino acid hydrolase, recombinant DNA, transformed cell, protein production method and optically active amino acid production method
JP4561009B2 (en) DNA encoding D-hydantoin hydrolase, DNA encoding N-carbamyl-D-amino acid hydrolase, recombinant DNA containing the gene, cells transformed with the recombinant DNA, and production of proteins using the transformed cells Method and method for producing D-amino acid
US4656136A (en) Method for producing L-aspartic acid
CA2259954C (en) Process for the preparation of (s)- or (r)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid
US5229286A (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase from leuconostoc dextranicus
KR20000052815A (en) Process and composition for preparing d-aspartic acid
CN112779233B (en) Recombinant glufosinate dehydrogenase, genetically engineered bacterium and application thereof in preparation of L-glufosinate
JPH0928391A (en) Production of l-tryptophan
EP0071486B1 (en) Novel microorganisms of the genus eschericia, hybrid dna for use in their production and the use of the microorganisms in the preparation of glutathione
JP2598718B2 (en) Novel indole-3-pyruvate decarboxylase and method for producing the same
CN115261342A (en) Burkholderia BJQ 0011-derived ester synthetase JFN _18195, encoding gene and application thereof
JP2003533166A (en) Construction of production strains for the production of substituted phenols by genes specifically inactivating the catabolism of eugenol and ferulic acid
JPS6236196A (en) Production of alanine
US5686294A (en) Protein having heat-resistant malate dehydrogenase activity
JP4729919B2 (en) Microbial culture method and optically active carboxylic acid production method
KR0165836B1 (en) Preparation method of glutamic acid, recombinant plasmids and microorganisms
JP4485734B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JP3396740B2 (en) Gene encoding phosphoenolpyruvate carboxylase
CN117003836A (en) Global transcription regulatory protein for biosynthesis of branched aldehyde by lactococcus lactis and regulatory method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees