JPS6236196A - Production of alanine - Google Patents

Production of alanine

Info

Publication number
JPS6236196A
JPS6236196A JP7992985A JP7992985A JPS6236196A JP S6236196 A JPS6236196 A JP S6236196A JP 7992985 A JP7992985 A JP 7992985A JP 7992985 A JP7992985 A JP 7992985A JP S6236196 A JPS6236196 A JP S6236196A
Authority
JP
Japan
Prior art keywords
alanine
adh
activity
dna
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7992985A
Other languages
Japanese (ja)
Inventor
Kenji Soda
健次 左右田
Hidehiko Tanaka
英彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP7992985A priority Critical patent/JPS6236196A/en
Publication of JPS6236196A publication Critical patent/JPS6236196A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To form and to accumulate L-alanine in an aqueous medium efficiently, by collecting a D-alanine demanding variant by deactivating alanine racemase and treating the variant with lactic acid and an ammonia donor in an aqueous medium. CONSTITUTION:Lactic and an ammonia donor are treated with a bacterium having D-alanine demanding properties, lactic dehydrogenase activity and L- alanine dehydrogenase activity, capable of producing L-alanine from lactic acid and an ammonia donor, in an aqueous medium, to form and to accumulate L-alanine. A mold of Escherichia coli MK5013PICR301 having high L-alanine dehydrogenase (ADH) activity and high lactic dehydrogenase (LDH) activity obtained by taking out ADH gene from chromosome DNA of Bacillus sphaericus IFO3525 having active L-ADH and integrating the gene into a strain of variant Escherichia coli MK5013 having highly active LDH and deactivated alanine racemase is preferable as the bacterium.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、L−アラニンの製造法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing L-alanine.

L−7ラニンは生体を構成するアミノ酸の1つであり医
薬9食品分野等に需要の高い物質である。
L-7 ranin is one of the amino acids constituting living organisms, and is a substance in high demand in the pharmaceutical, food, and other fields.

〔従来の技術〕[Conventional technology]

アラニンの製造法は化学合成法1発酵法、アス/臂うギ
ン酸より酵素的に脱炭酸する方法などいくつかの方法が
知られ【いるがより安価で簡単な方法が望まれている。
Several methods are known for producing alanine, including chemical synthesis method 1 fermentation method and enzymatic decarboxylation of as/ginate, but a cheaper and simpler method is desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者尋は前に乳酸、アンモニア供与体及びニコチン
アミドアデニンヌクレオチド(以下NADと略す)を含
有する水性媒体中で乳酸脱水素酵素(以下LJ)Hと略
す)及びL−アラニン脱水素酵素(以下ADHと略す)
又は両方の酵素を高力価に含有する菌体又はその破砕物
と反応させることにより効率よくアラニンを生成蓄積さ
せることを見いだし特許出願した(゛特願59−401
41)。しかしながら菌体、 −11i体破砕物又は部
分精製酵素を用いる場合には共存するアラニンラセマー
ゼによりD−アラニンが副生する。これを抑制する方法
として熱処理、阻害剤等の方法を提示したがアラニンラ
セマーゼを完全に抑制又は消却しかつLDH。
The present inventor Hiromu previously prepared lactate dehydrogenase (hereinafter referred to as LJ) and L-alanine dehydrogenase (hereinafter referred to as LJ) in an aqueous medium containing lactic acid, an ammonia donor, and nicotinamide adenine nucleotide (hereinafter referred to as NAD). (hereinafter abbreviated as ADH)
Alternatively, he discovered that alanine could be efficiently produced and accumulated by reacting both enzymes with bacterial cells containing high titers or their crushed products, and filed a patent application (Japanese Patent Application No. 59-401).
41). However, when using bacterial cells, -11i fragments, or partially purified enzymes, D-alanine is produced as a by-product due to coexisting alanine racemase. Methods such as heat treatment and inhibitors have been proposed as methods to suppress this, but it is possible to completely suppress or eliminate alanine racemase and LDH.

ADH活性に影響を与えない条件は規模を大きくした場
合時々不充分な結果となる場合があり、より簡単で確実
な方法を開発する必要がある。
Conditions that do not affect ADH activity sometimes give unsatisfactory results when scaled up, and there is a need to develop simpler and more reliable methods.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者等は上述の革情に鑑み、アラニン要求性を付与
した変異株の採取を鋭意検討した結果アラニンラセマー
ゼを欠失させることによりD−アラニン要求変異株を採
取することに成功し、ここに乳酸よりL−アラニンを製
造する簡便、かつ安価な製造法を確立した。
In view of the above-mentioned circumstances, the present inventors have conducted intensive studies on collecting mutant strains that are endowed with alanine auxotrophy, and have succeeded in collecting D-alanine auxotrophic mutant strains by deleting alanine racemase. We have established a simple and inexpensive method for producing L-alanine from lactic acid.

以下本発明を詳細に述べる。The present invention will be described in detail below.

本発明者等は酵素を用い安価な原料からアラニンな得る
方法を種々研究した結果、乳酸、アンモニア供与体及び
ニコチンアミドアデニンジヌクレオチド(以下NADと
略す。〕を含有する水性媒体中で乳酸脱水素酵素(以下
LDHと略す。)及びL−アラニン脱水累酵素(以下A
DHと略す。)を共役させることにより、該水性媒体中
にアラニンが効率よく生成・蓄積せしめることを見い出
した。
As a result of various studies on methods of obtaining alanine from inexpensive raw materials using enzymes, the present inventors dehydrogenated lactic acid in an aqueous medium containing lactic acid, an ammonia donor, and nicotinamide adenine dinucleotide (hereinafter abbreviated as NAD). enzyme (hereinafter abbreviated as LDH) and L-alanine dehydration enzyme (hereinafter A
Abbreviated as DH. ) was found to efficiently generate and accumulate alanine in the aqueous medium.

即ち、両酵素共にNADを補酵素とするが下式(1)に
示すようにLDHKよりNADはNADHとなり乳酸は
ピルビン[Kf換され、次いでアンモニア供与体、例え
ばNH4“の存在下でADHによりNADHはNAD 
K酸化され、同時にピルビル酸はアラニンに変換される
That is, both enzymes use NAD as a coenzyme, but as shown in the following formula (1), NAD becomes NADH from LDHK, and lactic acid is converted to pyruvate [Kf], and then converted to NADH by ADH in the presence of an ammonia donor, such as NH4. is N.A.D.
K is oxidized and at the same time pyruvate is converted to alanine.

式(1) 式(1)に示したよりなNADを共役する系を用いるこ
とKより効率良く乳酸からアラニンを生産することがで
きる。本反応を行うKはNADHは反応の開始時に添加
するだけでよく、かつNADHの添加量は小量で良い。
Formula (1) Alanine can be produced from lactic acid more efficiently by using the system shown in Formula (1) that conjugates more NAD. K and NADH in this reaction need only be added at the start of the reaction, and the amount of NADH added may be small.

アンモニア供与体としてはアンモニア又はアンモニウム
塩が使用できる。
Ammonia or ammonium salts can be used as ammonia donors.

本発明で使用するLDH及びADHは動物、植物又は微
生物起源のいずれから得られたもので良いが、微生物起
源のものがより安価である。微生物起源のLDH及びA
DHを使用すると式(1)の反応により安価にアラニン
を製造することができる。しかし、LDHとADHを同
時に高活性に生成する微生物は無いために各々の酵素を
高活性に生成する微生物を各々単独で培養しなければな
らない。
The LDH and ADH used in the present invention may be obtained from animals, plants, or microorganisms, but those from microorganisms are cheaper. LDH and A of microbial origin
When DH is used, alanine can be produced at low cost through the reaction of formula (1). However, since there is no microorganism that simultaneously produces LDH and ADH with high activity, microorganisms that produce each enzyme with high activity must be cultured individually.

この点に関し、更に鋭意検討を加えた結果、LDH生産
能を有し、ベクターDNAとADHをコードする遺伝子
とが連結されているDNAを有し、かつADH生産能を
有する微生物を造成することに成功した。すなわち、高
活性のADHを有する・櫂チルススフェリカスIFO3
525の染色体DNAよりADH遺伝子を取り出し、高
活性LDHな有しかつアラニンラセマーゼを欠失した変
異株エセリヒア・コリMK5013株に組み込みADH
とLDH活性の高いエセリヒア・コリMK5013 P
ICR301菌を得た。
As a result of further intensive studies regarding this point, we have decided to create a microorganism that has the ability to produce LDH, has DNA in which vector DNA and a gene encoding ADH are linked, and has the ability to produce ADH. Successful. In other words, Pachyrus sphaericus IFO3 has highly active ADH.
The ADH gene was extracted from the chromosomal DNA of 525 and inserted into the mutant strain E. coli MK5013, which has highly active LDH and lacks alanine racemase.
and E. coli MK5013 P with high LDH activity.
ICR301 bacteria was obtained.

遺伝子供4菌であるバチルス・スフエリカスIFO35
25より染色体DNAを抽出する方法は例えばJ、 B
aet@ri/189 1065(1965)に記載さ
れている様な通常の方法で行なうことが出来る。
Bacillus sphaericus IFO35, a genetic child 4 bacterium
For example, methods for extracting chromosomal DNA from 25 are described in J.B.
This can be carried out by conventional methods such as those described in Aet@ri/189 1065 (1965).

ベクターDNAとしては微生物の菌体内で自己増殖でき
るものであればどの様なものでも良くその1つとしてP
Bl 322がある。染色体DNA及びベクターDNA
はそれぞれ制限エンドニ、クレアーゼを用−て切断する
、制限工ンドニ、クレアーゼは用いるベクターDNA 
Kより適宜選択するのが良い・又、染色体DNA Kつ
いては制限エンドニ、クレアーゼにより切断が部分的に
起る様に反応条件を調節すれば多くの種類の制限エンド
ニ、クレアーゼが使用出来る。かくして得られ友染色体
DNA断片と切断されたベクターDNAを連結せしめる
方法はリボーゼを用いる通常の方法が使用出来る。この
様にして得られた染色体DNA断片とベクターDNAが
連結し次DNAの受容菌はLDf(活性の高い菌株であ
れば何でも良い。
Vector DNA may be any DNA as long as it can self-replicate within the body of a microorganism. One example is P.
There is Bl 322. Chromosomal DNA and vector DNA
are cut using restriction endonuclease and clease, respectively.
For chromosomal DNA K, many types of restriction endonucleases can be used by adjusting the reaction conditions so that partial cleavage occurs with restriction endonucleases. A conventional method using ribose can be used to link the friend chromosomal DNA fragment thus obtained and the cut vector DNA. The chromosomal DNA fragment thus obtained and the vector DNA are ligated, and the recipient strain of the DNA is LDf (any bacterial strain with high activity may be used).

受容菌への導入は例えばJ、 Mo1. Blol 5
3159(1970)K記載されている様な通常の形質
転換法が使用出来る。形質転換株の内ADH遺伝子を含
む形質転換株を選ぶにはベクターDNAのマーカーの性
質とADH活性を指標として選択すれば良い。この様な
操作によりLDH、ADH活性を高く有する菌株を造成
することができる。以下に具体的にADH活性を高く有
する菌株の造成手法につ−て説明する。
The introduction into recipient bacteria is carried out according to, for example, J, Mo1. Blol 5
3159 (1970) K can be used. Among the transformed strains, those containing the ADH gene may be selected using the marker properties of the vector DNA and ADH activity as indicators. Through such operations, a strain having high LDH and ADH activities can be created. A method for constructing a strain having high ADH activity will be specifically described below.

1)染色体DNAの調製 バチルス・スフエリカスIFO3525を11の「B8
ct−penassay Broth J (商品名D
lfeo1JA)中、45℃で約2時間、振盪培養を行
ない対数増殖期の菌体を集菌後、通常のDNA抽出法(
L Bacterio189.1065(1965)な
ど)釦より染色体DNAを抽出精製し2.6ダを採取。
1) Preparation of chromosomal DNA Bacillus sphaericus IFO3525 was isolated from 11 “B8
ct-penassay Broth J (Product name D
lfeo1JA) for approximately 2 hours at 45°C with shaking to collect cells in the logarithmic growth phase, followed by the usual DNA extraction method (
Chromosomal DNA was extracted and purified from the button (such as L Bacterio189.1065 (1965)) and 2.6 da was collected.

2)染色体DNA断片のベクターDNAへの挿入少なく
ともADH遺伝子を含む遺伝子領域をクローニングする
為、そのベクターとなる自己増殖性DNAとしてアンピ
シリン耐性!ラズミドPBR322を用いた。
2) Insertion of chromosomal DNA fragment into vector DNA In order to clone the genetic region containing at least the ADH gene, ampicillin resistance is required as the self-replicating DNA that serves as the vector! Lasmid PBR322 was used.

1)で得九DNA 10μyとベクターDNA 5μI
をそれぞれとり、制限工ンドニ、クレアーゼの一種であ
るSat −1を37℃で1時間作用させてDNA鎖を
切断した。65℃、10分熱処理後両反応液を混合しA
TP 、及びジチオスライトール存在下。
1) 10μy of nine DNA and 5μI of vector DNA
The DNA strands were cleaved by using the restriction enzyme Sat-1, a type of crease, at 37°C for 1 hour. After heat treatment at 65°C for 10 minutes, both reaction solutions were mixed and A
In the presence of TP and dithiothreitol.

T4ファージ由来のDNAリガーゼを用いて10℃。10°C using DNA ligase derived from T4 phage.

24時間、 DNA鎖の連結反応を行うな。Do not perform the DNA strand ligation reaction for 24 hours.

3)  ADH遺伝子を担りたf2ズミドによる形質転
換を行うためのエセリヒア・コリMK5013を:If
fンピテントな状態(DNAの取込み能を有する状態)
とするKはJ、 Mo1. Blot 53 159(
1970)の記載に従い細胞を調製し念。
3) Estherichia coli MK5013 for transformation with f2 zumid carrying the ADH gene: If
Competent state (state with the ability to take in DNA)
K is J, Mo1. Blot 53 159 (
Cells were prepared as described in (1970).

このコンピテントな細胞懸濁液に2〕で得たベクターD
NAとADHをコードする遺伝子とが連結したDNAを
含むDNAの溶解液を加え水冷下30分保ち、直ちに4
2℃、2分間、ヒートン、、りを与えた。
Vector D obtained in 2] was added to this competent cell suspension.
Add a solution of DNA containing DNA in which genes encoding NA and ADH are linked, keep it cooled in water for 30 minutes, and immediately add
Heat treatment was applied at 2°C for 2 minutes.

次にこの細胞懸濁液の一定量を取り新たな培地(14ト
リグトン、0.5酵母エキス、0.5係食塩。
Next, take a certain amount of this cell suspension and add a new medium (14 trigton, 0.5 yeast extract, 0.5 salt.

0.05%硫酸マグネシウム7水塩、pH7,2)K接
種し、37℃−1時間振盪培養を行ない形質転換を完了
させた。
The cells were inoculated with 0.05% magnesium sulfate heptahydrate, pH 7, 2)K, and cultured with shaking at 37°C for 1 hour to complete the transformation.

培養液をアンビシIJ 750μ9/ゴを含む寒天1.
51を加えた前記培地上に塗布し、37℃に保温し友。
Transfer the culture solution to agar containing Ambishi IJ 750μ9/Go.
51 was added to the above medium and kept warm at 37°C.

1〜2日後、培地上に出現した210ケのコロニーを釣
菌し各クローンをそれぞれ純化し、ADH活性を発現し
た株MK5013−PICR−3を選択した。この菌株
中に存在する!ラズミドPICR−3はIIKペース(
アーであった。
After 1 to 2 days, 210 colonies that appeared on the medium were picked, each clone was purified, and strain MK5013-PICR-3 expressing ADH activity was selected. Present in this strain! Lasmid PICR-3 is IIK Pace (
It was ah.

次にMK5013−PICR−3株を用い組み換えプラ
ズミドの小型化を図った。すなわちMK5013−PI
CR−3株中に存在するプラズミドPICR−3を制限
酵素H1nd IIIで完全に分解後再度PBR322
プラスミドに接続せしめ組み換えデラズミドPICR−
301を得た。本グラズミドPICR−301は8にペ
ースペアーであった。該グラズミドを3)と同様の処理
によりエセリヒア・コリMK−5013に導入しエセリ
ヒア・コリMK5013>PICR−301eAJ 。
Next, we attempted to downsize the recombinant plasmid using the MK5013-PICR-3 strain. i.e. MK5013-PI
After completely decomposing the plasmid PICR-3 present in CR-3 strain with restriction enzyme H1nd III, PBR322 was added again.
Recombinant derasmid PICR- connected to plasmid
I got 301. The present grasmid PICR-301 was paced at 8. The glasmid was introduced into Esserichia coli MK-5013 by the same treatment as in 3), resulting in an E. coli MK5013>PICR-301eAJ.

1’221<k、rE12z−PQ+ワワさてこの様に
して得られ九菌株及び兄妹の培養は通常の細菌培養法、
即ち培地としては炭素源。
1'221<k, rE12z-PQ+Wawa Now, the nine bacterial strains obtained in this way and their siblings were cultured using the usual bacterial culture method.
In other words, as a medium, it is a carbon source.

窒素源無機イオン、更に心壁に応じアミノ酸、ビタミン
等の有機微量金属を含むもので良い。炭素源としてはグ
ルコース、フラクトース、デキストリン等、乳酸等の有
機酸、窒素源としてはベグトン、イーストエキス、アン
モニア及びその塩等が使用出来る。
The nitrogen source may contain inorganic ions and, depending on the heart wall, organic trace metals such as amino acids and vitamins. As the carbon source, glucose, fructose, dextrin, etc., organic acids such as lactic acid, etc. can be used, and as the nitrogen source, begtone, yeast extract, ammonia and its salts, etc. can be used.

培養は好気的条件で−、湿温度適宜調節してLDI(、
ADHの活性が最大になるまで行なう。
Culture was carried out under aerobic conditions, with appropriate humidity and temperature adjustment.
Continue until ADH activity reaches its maximum.

酵素反応に用いるには培養した菌体なそのままでも良い
し、集菌し洗浄後?−ルミル、フレンチプレス、又は超
音波破砕装置等で破砕した細胞抽出液でも良い。又、硫
安分画、限外デ過、rル濾過、イオン交換クロマトグラ
フィ等で棺製した標品も用いることができる。更に、L
D)l 、 ADHIL1+i 酵素又は含有菌体又は
破砕物を固定化したものも用−ることかできる。
To use for enzymatic reactions, cultured bacteria can be used as is, or can be collected and washed. - Cell extracts disrupted using a Lumil, French press, or ultrasonic disruption device may also be used. Further, specimens prepared by ammonium sulfate fractionation, ultrafiltration, reflux filtration, ion exchange chromatography, etc. can also be used. Furthermore, L
D) Immobilized ADHIL1+i enzymes, bacterial cells containing them, or crushed products can also be used.

乳酸よりアラニンの変換には造成した菌株を用いて乳酸
を含む培地で24〜120時間培養するか菌体又は酵素
標品にNAD 、乳酸及びアンモニア供与体を含む水性
媒体をpH4,0−10,0望ましくは7.0〜8.0
に保ちつつ20℃〜80℃、望ましくは30℃〜50℃
で反応することKよりアラニンな生成させることが出来
る。
To convert alanine from lactic acid, use the created bacterial strain and culture it in a medium containing lactic acid for 24 to 120 hours, or add the bacterial cells or enzyme preparation to an aqueous medium containing NAD, lactic acid, and an ammonia donor at pH 4.0-10. 0 preferably 7.0 to 8.0
20°C to 80°C, preferably 30°C to 50°C
By reacting with K, more alanine can be produced.

4)  D−アラニン要求性株の誘導 エセリヒア・コリC−600株をブイヨン寒天培地に接
種し30℃1夜培養する、寒天培地上に生育した菌体な
100μg/1ILtのニトロソグアニジンを含む0.
1 Mリン酸緩衝液に懸濁し30℃。
4) Induction of D-alanine auxotrophic strain Esthelichia coli C-600 strain is inoculated onto a bouillon agar medium and cultured overnight at 30°C.
Suspend in 1M phosphate buffer at 30°C.

30分処理する、遠心洗浄(10000rpm)でニト
ロソグアニジンを除去し適当に希釈後ブイヨン寒天グレ
ートに約100コロニー/グレートとなる様に楯tき1
夜30℃でコロニーを生育させる。
Treat for 30 minutes, remove nitrosoguanidine by centrifugal washing (10,000 rpm), dilute appropriately, and plate on a bouillon agar plate at approximately 100 colonies/plate.
Grow the colonies at 30°C overnight.

一方、グルコース0.5%、硫安0.54 、リン酸1
カリ0.14 、リン酸2カリ傭酸マグネシウム0.0
5%、食塩0.1 % t FeSO4及びVLn、S
04を各々2 p’pm e寒天1.5係を含む培地を
2分割し一方にL−アラニン、他方にD−アラニンを各
々0.11づつ加えた寒天プレートを作り、ブイヨン寒
天グレートに生育させたニトロングアニノン処理菌をレ
プリカする。レプリカされたグレートを30℃。
On the other hand, glucose 0.5%, ammonium sulfate 0.54, phosphoric acid 1
Potassium 0.14, dipotassium phosphate magnesium monate 0.0
5%, salt 0.1% t FeSO4 and VLn, S
Agar plates were prepared by dividing a medium containing 1.5 parts of 04 and 2 p'pm of e-agar into two, adding 0.11 parts of L-alanine to one side and 0.11 parts of D-alanine to the other, and growing them on bouillon agar plates. Replica the nitronganinon-treated bacteria. Heat the replica grate to 30℃.

1夜培養しL−アラニン含有培地で生育せず、D−アラ
ニン含有培地で生育したコロニーを分離する。
After culturing overnight, colonies that did not grow on the L-alanine-containing medium but grew on the D-alanine-containing medium were isolated.

以上の操作により第1表に示した4株の変異株が得られ
た。
Through the above operations, four mutant strains shown in Table 1 were obtained.

エセリヒア・コリC−600+      +    
 +MK5013  −     +     −50
14−+     − 5041−+     − 5043−+     − 5061−+     − アラニンラセマーゼ活性は0.1 M D又はL−アラ
ニン、0.1M)リス塩酸(pH8,5)に6菌を懸濁
させ37℃で60分反応させた後市販キラルパックによ
りラセマーゼ活性の有無を判定した。
Etherichia coli C-600+ +
+MK5013 − + −50
14-+ - 5041-+ - 5043-+ - 5061-+ - Alanine racemase activity is 0.1 M D or L-alanine, 0.1 M) Six bacteria were suspended in lithium-hydrochloric acid (pH 8.5) and incubated at 37°C. After reacting for 60 minutes, the presence or absence of racemase activity was determined using a commercially available Chiral Pack.

これ等4株の内MK5013を代表株として用いた。Of these four strains, MK5013 was used as a representative strain.

このD−ア、ラニン要求性を付与させる操作はベクター
とADHをコードする遺伝子とが連結されているDNA
を組み込む前であっても、組み込んだ後でもよい。
This operation for imparting D-A, ranin auxotrophy is carried out on the DNA in which the vector and the gene encoding ADH are linked.
This may be done before or after incorporating.

LDH、ADH活性及びアラニンの定量法は次のように
して行った。
Quantification of LDH, ADH activity, and alanine was performed as follows.

LDH活性は5tolzenbach、 F (196
6) M@thod inEnzymology 92
78記載の方法に従つた0 ADf(活性は左右田健次、大島敏久(1976)生化
学実験講座ll上193記載の方法に従りた。
LDH activity was determined by Tolzenbach, F (196
6) M@thod in Enzymology 92
0 ADf according to the method described in 78 (activity was determined according to the method described in Kenji Soda and Toshihisa Oshima (1976) Biochemistry Experimental Course II, Volume 193).

アラニンの定量はDL−アラニンは通常のアミノ酸分析
機により定量、D、Lの分別定 量はP、 Ee Hare等、Scl@nee 204
1226(1979)記載の高速液体クロマトグラフィ
な用−る方法に従った。
For the quantitative determination of alanine, DL-alanine was determined using an ordinary amino acid analyzer, and the separate quantitative determination of D and L was performed by P, Ee Hare et al., Scl@nee 204
1226 (1979) using high performance liquid chromatography.

ができる。I can do it.

以下に実施例をめげてさらに詳細に説明する。A more detailed explanation will be given below with reference to Examples.

実施例−1 エセリヒア・コリAJ l’Z−’Zll?株をgla
coss 196 ep@pton 0.14 mイー
ストエキス0.5%、DL−アラニンo、ooss、食
塩0.54を含む液体培地に接種し、37℃1夜前培養
する。
Example-1 Eserichia coli AJ l'Z-'Zll? Gla stock
Coss 196 ep@pton 0.14 m It is inoculated into a liquid medium containing 0.5% yeast extract, DL-alanine o, ooss, and 0.54 ml of sodium chloride, and pre-cultured at 37°C overnight.

一方、DL−乳酸アンモニウム10%、リン酸−カリ0
.1 % 、リン酸二カリ0.2 % 、硫酸マグネシ
ウム7水塩O,OS*、食塩0.1憾、イーストエキス
0.054.L−スレオニン0.005係、L−ロイシ
ン0.0025憾、DL−アラニン0.0025憾、チ
アミン0.0001憾、 pi−17,2を含む液体培
地を500d肩付フラスコに5Qrtrlづつ分注しオ
ートクレーブ殺菌(120℃、10分)し前培養した培
養液を54接種し、37℃、48時間振盪培養した結果
2.8I/litのL−アラニンが蓄積した。
On the other hand, DL-ammonium lactate 10%, phosphoric acid-potassium 0
.. 1%, dipotassium phosphate 0.2%, magnesium sulfate heptahydrate O, OS*, salt 0.1, yeast extract 0.054. Dispense 5Qrtrl of a liquid medium containing 0.005% of L-threonine, 0.0025% of L-leucine, 0.0025% of DL-alanine, 0.0001% of thiamine, and pi-17,2 into a 500D shoulder flask. 54 cultures were inoculated with autoclave sterilization (120°C, 10 minutes) and precultured, and cultured with shaking at 37°C for 48 hours. As a result, 2.8 I/lit of L-alanine was accumulated.

実施例−2 実施例−1の前培養培地で37℃、1夜培養した培養液
を10000 rpm 、 10分遠心分離し菌体な集
め0.1モルリン酸緩衝液で2回洗浄し同緩衝液に懸濁
する。
Example 2 A culture solution cultured overnight at 37°C in the preculture medium of Example 1 was centrifuged at 10,000 rpm for 10 minutes to collect bacterial cells, washed twice with 0.1M phosphate buffer, and diluted with the same buffer. Suspend in

一方、10チのDL−乳酸、5憾NH4CL 、 0.
15憾NADを含む反応液に10!n9/rR1(漫画
)となる様に菌体を加え、アンモニアで−を8.0とし
37℃24時間ゆっくり攪拌しつつ反応した結果、7.
21/dtのL−アラニンが生成した。
On the other hand, 10 DL-lactic acid, 5 NH4CL, 0.
10 to the reaction solution containing 15 NAD! Bacterial cells were added so that n9/rR1 (manga) was obtained, the - was adjusted to 8.0 with ammonia, and the reaction was performed while stirring slowly at 37°C for 24 hours.
L-alanine of 21/dt was produced.

Claims (1)

【特許請求の範囲】 1)D−アラニン要求性、乳酸脱水素酵素活性及びL−
アラニン脱水素酵素活性を有し、乳酸及びアンモニア供
与体からL−アラニンを生成する能力を有する微生物を
水性媒体中で乳酸及びアンモニア供与体に作用させてL
−アラニンを生成・蓄積せしめ、これを採取することを
特徴とするL−アラニンの製造法。 2)微生物がD−アラニン要求性及び乳酸脱水素酵素活
性を有し、ベクターDNAとL−アラニン脱水素酵素を
コードする遺伝子とが連結されているDNAを有する微
生物である特許請求の範囲第1項記載のアラニンの製造
法。
[Claims] 1) D-alanine requirement, lactate dehydrogenase activity and L-
A microorganism having alanine dehydrogenase activity and the ability to produce L-alanine from lactic acid and ammonia donors is allowed to act on lactic acid and ammonia donors in an aqueous medium to produce L-alanine.
- A method for producing L-alanine, which comprises producing and accumulating alanine and collecting it. 2) Claim 1, wherein the microorganism is a microorganism that has D-alanine auxotrophy and lactate dehydrogenase activity, and has DNA in which vector DNA and a gene encoding L-alanine dehydrogenase are linked. The method for producing alanine described in Section 1.
JP7992985A 1985-04-15 1985-04-15 Production of alanine Pending JPS6236196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7992985A JPS6236196A (en) 1985-04-15 1985-04-15 Production of alanine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7992985A JPS6236196A (en) 1985-04-15 1985-04-15 Production of alanine

Publications (1)

Publication Number Publication Date
JPS6236196A true JPS6236196A (en) 1987-02-17

Family

ID=13703997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7992985A Pending JPS6236196A (en) 1985-04-15 1985-04-15 Production of alanine

Country Status (1)

Country Link
JP (1) JPS6236196A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116748A (en) * 1988-09-27 1992-05-26 Toyo Jozo Kabushiki Kaisha Process for the production of l-alanine dehydrogenase from 78-3 ferm bp-2517
WO1993010252A1 (en) * 1991-11-18 1993-05-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing l-alanine by fermentation
EP0603865A2 (en) * 1992-12-22 1994-06-29 Kyowa Hakko Kogyo Kabushiki Kaisha Process for producing alanine
NL1008054C2 (en) * 1998-01-16 1999-07-19 Nl Zuivelonderzoek Inst Method for producing alanine, as well as microorganisms and recombinant DNA molecules used therewith.
WO2003070913A3 (en) * 2002-02-20 2004-10-28 Univ Georgia Res Found Microbial production of pyruvate and other metabolites
US8278076B2 (en) 2002-02-20 2012-10-02 University Of Georgia Research Foundation, Inc. Microbial production of pyruvate and pyruvate derivatives
CN110305823A (en) * 2018-11-16 2019-10-08 江南大学 Using the method and bacterial strain of production of lactic acid l-Alanine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304858A (en) * 1979-07-25 1981-12-08 Degussa Aktiengesellschaft Process for the continuous enzymatic change of water soluble α-ketocarboxylic acids into the corresponding amino acids
JPS58105999A (en) * 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd Novel vector-plasmid
JPS58126789A (en) * 1981-12-29 1983-07-28 Kyowa Hakko Kogyo Co Ltd Method for developing genetic character
JPS6043390A (en) * 1983-08-05 1985-03-07 ダブリユ−・ア−ル・グレイス・アンド・カンパニ− Production of l-amino acid from alpha-keto acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4304858A (en) * 1979-07-25 1981-12-08 Degussa Aktiengesellschaft Process for the continuous enzymatic change of water soluble α-ketocarboxylic acids into the corresponding amino acids
JPS58105999A (en) * 1981-12-17 1983-06-24 Kyowa Hakko Kogyo Co Ltd Novel vector-plasmid
JPS58126789A (en) * 1981-12-29 1983-07-28 Kyowa Hakko Kogyo Co Ltd Method for developing genetic character
JPS6043390A (en) * 1983-08-05 1985-03-07 ダブリユ−・ア−ル・グレイス・アンド・カンパニ− Production of l-amino acid from alpha-keto acid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116748A (en) * 1988-09-27 1992-05-26 Toyo Jozo Kabushiki Kaisha Process for the production of l-alanine dehydrogenase from 78-3 ferm bp-2517
EP0567644A4 (en) * 1991-11-18 1995-05-24 Kyowa Hakko Kogyo Kk Process for producing l-alanine by fermentation.
WO1993010252A1 (en) * 1991-11-18 1993-05-27 Kyowa Hakko Kogyo Co., Ltd. Process for producing l-alanine by fermentation
EP0567644A1 (en) * 1991-11-18 1993-11-03 Kyowa Hakko Kogyo Kabushiki Kaisha Process for producing l-alanine by fermentation
US5559016A (en) * 1992-12-22 1996-09-24 Kyowa Hakko Kogyo Co., Ltd. Process for producing alanine
EP0603865A3 (en) * 1992-12-22 1995-06-28 Kyowa Hakko Kogyo Kk Process for producing alanine.
EP0603865A2 (en) * 1992-12-22 1994-06-29 Kyowa Hakko Kogyo Kabushiki Kaisha Process for producing alanine
NL1008054C2 (en) * 1998-01-16 1999-07-19 Nl Zuivelonderzoek Inst Method for producing alanine, as well as microorganisms and recombinant DNA molecules used therewith.
WO1999036556A3 (en) * 1998-01-16 1999-10-14 Nl Zuivelonderzoek Inst Process for the production of alanine by recombinant microorganisms
WO2003070913A3 (en) * 2002-02-20 2004-10-28 Univ Georgia Res Found Microbial production of pyruvate and other metabolites
US7749740B2 (en) 2002-02-20 2010-07-06 University Of Georgia Research Foundation, Inc. Microbial production of pyruvate and pyruvate derivatives
US8278076B2 (en) 2002-02-20 2012-10-02 University Of Georgia Research Foundation, Inc. Microbial production of pyruvate and pyruvate derivatives
US8652825B2 (en) 2002-02-20 2014-02-18 University Of Georgia Research Foundation, Inc. Microbial production of pyruvate and other metabolites
CN110305823A (en) * 2018-11-16 2019-10-08 江南大学 Using the method and bacterial strain of production of lactic acid l-Alanine
CN110305823B (en) * 2018-11-16 2021-05-04 江南大学 Method and strain for producing L-alanine by adopting lactic acid

Similar Documents

Publication Publication Date Title
JPH0142676B2 (en)
JPH06209765A (en) Micro-organism for producing 6- hydroxy nicotinic acid
JP2001120269A (en) Method for producing l-lysine by method for fermentation
JPS6236196A (en) Production of alanine
JPH0569514B2 (en)
JP2722504B2 (en) Novel microorganism and method for producing d-biotin using the same
CN105670982A (en) Recombinant strain as well as construction method and application thereof
JPH0142672B2 (en)
JPH062061B2 (en) Process for producing N-acetylneuraminic acid lyase
JP2587764B2 (en) Method for producing N-acylneuraminic acid aldolase
JPS5820188A (en) Novel microorganism and preparation of glutathione with the same
JPS60184393A (en) Preparation of alanine
JPS62232392A (en) Production of l-thereonine and l-isoleucine
JPS58201985A (en) Production of glucose dehydrogenase
JPH0511960B2 (en)
JP4485734B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
JP3011472B2 (en) Production method of indigo by enzymatic method
CN116411007A (en) Expression cassette for preparing L-lysine, genetically engineered bacterium and application thereof
JPH059063B2 (en)
CN116411009A (en) Expression cassette for preparing L-lysine, genetically engineered bacterium and application thereof
JPH055479B2 (en)
JPH0468906B2 (en)
JPS6328596B2 (en)
JP2598718B2 (en) Novel indole-3-pyruvate decarboxylase and method for producing the same
JPH0716428B2 (en) Method for producing L-amino acid