JPH04271179A - Flexible board with thin film - Google Patents

Flexible board with thin film

Info

Publication number
JPH04271179A
JPH04271179A JP3014867A JP1486791A JPH04271179A JP H04271179 A JPH04271179 A JP H04271179A JP 3014867 A JP3014867 A JP 3014867A JP 1486791 A JP1486791 A JP 1486791A JP H04271179 A JPH04271179 A JP H04271179A
Authority
JP
Japan
Prior art keywords
thin film
flexible substrate
stress
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3014867A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okamoto
弘之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3014867A priority Critical patent/JPH04271179A/en
Publication of JPH04271179A publication Critical patent/JPH04271179A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To protect a flexible board from warping and prevent a thin film from hosing its function due to the stress of said thin film formed on said flexible board. CONSTITUTION:A first thin film 2 and a second thin film 3 are formed on a flexible board wherein the first thin film 2 has compression stress against the flexible board 1 while the second thin film 3 has tensile stress against the board 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は蒸着などの手段によって
薄膜が形成された薄膜付きフレキシブル基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible substrate with a thin film formed thereon by means such as vapor deposition.

【0002】0002

【従来の技術】近年、薄膜形成技術の進歩に伴い、可ど
う性を有するフレキシブル基板に薄膜を形成することが
行われている。高分子フィルムなどによって構成された
基板に100℃程度の温度下で、機能薄膜を形成できれ
ば、基板に熱によるダメージを与えることは少なくなる
が、薄膜の応力によって曲げ弾性率の小さいフレキシブ
ル基板が湾曲してしまうことが少なくない。
2. Description of the Related Art In recent years, with advances in thin film forming technology, thin films have been formed on flexible substrates. If a functional thin film could be formed on a substrate made of a polymer film or the like at a temperature of around 100°C, there would be less damage to the substrate due to heat, but the stress of the thin film would cause the flexible substrate, which has a low bending modulus, to bend. There are many things that I end up doing.

【0003】薄膜のもつ応力には、薄膜自体がもつ内部
応力と、薄膜形成時にフレキシブル基板と薄膜との熱膨
張係数の差に由来する熱応力とがある。低温下で薄膜を
形成する場合には、内部応力が問題となることが多く、
高温下で薄膜を形成する場合やフレキシブル基板と薄膜
との熱的性質が著しく異なる場合には、熱応力が問題と
なってくることが多い。したがってフレキシブル基板の
湾曲を防止するためには、室温下で薄膜形成を行い、さ
らに内部応力の小さい薄膜を形成する必要がある。
Stresses possessed by thin films include internal stress possessed by the thin film itself and thermal stress resulting from the difference in thermal expansion coefficient between the flexible substrate and the thin film during the formation of the thin film. When forming thin films at low temperatures, internal stress often becomes a problem.
Thermal stress often becomes a problem when forming thin films at high temperatures or when the thermal properties of the flexible substrate and the thin film are significantly different. Therefore, in order to prevent the flexible substrate from curving, it is necessary to form a thin film at room temperature and to form a thin film with low internal stress.

【0004】次に、フレキシブル基板を湾曲させる薄膜
の応力について説明する。平なフレキシブル基板が薄膜
の応力によって、曲率半径Rfの曲面に変形した場合に
おける全応力δfは、   σf=(Es/6(1−νs))(ts2/tf)
(1/Rf)によって与えられる。ここで、Esは基板
のヤング率、νsは基板のポアソン比、tsは基板の厚
み、tfは薄膜の厚みである。フレキシブル基板10の
曲がり方は、第5図に示すように圧縮応力が作用し薄膜
11が外側になる場合(以下、圧縮応力の状態という。 )と、第6図に示すように引張り応力が作用し薄膜11
が外側になる場合(以下、引張り応力の状態という。)
とがある。
Next, the stress in the thin film that causes the flexible substrate to curve will be explained. When a flat flexible substrate is deformed into a curved surface with a radius of curvature Rf due to the stress of the thin film, the total stress δf is as follows: σf = (Es/6 (1-νs)) (ts2/tf)
(1/Rf). Here, Es is the Young's modulus of the substrate, νs is the Poisson's ratio of the substrate, ts is the thickness of the substrate, and tf is the thickness of the thin film. The flexible substrate 10 bends when compressive stress is applied and the thin film 11 is on the outside (hereinafter referred to as compressive stress state) as shown in FIG. 5, and when tensile stress is applied as shown in FIG. Thin film 11
is on the outside (hereinafter referred to as a state of tensile stress).
There is.

【0005】全応力σfは、内部応力σiと熱応力σt
との項に分けられる。すなわち σf=σi+σt σi+(αs+αf)((Ef/1−νf))(Td−
T)によって示される。ここで、Efは薄膜のヤング率
、νfは薄膜のポアソン比、Tdは基板の温度、Tは薄
膜付きフレキシブル基板の使用時における温度である。 また圧縮応力を正、引張り応力を負としている。
The total stress σf is the internal stress σi and the thermal stress σt.
It is divided into the following sections. That is, σf=σi+σt σi+(αs+αf)((Ef/1−νf))(Td−
T). Here, Ef is the Young's modulus of the thin film, νf is the Poisson's ratio of the thin film, Td is the temperature of the substrate, and T is the temperature when the flexible substrate with the thin film is used. Also, compressive stress is positive and tensile stress is negative.

【0006】[0006]

【発明が解決しようとする課題】基板の湾曲を防止する
ために、特開平2ー187076に示されている可どう
性光電変換素子では、非晶質半導体層を設ける面と反対
側の面に酸化シリコンなどの透明薄膜を厚さ300Åか
ら10000Åの範囲で形成して、この透明薄膜の機械
的性質を基板に付与し、非晶質半導体層の形成に伴う、
基板の湾曲を低減している。しかし、かかる可どう性光
電変換素子では、完全に基板の湾曲を防止することがで
きないため、フォトリソグラフィーを使用して微細パタ
ーンを形成するのに位置精度上、不都合を生じることに
なる。
[Problems to be Solved by the Invention] In order to prevent the substrate from curving, in the flexible photoelectric conversion element disclosed in JP-A-2-187076, the surface opposite to the surface on which the amorphous semiconductor layer is provided is A transparent thin film such as silicon oxide is formed with a thickness in the range of 300 Å to 10,000 Å, the mechanical properties of this transparent thin film are imparted to the substrate, and accompanying the formation of an amorphous semiconductor layer,
Reduces board curvature. However, in such a flexible photoelectric conversion element, it is not possible to completely prevent the substrate from curving, which causes problems in terms of positional accuracy when forming fine patterns using photolithography.

【0007】また、高分子フィルム等の透湿性基板に耐
透湿性を付与する目的で酸化シリコン、窒化シリコン等
の透明薄膜を形成する場合、基板の湾曲を低減するため
に十分な耐透湿性を保障できる厚さの薄膜を得ることが
困難である欠点がある。本発明は上記従来の問題点に着
目してなされたものであり、基板が湾曲することがなく
、しかも薄膜が果たすべき機能を損なうことがない薄膜
付きフレキシブル基板に関する。
Furthermore, when forming a transparent thin film of silicon oxide, silicon nitride, etc. for the purpose of imparting moisture permeability resistance to a moisture permeable substrate such as a polymer film, it is necessary to provide sufficient moisture permeation resistance to reduce the curvature of the substrate. There is a drawback that it is difficult to obtain a thin film with a guaranteed thickness. The present invention has been made in view of the above-mentioned conventional problems, and relates to a flexible substrate with a thin film that does not bend and does not impair the functions that the thin film should perform.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、フレ
キシブル基板と、前記基板に形成された薄膜とを有する
前記薄膜付きフレキシブル基板において、前記薄膜は少
なくとも2層の膜から成り、前記膜は互いに反対方向に
作用する内部応力をもつものであることを特徴とする薄
膜付きフレキシブル基板である。請求項2の発明は、請
求項1の薄膜付きフレキシブル基板において、薄膜は酸
化シリコン、窒化シリコンおよび酸化窒化シリコンのい
ずれか一つの材料によって構成されていることを特徴と
する薄膜付きフレキシブル基板である。
Means for Solving the Problems The invention according to claim 1 provides a flexible substrate with a thin film having a flexible substrate and a thin film formed on the substrate, wherein the thin film is composed of at least two layers of films, and the thin film is formed on the thin film. are flexible substrates with thin films characterized by having internal stresses acting in opposite directions. The invention according to claim 2 is a flexible substrate with a thin film according to claim 1, wherein the thin film is made of any one of silicon oxide, silicon nitride, and silicon oxynitride. .

【0009】[0009]

【作用】本発明によれば、薄膜は少なくとも2層の膜か
ら成り、膜は互いに反対方向に作用する内部応力をもつ
ので、薄膜の内部応力は互いに反対方向へ作用し、互い
の内部応力を打ち消すことになる。したがってフレキシ
ブル基板に湾曲は発生しない。
[Operation] According to the present invention, the thin film is made up of at least two layers, and the films have internal stresses that act in opposite directions. It will cancel it out. Therefore, no curvature occurs in the flexible substrate.

【0010】0010

【実施例】以下、本発明の実施例を図面によって説明す
る。第1図において、符号1はガラスフィルムによって
構成されたフレキシブル基板を示し、このフレキシブル
基板1はガラスフィルムで構成する他、ポリエチレンテ
レフタレートフィルム、ポリエーテルスルホンフィルム
、ポリアリレートフィルム等によって構成される。フレ
キシブル基板1の表面には、第1薄膜2、さらにこの第
1薄膜2の上面には第2薄膜3が形成されている。第1
薄膜2は、フレキシブル基板1に対して圧縮状態にあり
、第2薄膜3はフレキシブル基板1に対して引張り状態
にある。なおフレキシブル基板1の湾曲は薄膜2、3の
全応力σfを調整する他、薄膜2、3の厚さtfを変え
ることによっても調整可能である。
Embodiments Hereinafter, embodiments of the present invention will be explained with reference to the drawings. In FIG. 1, reference numeral 1 indicates a flexible substrate made of a glass film, and the flexible substrate 1 is made of a glass film, a polyethylene terephthalate film, a polyether sulfone film, a polyarylate film, or the like. A first thin film 2 is formed on the surface of the flexible substrate 1, and a second thin film 3 is formed on the upper surface of the first thin film 2. 1st
The thin film 2 is in compression relative to the flexible substrate 1 and the second thin film 3 is in tension relative to the flexible substrate 1. Note that the curvature of the flexible substrate 1 can be adjusted not only by adjusting the total stress σf of the thin films 2 and 3 but also by changing the thickness tf of the thin films 2 and 3.

【0011】次に、厚さ50μmのガラスフィルムによ
って構成されているフレキシブル基板2にPーCVD法
により窒化シリコン(SiN)膜を形成する場合につい
て説明する。薄膜を構成する材料としては窒化シリコン
の他、酸化シリコンや酸化窒化シリコンを使用すること
も可能である。フレキシブルフレキシブル基板1を真空
槽内に備えられたアノード(接地電極)に保持する。そ
して真空槽内に、ガス(SiH440sccm、NH3
200sccm、N2600sccm)を導入する。ま
た基板の温度は230℃とする。RFは13.5Mヘル
ツで300Wであり、真空槽内の圧力は0.5Torr
とする。さらにアノードとカソードの距離は15mmか
ら35mmの間で変化させた。
Next, a case will be described in which a silicon nitride (SiN) film is formed on the flexible substrate 2 made of a glass film with a thickness of 50 μm by the P-CVD method. In addition to silicon nitride, silicon oxide or silicon oxynitride can also be used as the material constituting the thin film. A flexible substrate 1 is held on an anode (ground electrode) provided in a vacuum chamber. Then, gas (SiH440sccm, NH3
200sccm, N2600sccm). Further, the temperature of the substrate is 230°C. RF is 300W at 13.5MHz, and the pressure inside the vacuum chamber is 0.5Torr.
shall be. Furthermore, the distance between the anode and cathode was varied between 15 mm and 35 mm.

【0012】第2図に上記方法によて形成された薄膜の
応力と電極間(アノードとカソードとの距離)との関係
を示す。また第3図に薄膜のエッチングレート(1秒間
に形成される膜の厚さ)と電極間(アノードとカソード
との距離)との関係を示す。電極間の距離を短くすると
、薄膜はち密な構造となり、圧縮応力の状態となる。 また電極間の距離を長くすると、薄膜は粗い構造となり
、引張り応力の状態となる。
FIG. 2 shows the relationship between the stress of the thin film formed by the above method and the distance between the electrodes (the distance between the anode and the cathode). Further, FIG. 3 shows the relationship between the etching rate of a thin film (thickness of a film formed per second) and the distance between electrodes (distance between an anode and a cathode). When the distance between the electrodes is shortened, the thin film becomes a dense structure and is under compressive stress. Furthermore, if the distance between the electrodes is increased, the thin film will have a rough structure and will be in a state of tensile stress.

【0013】第1薄膜2は電極間の距離を20mmとし
、厚さが3000Åとなるように形成した。また第2薄
膜3は電極間の距離を35mmとし、厚さが5000Å
となるように形成した。第1薄膜2は圧縮応力の状態と
なり、第2薄膜3は引張り応力の状態となる。この結果
、第1薄膜2が発揮する応力と第2薄膜3が発揮する応
力は相殺されることになり、フレキシブル基板1の曲率
半径は100mとなり、殆ど湾曲しない状態となった。 さらに第1薄膜2と第2薄膜3は耐湿性を与える保護膜
としての性能を十分に確保することができた。なお第1
薄膜2と第2薄膜3との厚さが異なるのは合成された全
応力を小さくするためである。
The first thin film 2 was formed with a distance between electrodes of 20 mm and a thickness of 3000 Å. The second thin film 3 has a distance between electrodes of 35 mm and a thickness of 5000 Å.
It was formed so that The first thin film 2 is under compressive stress, and the second thin film 3 is under tensile stress. As a result, the stress exerted by the first thin film 2 and the stress exerted by the second thin film 3 were canceled out, and the radius of curvature of the flexible substrate 1 was 100 m, resulting in a state in which it was hardly curved. Furthermore, the first thin film 2 and the second thin film 3 were able to sufficiently ensure performance as a protective film providing moisture resistance. Note that the first
The reason why the thicknesses of the thin film 2 and the second thin film 3 are different is to reduce the combined total stress.

【0014】第4図に第2実施例としての薄膜付きフレ
キシブル基板を示す。第2実施例では、フレキシブル基
板1の表裏面に第1薄膜2と第2薄膜3を形成している
。本実施例では、第1実施例と比較して、製作工程は増
加するものの、フレキシブル基板1の湾曲防止、フレキ
シブル基板1の保護という点において優っている。
FIG. 4 shows a flexible substrate with a thin film as a second embodiment. In the second embodiment, a first thin film 2 and a second thin film 3 are formed on the front and back surfaces of a flexible substrate 1. Although this embodiment requires more manufacturing steps than the first embodiment, it is superior in terms of preventing bending of the flexible substrate 1 and protecting the flexible substrate 1.

【0015】[0015]

【発明の効果】以上のように本発明よれば、互いに反対
方向に作用する内部応力をもつ薄膜を形成したので、薄
膜の応力が相殺されることになる。したがって基板が湾
曲するのを防止でき、しかも薄膜が果たすべき機能を損
なうこともない。
As described above, according to the present invention, thin films having internal stresses acting in opposite directions are formed, so that the stresses in the thin films are canceled out. Therefore, the substrate can be prevented from curving, and the function that the thin film should perform is not impaired.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1実施例にかかる薄膜付きフレキシ
ブル基板の断面図である。
FIG. 1 is a sectional view of a flexible substrate with a thin film according to a first embodiment of the present invention.

【図2】薄膜の応力と電極間(アノードとカソードとの
距離)との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between stress in a thin film and distance between electrodes (distance between an anode and a cathode).

【図3】薄膜のエッチングレート(1秒間に削られる膜
の厚さで膜のち密さの尺度となる。)と電極間(アノー
ドとカソードとの距離)との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the etching rate of a thin film (the thickness of the film removed per second is a measure of the density of the film) and the distance between the electrodes (distance between the anode and the cathode).

【図4】本発明の第2実施例にかかる薄膜付きフレキシ
ブル基板の断面図である。
FIG. 4 is a sectional view of a flexible substrate with a thin film according to a second embodiment of the present invention.

【図5】従来例にかかる薄膜付きフレキシブル基板の圧
縮応力が作用して湾曲した状態を示す図である。
FIG. 5 is a diagram illustrating a state in which a flexible substrate with a thin film according to a conventional example is bent due to compressive stress.

【図6】従来例にかかる薄膜付きフレキシブル基板の引
張り応力が作用して湾曲した状態を示す図である。
FIG. 6 is a diagram illustrating a state in which a flexible substrate with a thin film according to a conventional example is bent due to the application of tensile stress.

【符号の説明】[Explanation of symbols]

1      フレキシブル基板 2      第1薄膜 3      第2薄膜 1 Flexible board 2 First thin film 3 Second thin film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】フレキシブル基板と、前記基板に形成され
た薄膜とを有する前記薄膜付きフレキシブル基板におい
て、前記薄膜は少なくとも2層の膜から成り、前記膜は
互いに反対方向に作用する内部応力をもつものであるこ
とを特徴とする薄膜付きフレキシブル基板。
1. The flexible substrate with a thin film comprising a flexible substrate and a thin film formed on the substrate, wherein the thin film is composed of at least two layers, and the films have internal stress acting in opposite directions. A flexible substrate with a thin film characterized by being
【請求項2】請求項1の薄膜付きフレキシブル基板にお
いて、薄膜は酸化シリコン、窒化シリコンおよび酸化窒
化シリコンのいずれか一つの材料によって構成されてい
ることを特徴とする薄膜付きフレキシブル基板。
2. The flexible substrate with a thin film according to claim 1, wherein the thin film is made of one of silicon oxide, silicon nitride, and silicon oxynitride.
JP3014867A 1991-01-14 1991-01-14 Flexible board with thin film Pending JPH04271179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3014867A JPH04271179A (en) 1991-01-14 1991-01-14 Flexible board with thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3014867A JPH04271179A (en) 1991-01-14 1991-01-14 Flexible board with thin film

Publications (1)

Publication Number Publication Date
JPH04271179A true JPH04271179A (en) 1992-09-28

Family

ID=11872975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3014867A Pending JPH04271179A (en) 1991-01-14 1991-01-14 Flexible board with thin film

Country Status (1)

Country Link
JP (1) JPH04271179A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261556A (en) * 2005-03-18 2006-09-28 Oki Electric Ind Co Ltd Sos wafer and its manufacturing method
JP2007035921A (en) * 2005-07-27 2007-02-08 Honda Motor Co Ltd Chalcopyrite solar cell
JP2007114789A (en) * 2005-10-21 2007-05-10 Samsung Electronics Co Ltd Thin film transistor substrate and method for manufacturing same
JP2008529305A (en) * 2005-01-26 2008-07-31 ユナイテッド ソーラー オヴォニック コーポレイション Method of eliminating device curl on thin flexible substrate and device made by such method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529305A (en) * 2005-01-26 2008-07-31 ユナイテッド ソーラー オヴォニック コーポレイション Method of eliminating device curl on thin flexible substrate and device made by such method
JP2006261556A (en) * 2005-03-18 2006-09-28 Oki Electric Ind Co Ltd Sos wafer and its manufacturing method
JP2007035921A (en) * 2005-07-27 2007-02-08 Honda Motor Co Ltd Chalcopyrite solar cell
JP4646724B2 (en) * 2005-07-27 2011-03-09 本田技研工業株式会社 Chalcopyrite solar cell
JP2007114789A (en) * 2005-10-21 2007-05-10 Samsung Electronics Co Ltd Thin film transistor substrate and method for manufacturing same
US7671364B2 (en) 2005-10-21 2010-03-02 Samsung Electronics Co., Ltd. Thin film transistor substrate for display unit
JP4526527B2 (en) * 2005-10-21 2010-08-18 三星電子株式会社 Thin film transistor substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20060204776A1 (en) Structure and method of thermal stress compensation
JP2007094040A (en) Frame tool and method for forming optical thin film using the same
JP2003257824A (en) Reflection mask blank for exposure, its manufacturing method, and reflection mask for exposure
US5422921A (en) X-ray mask structure and manufacturing methods including forming a metal oxide film on a portion of an X-ray permeable film having no X-ray absorber thereon
JPH04271179A (en) Flexible board with thin film
JP3730868B2 (en) Method of manufacturing thin film piezoresistive sensor
JP2853709B2 (en) Protective film for semiconductor device and method of manufacturing the same
WO2007114191A1 (en) Membrane structure element and method for manufacturing same
JP4532787B2 (en) Condenser microphone and pressure sensor
JP2994881B2 (en) Thermal insulation film for diaphragm structure and method of manufacturing the same
JP3546151B2 (en) Distortion detecting element and method for manufacturing distortion detecting element
US6376889B1 (en) Dielectric thin film element and process for manufacturing the same
JPH07226547A (en) Magnetoresistance element and its manufacture
JPH06163368A (en) X-ray exposure mask
JP3110491B2 (en) Surface acoustic wave device using diamond-like film
JP2007294889A (en) Membrane structure element, and method of manufacturing same
JP2768595B2 (en) Method of manufacturing X-ray mask structure
JPS61296726A (en) Manufacture of semiconductor device
US7220489B1 (en) Layered structures for optical reflectors
JPH06267804A (en) Laminated semiconductor substrate and manufacture
JPH06137941A (en) Infrared detecting element
JPH0461490B2 (en)
JPH0897444A (en) Infrared detection element and its manufacture
KR100772792B1 (en) Method for manufacturing semiconductor device
JPH09304207A (en) Pressure sensor