JP2007294889A - Membrane structure element, and method of manufacturing same - Google Patents

Membrane structure element, and method of manufacturing same Download PDF

Info

Publication number
JP2007294889A
JP2007294889A JP2007057956A JP2007057956A JP2007294889A JP 2007294889 A JP2007294889 A JP 2007294889A JP 2007057956 A JP2007057956 A JP 2007057956A JP 2007057956 A JP2007057956 A JP 2007057956A JP 2007294889 A JP2007294889 A JP 2007294889A
Authority
JP
Japan
Prior art keywords
membrane
silicon oxide
oxide film
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057956A
Other languages
Japanese (ja)
Other versions
JP4780671B2 (en
Inventor
Takayuki Hirano
貴之 平野
Nobuyuki Kawakami
信之 川上
Masahito Amanaka
将人 甘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007057956A priority Critical patent/JP4780671B2/en
Publication of JP2007294889A publication Critical patent/JP2007294889A/en
Application granted granted Critical
Publication of JP4780671B2 publication Critical patent/JP4780671B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Formation Of Insulating Films (AREA)
  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane structure element which can be easily fabricated and has high heat insulation and high quality, and to provide a method of manufacturing the same. <P>SOLUTION: In this manufacturing method, the membrane structural element is manufactured which includes a membrane formed of a silicon oxide film and a substrate for supporting the membrane in the air by supporting a part of the outer edge of the membrane. The method includes a film forming step of forming a heat-shrinkable silicon oxide film 13 on a surface of a silicon substrate 2 by plasma CVD, a heat treatment step of performing heat treatment for thermally shrinking the silicon oxide film 13 having been formed on the substrate 1, and a removal step of forming a concave portion 4 by removing a part of the substrate 2 such that a portion corresponding to the membrane in the silicon oxide film 13 is supported in the air relative to the substrate 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、主に赤外線センサやエアフローメータ、ガスセンサなどの熱型センサに利用されるメンブレン構造素子に関する。   The present invention relates to a membrane structure element mainly used for a thermal sensor such as an infrared sensor, an air flow meter, and a gas sensor.

近年、半導体微細加工を利用して熱型センサを製作する技術が種々開発されている。熱型センサには、基板に対する断熱性を保つために、検知用電子素子を備えたメンブレン(膜)を基板に対して中空状態で支持した中空構造が採用される場合がある。このようにメンブレンが中空状態で支持された構造の素子をメンブレン構造素子という。   In recent years, various techniques for manufacturing a thermal sensor using semiconductor microfabrication have been developed. In some cases, the thermal type sensor employs a hollow structure in which a membrane (film) having a detection electronic element is supported in a hollow state with respect to the substrate in order to maintain heat insulation with respect to the substrate. An element having a structure in which the membrane is supported in a hollow state is called a membrane structure element.

通常、メンブレンは、熱絶縁性に優れたSiO2 (二酸化ケイ素)膜等の酸化ケイ素膜で形成され、この膜はシリコン基板の表面を酸化することで容易に形成できる。このように表面酸化により形成されたSiO2 膜を「熱酸化SiO2 膜」という。しかし、この熱酸化SiO2 膜は、基板となる単結晶シリコンなど、ほとんどの基板材料よりも熱膨張係数が小さいため、メンブレンとなる熱酸化SiO2 膜を形成し、冷却後、その下部の基板材料をエッチング等により凹状に除去して、メンブレンを中空構造とした場合、熱酸化SiO2 膜に残留した大きな圧縮応力(基板が単結晶シリコンの時、200MPa程度)に起因して、中空状態で支持されたメンブレンが「たるむ」状態となる。このため、メンブレン構造素子の品質が低下し、またメンブレンの強度が低下し、著しい場合は膜破壊を招来する。このため大きな面積のメンブレンでは形成すること自体が困難となる。 Usually, the membrane is formed of a silicon oxide film such as a SiO 2 (silicon dioxide) film excellent in thermal insulation, and this film can be easily formed by oxidizing the surface of a silicon substrate. The SiO 2 film thus formed by surface oxidation is referred to as “thermally oxidized SiO 2 film”. However, since this thermal oxide SiO 2 film has a smaller coefficient of thermal expansion than most substrate materials such as single crystal silicon used as a substrate, a thermal oxide SiO 2 film used as a membrane is formed, and after cooling, the underlying substrate When the material is removed in a concave shape by etching or the like to make the membrane hollow, due to the large compressive stress (about 200 MPa when the substrate is single crystal silicon) remaining in the thermally oxidized SiO 2 film, The supported membrane becomes “sagging”. For this reason, the quality of the membrane structure element is deteriorated, and the strength of the membrane is lowered. For this reason, it is difficult to form a membrane with a large area.

そこで、メンブレンの形成後のメンブレンに残留した内部応力を最小にして大面積のメンブレンを作製する技術が種々提案されている。例えば、特開平6−132277号公報(特許文献1)には、メンブレンを熱膨張係数の異なるSi34膜とSiO2 膜とを積層形成し、Si34膜によりSiO2 膜に内在した圧縮残留応力を軽減することで、全体としてメンブレンの残留応力を緩和する技術が記載されている。また、特開平8−264844号公報(特許文献2)には、メンブレンの中央部分をSi34膜で形成したり、SiO2 膜にV族元素を添加することでメンブレンのヤング率を低下させる技術が記載されている。また、Lie-yi Sheng et al., Transducers '97, 1997, PP.939-942.(非特許文献1))には、SiO2 のメンブレンにヒーター兼用のポリシリコン配線を「凧の骨」のように用いて、膜の弛みを除く方法が提案されている。
特開平6−132277号公報 特開平8−264844号公報 Lie-yi Sheng et al., Transducers '97, 1997, PP.939-942.
Therefore, various techniques for producing a large-area membrane by minimizing the internal stress remaining in the membrane after the formation of the membrane have been proposed. For example, in Japanese Patent Laid-Open No. 6-132277 (Patent Document 1), a membrane is formed by laminating a Si 3 N 4 film and a SiO 2 film having different thermal expansion coefficients, and the Si 3 N 4 film is inherent in the SiO 2 film. A technique for reducing the residual stress of the membrane as a whole by reducing the compressed residual stress is described. Japanese Patent Application Laid-Open No. 8-264844 (Patent Document 2) describes that the Young's modulus of the membrane is lowered by forming the central portion of the membrane with a Si 3 N 4 film or adding a group V element to the SiO 2 film. The technology to be described is described. In addition, in Lie-yi Sheng et al., Transducers '97, 1997, PP.939-942. (Non-patent Document 1), a polysilicon wiring that also serves as a heater is attached to the SiO 2 membrane. In this way, a method for removing the slack of the membrane has been proposed.
JP-A-6-132277 JP-A-8-264844 Lie-yi Sheng et al., Transducers '97, 1997, PP.939-942.

しかしながら、上記特許文献1に記載された方法では、SiO2 膜に対して組成の全く別異なSi34膜を形成する必要がある。その上、Si34の熱伝導率は22.7W/mKであり、SiO2 の熱伝導率1.4W/mKに比較して一桁以上大きいために、メンブレンの断熱性が低下する。また大面積化しようとすると、熱膨張係数の相違に起因してバイメタルのようにメンブレン全体に反りが生じ、信頼性を低下させる。また、特許文献2に記載の方法では、製作工程が複雑であり、素子設計の自由度を損なう。また非特許文献1に記載の方法では、メンブレンそのものの応力低減に配慮されていないため、やはり反りが発生し、また設計の自由度を損なう。
本発明はかかる問題に鑑みなされたもので、製作が容易で、断熱性が良好で、しかも高品質のメンブレン構造素子及びその製造方法を提供することを目的とする。
However, in the method described in Patent Document 1, it is necessary to form a Si 3 N 4 film having a completely different composition from that of the SiO 2 film. In addition, the thermal conductivity of Si 3 N 4 is 22.7 W / mK, which is an order of magnitude higher than the thermal conductivity of SiO 2 , which is 1.4 W / mK. In addition, when trying to increase the area, the entire membrane is warped like bimetal due to the difference in thermal expansion coefficient, and the reliability is lowered. Moreover, in the method described in Patent Document 2, the manufacturing process is complicated, and the degree of freedom in element design is impaired. Further, in the method described in Non-Patent Document 1, since the stress reduction of the membrane itself is not taken into consideration, warpage is still generated and the degree of freedom of design is impaired.
The present invention has been made in view of such problems, and an object of the present invention is to provide a high-quality membrane structure element that is easy to manufacture, has good heat insulation properties, and a method for manufacturing the same.

本発明者は、メンブレンを構成する酸化ケイ素膜をプラズマCVD法によって形成した場合、熱酸化酸化ケイ素膜と同様、膜内に圧縮応力が残留するものの、その後、加熱処理を施すことにより、膜が緻密化して熱収縮するため、室温付近では±100MPa以下の小さな応力に抑えることができることを見出した。このように膜の残留応力を低減することにより、メンブレンを中空状に支持した場合でも、酸化ケイ素膜には撓みや反りがほとんど生じず、酸化ケイ素で構成されているため断熱性に優れ、かつ平坦性に優れたメンブレンが得られる。本発明はかかる知見を基に完成したものである。   When the silicon oxide film constituting the membrane is formed by the plasma CVD method, the present inventor, like the thermally oxidized silicon oxide film, retains a compressive stress in the film, but thereafter, the film is formed by performing a heat treatment. It has been found that since it is densified and thermally contracted, it can be suppressed to a small stress of ± 100 MPa or less near room temperature. By reducing the residual stress of the membrane in this way, even when the membrane is supported in a hollow shape, the silicon oxide film is hardly bent or warped, and is composed of silicon oxide, so it has excellent heat insulation, and A membrane with excellent flatness can be obtained. The present invention has been completed based on such knowledge.

すなわち、本発明のメンブレン構造素子の製造方法は、酸化ケイ素膜で形成されたメンブレンと、前記メンブレンの周辺の一部を支持することによってメンブレンを中空状態で支持する基板とを備えたメンブレン構造素子の製造方法であって、酸化ケイ素よりも熱膨張係数が大きい材料で形成された基板の表面側に、熱収縮可能な酸化ケイ素膜を形成する膜形成工程と、前記熱収縮可能な酸化ケイ素膜を加熱して熱収縮させる加熱処理工程と、前記酸化ケイ素膜のメンブレン対応部をメンブレンとして基板に対して中空状態で支持されるように前記基板の一部を凹状に除去する除去工程を備える。   That is, the method for producing a membrane structure element of the present invention comprises a membrane structure element comprising a membrane formed of a silicon oxide film and a substrate that supports the membrane in a hollow state by supporting a part of the periphery of the membrane. A film forming step of forming a heat-shrinkable silicon oxide film on the surface side of a substrate formed of a material having a larger thermal expansion coefficient than silicon oxide, and the heat-shrinkable silicon oxide film A heat treatment step of heating and shrinking the substrate, and a removal step of removing a part of the substrate in a concave shape so that the membrane corresponding portion of the silicon oxide film is supported in a hollow state with respect to the substrate.

本発明の製造方法によれば、基板に熱収縮可能な酸化ケイ素膜を形成しておき、この酸化ケイ素膜を加熱処理工程にて熱収縮させるので、基板に酸化ケイ素膜を形成後、この酸化ケイ素膜に内在した圧縮応力を容易に軽減、解消することができる。このため、除去工程によってメンブレンを基板に中空状に支持しても、メンブレンに撓みや反りが生じず、容易に平坦状に支持された、高品質のメンブレンを得ることができる。また、メンブレンは酸化ケイ素膜のみで形成されるため、断熱性に優れ、Si34との複合膜に比して製作も容易であり、これを緻密化することで、メンブレン自体の強度、耐久性を向上させることができる。 According to the manufacturing method of the present invention, a heat-shrinkable silicon oxide film is formed on the substrate, and the silicon oxide film is thermally shrunk in the heat treatment step. The compressive stress inherent in the silicon film can be easily reduced or eliminated. For this reason, even if the membrane is supported hollow on the substrate by the removal step, the membrane does not bend or warp, and a high-quality membrane that is easily supported in a flat shape can be obtained. In addition, since the membrane is formed only with a silicon oxide film, it has excellent heat insulation and is easier to manufacture than a composite film with Si 3 N 4. By densifying this, the strength of the membrane itself, Durability can be improved.

また、上記製造方法において、前記酸化ケイ素膜の表面に所定パターンの金属配線を形成する素子形成工程を設けることができ、また前記熱収縮可能な酸化ケイ素膜は、プラズマCVD法によって容易に形成することができる。プラズマCVD法で成膜する場合、成膜原料ガスとしてシランガスを用い、成膜時における基板温度を200℃以下とし、投入電力を0.21W/cm2 以下とすることが好ましい。 In the manufacturing method, an element forming step for forming a metal wiring having a predetermined pattern on the surface of the silicon oxide film can be provided, and the heat-shrinkable silicon oxide film is easily formed by a plasma CVD method. be able to. When a film is formed by a plasma CVD method, it is preferable that silane gas is used as a film forming source gas, the substrate temperature during film formation is 200 ° C. or lower, and the input power is 0.21 W / cm 2 or lower.

また、前記加熱処理工程においては、加熱温度を400℃以上とすることが好ましい。また前記熱収縮可能な酸化ケイ素膜が均一に収縮するように、基板とともに前記酸化ケイ素膜を加熱することが好ましく、また前記酸化ケイ素膜に内在する応力を、好ましくは引張り(+)100MPaから圧縮(−)100MPa、より好ましくは+50MPaから0MPaの引張り応力範囲とするように加熱することが望ましい。これにより平坦性に優れた中空構造のメンブレンを得ることができる。また、単結晶シリコンからなる基板を用い、前記除去工程において、シリコン異方性エッチングにより前記基板の一部を除去することで、メンブレンの下部に基板表面に沿うように凹部を容易に形成することができる。   In the heat treatment step, the heating temperature is preferably 400 ° C. or higher. In addition, it is preferable to heat the silicon oxide film together with the substrate so that the heat-shrinkable silicon oxide film uniformly shrinks, and the stress inherent in the silicon oxide film is preferably tensile (+) from 100 MPa. (−) It is desirable to heat so as to have a tensile stress range of 100 MPa, more preferably +50 MPa to 0 MPa. Thereby, a hollow structure membrane excellent in flatness can be obtained. In addition, by using a substrate made of single crystal silicon and removing a part of the substrate by silicon anisotropic etching in the removing step, a recess can be easily formed along the substrate surface below the membrane. Can do.

また、本発明のメンブレン構造素子は、酸化ケイ素膜で形成されたメンブレンと、前記メンブレンの周辺の一部を支持することによってメンブレンを中空状態で支持する基板とを備え、前記酸化ケイ素膜は熱収縮により平坦状に前記基板に支持されたものである。メンブレンの平坦性については、前記基板の表面に形成された、前記メンブレンと同一構成の酸化ケイ素膜の表面を基準面としてメンブレンの最大撓み量がメンブレンの最大幅の0.1%以下とすることが好ましい。このメンブレン構造素子によると、メンブレンが酸化ケイ素膜で形成されながら、熱収縮により平坦状に支持されるため、製造が容易で、メンブレンの断熱性、品質に優れ、ひいては電子部品として信頼性、耐久性に優れる。   The membrane structure element of the present invention includes a membrane formed of a silicon oxide film, and a substrate that supports the membrane in a hollow state by supporting a part of the periphery of the membrane, the silicon oxide film being a heat It is supported by the substrate in a flat shape by contraction. Regarding the flatness of the membrane, the maximum deflection of the membrane should be 0.1% or less of the maximum width of the membrane, with the surface of the silicon oxide film having the same configuration as the membrane formed on the surface of the substrate as a reference plane. Is preferred. According to this membrane structure element, the membrane is formed of a silicon oxide film and is supported in a flat shape by thermal contraction, so that it is easy to manufacture, excellent in heat insulation and quality of the membrane, and as a result, reliable and durable as an electronic component. Excellent in properties.

本発明のメンブレン構造素子の製造方法によれば、メンブレンの基になる膜を予め熱収縮可能な酸化ケイ素膜で形成しておき、加熱処理工程でこれを加熱して熱収縮させるので、前記酸化ケイ素膜に内在する応力を圧縮から引張の範囲に渡って容易に制御することができ、異種組成の複雑な膜構造や複雑な製作工程を取ることなく、メンブレンに内在する応力を解消して平坦性、品質に優れたメンブレン中空構造を容易に得ることができる。また、本発明のメンブレン構造素子によれば、メンブレンが酸化ケイ素膜で形成されながら、熱収縮により平坦状に支持されるので、製作が容易で、品質に優れ、電子部品としての信頼性、耐久性に優れる。総じて本発明によれば、赤外線センサやエアフローメータ、ガスセンサなどの熱型センサに利用されるメンブレン構造素子において、素子構造や製造工程を簡略化しつつ、性能を高め、信頼性の高い素子を提供することができる。   According to the method for manufacturing a membrane structure element of the present invention, the membrane that is the basis of the membrane is formed in advance by a heat-shrinkable silicon oxide film, and this is heated and shrunk in the heat treatment step. The stress inherent in the silicon film can be easily controlled over the range from compression to tension, and the stress inherent in the membrane can be eliminated and flattened without taking complex film structures of different compositions and complicated manufacturing processes. Membrane hollow structure with excellent properties and quality can be easily obtained. In addition, according to the membrane structure element of the present invention, the membrane is formed of a silicon oxide film and is supported in a flat shape by thermal contraction, so that it is easy to manufacture, has excellent quality, and is reliable and durable as an electronic component. Excellent in properties. In general, according to the present invention, in a membrane structure element used for a thermal sensor such as an infrared sensor, an air flow meter, and a gas sensor, an element structure and a manufacturing process are simplified, and a performance is improved and a highly reliable element is provided. be able to.

以下、本発明の実施形態にかかるメンブレン構造素子をその製造方法と共に説明する。図2は、実施形態にかかるメンブレン構造素子を示しており、この素子は酸化ケイ素膜3で形成された平面視正方形のメンブレン1と、前記メンブレン1を構成する酸化ケイ素膜と同一の膜構成を有する酸化ケイ素膜3が表面に積層形成されたシリコン基板2を備えている。前記メンブレン1は、前記基板2に設けられた凹部4の上に4本の支持アーム5によって中空状かつ平坦状に支持されている。前記支持アーム5は、メンブレン1の四隅と基板2とを連結するように、メンブレン1と支持アーム5と基板上の酸化ケイ素膜3とが一体的に形成されている。前記メンブレン1の上には、検知用電子素子を構成する、Pt層とTi層との二層構造線が上下屈曲状に配置されたPt/Ti配線素子6が表面に積層形成されている。   Hereinafter, a membrane structure element according to an embodiment of the present invention will be described together with a manufacturing method thereof. FIG. 2 shows a membrane structure element according to the embodiment. This element has a square-shaped membrane 1 formed of a silicon oxide film 3 and the same film configuration as the silicon oxide film constituting the membrane 1. A silicon substrate 2 having a silicon oxide film 3 having a laminated surface formed thereon is provided. The membrane 1 is supported in a hollow and flat shape by four support arms 5 on a recess 4 provided in the substrate 2. In the support arm 5, the membrane 1, the support arm 5, and the silicon oxide film 3 on the substrate are integrally formed so as to connect the four corners of the membrane 1 and the substrate 2. On the membrane 1, a Pt / Ti wiring element 6 in which a two-layer structure line of a Pt layer and a Ti layer, which constitutes a detection electronic element, is arranged in a vertically bent shape is laminated on the surface.

以下、上記実施形態のメンブレン構造素子の製造方法を図1を参照して説明する。まず、汎用のシリコン基板(結晶方位(100)の単結晶シリコン基板)2を準備し、図1(1) に示すように、基板2の表裏面に熱酸化により0.1μm 程度のごく薄い熱酸化酸化ケイ素膜11、12を形成する。裏面側の熱酸化酸化ケイ素膜12は、後工程でシリコン基板をエッチングする際にその裏面を保護のために形成するものである。基本的に表面側の熱酸化酸化ケイ素膜11は必要ない。このため、表面側の熱酸化酸化ケイ素膜11は成膜後除去してもよく、適宜の保護膜を基板の裏面に設けることにより、表裏面への熱酸化酸化ケイ素膜の形成を省略することができる。なお、熱酸化酸化ケイ素膜には、200MPa程度の圧縮応力が残留するため、表面側の熱酸化酸化ケイ素膜11は存在しない方が好ましいが、0.1μm 程度と極薄いものであり、後述する熱収縮可能酸化ケイ素膜13を熱酸化酸化ケイ素膜11に比して十分厚くすることにより残留応力への影響を無視することができる。このため、本実施形態では表面側の熱酸化酸化ケイ素膜11をそのまま残した。   Hereinafter, the manufacturing method of the membrane structure element of the said embodiment is demonstrated with reference to FIG. First, a general-purpose silicon substrate (single crystal silicon substrate with a crystal orientation (100)) 2 is prepared, and as shown in FIG. 1 (1), the front and back surfaces of the substrate 2 are thermally oxidized to a very thin thickness of about 0.1 μm. Silicon oxide oxide films 11 and 12 are formed. The backside thermally oxidized silicon oxide film 12 is formed to protect the backside when the silicon substrate is etched in a later step. Basically, the surface-side thermally oxidized silicon oxide film 11 is not necessary. For this reason, the surface-side thermally oxidized silicon oxide film 11 may be removed after the film formation, and by forming an appropriate protective film on the back surface of the substrate, the formation of the thermally oxidized silicon oxide film on the front and back surfaces is omitted. Can do. In addition, since the compressive stress of about 200 MPa remains in the thermally oxidized silicon oxide film, it is preferable that the thermally oxidized silicon oxide film 11 on the surface side does not exist, but it is as thin as approximately 0.1 μm and will be described later. By making the heat-shrinkable silicon oxide film 13 sufficiently thicker than the thermally oxidized silicon oxide film 11, the influence on the residual stress can be ignored. For this reason, in this embodiment, the surface-side thermally oxidized silicon oxide film 11 is left as it is.

次に、表面側の熱酸化酸化ケイ素膜11の上に、図2(2) に示すように、熱収縮可能な酸化ケイ素膜13を形成する。この工程を膜形成工程という。熱収縮可能な酸化ケイ素膜の厚さについて、膜の強度と熱絶縁性の観点から、0.1μm 〜10μm 程度の範囲内で設定すればよい。前記熱酸化酸化ケイ素膜11を形成した場合は、熱酸化酸化ケイ素膜の膜厚の5倍以上とするのがよい。なお、表面側の熱酸化酸化ケイ素膜11と熱収縮可能な酸化ケイ素膜13とを区別することなく、これらを併せて酸化ケイ素膜3という。   Next, a heat-shrinkable silicon oxide film 13 is formed on the surface-side thermally oxidized silicon oxide film 11 as shown in FIG. This process is called a film forming process. The thickness of the heat-shrinkable silicon oxide film may be set within a range of about 0.1 μm to 10 μm from the viewpoint of film strength and thermal insulation. In the case where the thermally oxidized silicon oxide film 11 is formed, it is preferable that the thickness of the thermally oxidized silicon oxide film is 5 times or more. The surface-side thermally oxidized silicon oxide film 11 and the thermally shrinkable silicon oxide film 13 are collectively referred to as the silicon oxide film 3 without being distinguished from each other.

前記熱収縮可能な酸化ケイ素膜13の成膜法としては、成膜速度、成膜の容易さからプラズマCVD法が好適である。ここで、プラズマCVD法により酸化ケイ素膜を成膜した場合のプラズマ投入電力と膜に残留する応力について説明する。   As the film forming method of the heat-shrinkable silicon oxide film 13, a plasma CVD method is preferable because of the film forming speed and the ease of film forming. Here, plasma input power and stress remaining in the film when a silicon oxide film is formed by plasma CVD will be described.

酸化ケイ素膜を以下の要領で成膜した。前記熱酸化酸化ケイ素膜11(膜厚0.1μm )が形成されたシリコン基板(厚さ525μm )を準備し、その上に膜厚1μm の酸化ケイ素膜をプラスマCVD法により成膜した。成膜に使用したプラズマCVD装置の試料台及びこれに対向配置される電極のサイズはそれぞれ直径30cm(表面積約707cm2 )である。成膜条件は、SiH4,N2,N20 の混合ガスを用い、ガス圧力を80Pa、基板温度を200℃あるいは300℃とし、プラズマ投入電力を変化させて種々の酸化ケイ素膜を成膜した。 A silicon oxide film was formed as follows. A silicon substrate (thickness 525 μm) on which the thermal silicon oxide film 11 (thickness 0.1 μm) was formed was prepared, and a silicon oxide film 1 μm thick was formed thereon by plasma CVD. The sample stage of the plasma CVD apparatus used for the film formation and the size of the electrode disposed opposite thereto are each 30 cm in diameter (surface area of about 707 cm 2 ). Deposition conditions are SiH 4 , N 2 , N 2 0 mixed gas, gas pressure is 80 Pa, substrate temperature is 200 ° C. or 300 ° C., and various silicon oxide films are formed by changing plasma input power. did.

成膜後、各酸化ケイ素膜を用いて膜の残留応力を測定した。膜の残留応力は、基板の反り量を基に下記式から求めた。反り量は、室温(23℃)にて測定した値を用いた。基板の反り量は、基板(直径100mmφ)を3点支持し、レーザー光の反射もしくは触針式の表面粗さ計を用いて測定した。
σ=1/6×{1/Rpost−1/Rpre}×E/(1−ν)×ts2/tf
但し、E:基板(シリコン)のヤング率、ν:基板(シリコン)のポワソン比、Rpost:成膜後の基板の反りの曲率半径、Rpre:成膜前の基板の反りの曲率半径、ts:基板の厚さ、tf:膜の厚さ、(E/(1−ν)の値:単結晶シリコン(100)基板の場合、1.8×1011Paである。
After the film formation, the residual stress of the film was measured using each silicon oxide film. The residual stress of the film was determined from the following formula based on the amount of warpage of the substrate. The value measured at room temperature (23 ° C.) was used as the amount of warpage. The amount of warpage of the substrate was measured by supporting a substrate (diameter 100 mmφ) at three points and reflecting the laser beam or using a stylus type surface roughness meter.
[sigma] = 1/6 * {1 / Rpost-1 / Rpre} * E / (1- [nu]) * ts < 2 > / tf
Where E: Young's modulus of substrate (silicon), ν: Poisson's ratio of substrate (silicon), Rpost: curvature radius of substrate warp after film formation, Rpre: radius of curvature of substrate warp before film formation, ts: Substrate thickness, tf: film thickness, (E / (1-ν) value: 1.8 × 10 11 Pa in the case of a single crystal silicon (100) substrate.

以上のようにして求めたプラズマ投入電力と膜に残留する応力の関係を図3に示す。同図より、例えば基板温度が300℃、100Wの投入電力場合、膜の残留応力は−300MPa(圧縮)であり、成膜後の内部応力は投入電力が大きくなるにつれてその絶対値が小さくなることがわかる。成膜後の酸化ケイ素膜の残留応力が圧縮応力であることは、成膜後の基板は酸化ケイ素膜面を凸にして反っていることからわかる。また、基板温度が300℃より200℃の方が残留応力が軽減されることがわかる。   FIG. 3 shows the relationship between the plasma input power obtained as described above and the stress remaining in the film. From the figure, for example, when the substrate temperature is 300 ° C. and the input power is 100 W, the residual stress of the film is −300 MPa (compression), and the absolute value of the internal stress after film formation decreases as the input power increases. I understand. The fact that the residual stress of the silicon oxide film after the film formation is a compressive stress is understood from the fact that the substrate after the film formation is warped with the silicon oxide film surface convex. It can also be seen that the residual stress is reduced when the substrate temperature is 200 ° C. rather than 300 ° C.

次に、熱収縮可能な酸化ケイ素膜を形成した基板に対して、加熱処理を施し、前記熱収縮可能酸化ケイ素膜13を熱収縮させ、酸化ケイ素膜3に内在した圧縮残留応力を軽減ないし解消する。この工程を加熱処理工程という。   Next, the substrate on which the heat-shrinkable silicon oxide film is formed is subjected to a heat treatment to heat-shrink the heat-shrinkable silicon oxide film 13 to reduce or eliminate the compressive residual stress inherent in the silicon oxide film 3. To do. This process is called a heat treatment process.

ここで、前記加熱処理による圧縮残留応力の軽減作用を詳細に説明する。基板温度を300℃、プラスマCVDの投入電力を200Wとして酸化ケイ素膜を成膜したシリコン基板を用いて、これを窒素ガス雰囲気中で加熱した際の加熱温度に対する内部応力を測定した。その結果を図4に示す。前記酸化ケイ素膜の加熱は、酸化ケイ素膜が成膜されたシリコン基板を熱処理炉に装入することによって行われ、測定温度に制御された炉内雰囲気温度とシリコン基板の温度とがぼほ一致するようにし、測定温度における保持時間を1hrとした。また使用した測定装置は、KLA-Tencor社製、型番F2410である。   Here, the action of reducing the compressive residual stress by the heat treatment will be described in detail. Using a silicon substrate on which a silicon oxide film was formed with a substrate temperature of 300 ° C. and a plasma CVD input power of 200 W, the internal stress relative to the heating temperature when this was heated in a nitrogen gas atmosphere was measured. The result is shown in FIG. The heating of the silicon oxide film is performed by inserting the silicon substrate on which the silicon oxide film is formed into a heat treatment furnace, and the atmosphere temperature in the furnace controlled to the measurement temperature and the temperature of the silicon substrate almost coincide. The holding time at the measurement temperature was 1 hr. The measuring apparatus used is model number F2410 manufactured by KLA-Tencor.

図4より、加熱処理前に−200MPaであった応力が400℃近傍までほとんど変化がないが、400℃から700℃の間で急激に変化し(プラスに転じ)ている。この温度域で酸化ケイ素膜中の未結合手が反応することにより、膜が緻密化し、わずかに収縮することにより、内部応力がプラス(引張り応力)に変化しているものと考えられる。700℃から800℃では曲線の傾きが減少し、温度を下げるときはほぼ直線的に応力が低下し、最終的には室温で−80MPa程度の値を示している。これより、加熱処理における加熱温度は、400℃以上とすることが好ましく、1000℃程度で加熱してもよいが、好ましくは800℃以下、さらに好ましくは700℃以下とするのがよいことがわかる。   From FIG. 4, the stress that was −200 MPa before the heat treatment hardly changed to around 400 ° C., but suddenly changed (turned to plus) between 400 ° C. and 700 ° C. It is considered that the internal stress is changed to a positive (tensile stress) when the dangling bonds in the silicon oxide film react in this temperature range and the film becomes dense and slightly contracts. From 700 ° C. to 800 ° C., the slope of the curve decreases. When the temperature is lowered, the stress decreases almost linearly, and finally shows a value of about −80 MPa at room temperature. Thus, the heating temperature in the heat treatment is preferably 400 ° C. or higher, and may be heated at about 1000 ° C., but is preferably 800 ° C. or lower, more preferably 700 ° C. or lower. .

前記プラスマCVD法により投入電力を変えて酸化ケイ素膜を形成した各基板に対し、窒素ガス中で、800℃、1hrの加熱処理を行ったところ、図3に併せて示すように、熱処理後の応力は小さい投入電力で成膜したものの方が応力軽減効果が大きいことがわかる。また、基板温度300℃で成膜した熱収縮可能な酸化ケイ素膜については、投入電力75Wでは内部応力がほぼゼロになり、平均して−50MPa程度まで小さくなった。また、基板温度200℃、投入電力75W〜150W(0.11W/cm2 〜0.21W/cm2 )で成膜した熱収縮可能な酸化ケイ素膜では残留応力が0〜+50MPaと内部応力が引張応力となった。 Each substrate on which a silicon oxide film was formed by changing the input power by the plasma CVD method was subjected to a heat treatment in nitrogen gas at 800 ° C. for 1 hr. As shown in FIG. It can be seen that the stress reduction effect is greater when the film is formed with a small input power. In addition, regarding the heat-shrinkable silicon oxide film formed at a substrate temperature of 300 ° C., the internal stress was almost zero at an input power of 75 W, and the average was reduced to about −50 MPa. Further, in a heat-shrinkable silicon oxide film formed at a substrate temperature of 200 ° C. and an input power of 75 W to 150 W (0.11 W / cm 2 to 0.21 W / cm 2 ), the residual stress is 0 to +50 MPa and the internal stress is tensile. It became stress.

また、図3より、投入電力が小さく、基板温度が低い方が加熱処理による膜の残留応力軽減効果は大きく、応力調整を行い易いことがわかる。基板の材質や熱収縮可能な酸化ケイ素膜の厚さに応じて、適切な応力範囲に調整するためには、上記のとおり、投入電力や基板温度を調整することが有効と考えられる。本発明の用途に適した、1μm 程度の厚さの膜を単結晶基板上に形成する場合には、図3から明らかなように、基板温度を300℃以下、投入電力を250W(0.35W/cm2 )以下とすることにより、膜の残留応力を−100MPa程度以下に調整することができ、基板温度を300℃以下、投入電力を150W(0.21W/cm2 )以下とすることにより、膜の残留応力を−50MPa程度以下に調整することができる。さらに、基板温度を200℃以下、投入電力を150W(0.21W/cm2 )以下とすることにより、膜の残留応力を0〜+50MPa程度の引張応力に調整することができる。なお、プラズマCVD法による成膜の安定性確保の点から、投入電力は50W(0.07W/cm2 )以上、基板温度は100℃以上とすることが好ましい。 Further, FIG. 3 shows that the smaller the input power and the lower the substrate temperature, the greater the effect of reducing the residual stress of the film by the heat treatment, and the easier the stress adjustment. In order to adjust to an appropriate stress range according to the material of the substrate and the thickness of the heat-shrinkable silicon oxide film, it is considered effective to adjust the input power and the substrate temperature as described above. When a film having a thickness of about 1 μm, which is suitable for the application of the present invention, is formed on a single crystal substrate, the substrate temperature is 300 ° C. or less and the input power is 250 W (0.35 W), as is apparent from FIG. / Cm 2 ) or less, the residual stress of the film can be adjusted to about −100 MPa or less, the substrate temperature is 300 ° C. or less, and the input power is 150 W (0.21 W / cm 2 ) or less. The residual stress of the film can be adjusted to about −50 MPa or less. Furthermore, the residual stress of the film can be adjusted to a tensile stress of about 0 to +50 MPa by setting the substrate temperature to 200 ° C. or less and the input power to 150 W (0.21 W / cm 2 ) or less. Note that, from the viewpoint of securing the stability of film formation by the plasma CVD method, it is preferable that the input power is 50 W (0.07 W / cm 2 ) or more and the substrate temperature is 100 ° C. or more.

さらに、加熱処理による応力軽減効果を組織的観点から以下の調査により確認した。成膜後(加熱処理前)の熱収縮可能な酸化ケイ素膜と加熱処理後の前記酸化ケイ素膜に対して、フーリエ変換赤外吸収分光法(FTIR)により酸化ケイ素の結合状態を調べた。その一例として、図3における基板温度200℃、投入電力75Wで成膜したものの赤外吸収スペクトルを図5に示す。同図から、加熱処理を行うことで、波数3000〜3700cm-1、および950cm-1付近に見られるSi−OH結合とH20 による吸収帯が消失し、1070cm-1付近の酸化ケイ素の主バンドが増加傾向を示していることがわかる。すなわち、酸化ケイ素膜は、その中に不完全な結合が多い状態から、加熱処理によりより緻密な酸化ケイ素膜へと変化している。これより、加熱処理により膜は収縮し、引張り応力状態に変化するものと考えられる。 Furthermore, the stress reduction effect by heat treatment was confirmed by the following investigation from the organizational viewpoint. The bonded state of silicon oxide was examined by Fourier transform infrared absorption spectroscopy (FTIR) for the heat-shrinkable silicon oxide film after film formation (before heat treatment) and the silicon oxide film after heat treatment. As an example, FIG. 5 shows an infrared absorption spectrum of a film formed at a substrate temperature of 200 ° C. and an input power of 75 W in FIG. From the figure, by performing the heat treatment, the wave number 3000~3700Cm -1, and 950 cm -1 absorption band due to Si-OH bonds and H 2 0 observed around it disappears, mainly of silicon oxide in the vicinity of 1070 cm -1 It can be seen that the band shows an increasing trend. That is, the silicon oxide film changes from a state in which there are many incomplete bonds therein to a denser silicon oxide film by heat treatment. From this, it is considered that the film contracts by heat treatment and changes to a tensile stress state.

次に、図1(3) に示すように、加熱処理後の酸化ケイ素膜3の上にリフトオフ法等により所定パターンのPt/Ti配線素子を形成する。前記酸化ケイ素膜3の上には、前記検知素子配線パターンのほか、適宜の配線パターンも形成されるが、図示省略されている。この工程を素子形成工程という。   Next, as shown in FIG. 1 (3), a Pt / Ti wiring element having a predetermined pattern is formed on the silicon oxide film 3 after the heat treatment by a lift-off method or the like. On the silicon oxide film 3, in addition to the detection element wiring pattern, an appropriate wiring pattern is also formed, but is not shown. This process is called an element forming process.

次いで、前記Pt/Ti配線素子を含み、その近傍の酸化ケイ素膜部分(メンブレン相当部分)を中空構造とすべく、メンブレン相当部分の下部にある基板2のシリコンを除去する。この工程は除去工程と呼ばれる。具体的には、メンブレン1の支持アーム5(図2参照)に相当する部分を避けてメンブレン相当部分の周りに、酸化ケイ素膜3を化学的あるいは物理的手段により除去して開口部14を形成する。その後、エッチング液に基板2を浸漬し、前記開口部14内に露出した基板2のシリコンをエッチングする。この際、シリコンは結晶方位に依存した異方性エッチングとなり、メンブレン相当部分の下部において容易に横方向に貫通した凹部4が形成される。エッチング液としては、例えば80℃程度に加熱したTMAH(テトラメチルアンモニウムヒドロキシド)溶液が用いられる。前記凹部4を形成した後、メンブレンが破壊されないようにエッチング液を洗浄し、乾燥することにより、図2に示したメンブレン構造素子が完成する。   Next, the silicon of the substrate 2 under the membrane-corresponding portion is removed so that the silicon oxide film portion (membrane-corresponding portion) in the vicinity including the Pt / Ti wiring element has a hollow structure. This process is called a removal process. Specifically, the opening 14 is formed by removing the silicon oxide film 3 by chemical or physical means around the portion corresponding to the membrane, avoiding the portion corresponding to the support arm 5 (see FIG. 2) of the membrane 1. To do. Thereafter, the substrate 2 is immersed in an etching solution, and the silicon of the substrate 2 exposed in the opening 14 is etched. At this time, the silicon is anisotropically etched depending on the crystal orientation, and the concave portion 4 penetrating in the lateral direction is easily formed in the lower portion of the portion corresponding to the membrane. As the etching solution, for example, a TMAH (tetramethylammonium hydroxide) solution heated to about 80 ° C. is used. After the recess 4 is formed, the etching solution is washed so as not to break the membrane and dried to complete the membrane structure element shown in FIG.

このようにして製造されたメンブレン構造素子のうち、基板温度を300℃とし、プラズマCVDの投入電力を100W、200Wで成膜したもの(成膜後の酸化ケイ素膜3の応力はそれぞれ−300MPa、−200MPa)につき、中空状態で支持されたメンブレンの室温での最大撓み量(基板の酸化ケイ素膜3の表面を基準面として測定した、メンブレンの最大撓み部表面までの距離)を測定し、最大撓み量のメンブレンの最大幅に対する割合を求めた。前記メンブレンの最大撓み量は、光学的手法を用いて測定した。具体的には、顕微鏡の高さ測定機能を用いて測定した。その結果、投入電力が100Wのものは0.05%、200Wのものは0.1%であり、メンブレンは極めて平坦状態で基板に支持されたいることが確認された。   Of the membrane structure element manufactured in this way, the substrate temperature was set to 300 ° C., and the plasma CVD input power was set to 100 W and 200 W (the stress of the silicon oxide film 3 after the film formation was −300 MPa, -200 MPa), the maximum bending amount of the membrane supported in the hollow state at room temperature (the distance to the surface of the maximum bending portion of the membrane measured using the surface of the silicon oxide film 3 of the substrate as a reference plane) The ratio of the deflection amount to the maximum width of the membrane was determined. The maximum amount of deflection of the membrane was measured using an optical method. Specifically, it was measured using the height measurement function of the microscope. As a result, when the input power was 100 W, it was 0.05%, and when the input power was 200 W, it was 0.1%, and it was confirmed that the membrane was supported on the substrate in a very flat state.

このような中空構造を有するメンブレン構造素子では、Pt/Ti配線素子に電流を流すことにより、メンブレン構造の断熱性と熱容量の小ささゆえに、容易に温度が上昇し、たとえば風量センサー等の用途の場合には、Pt/Ti検知素子の抵抗値の変化から、中空構造からの熱が奪われる速度と関連した風量を検知することが可能となる。   In a membrane structure element having such a hollow structure, the temperature easily rises due to the heat insulation and small heat capacity of the membrane structure by passing a current through the Pt / Ti wiring element. In this case, it is possible to detect the air volume related to the speed at which heat from the hollow structure is taken from the change in the resistance value of the Pt / Ti detecting element.

上記実施形態では、膜形成工程において、熱収縮可能な酸化ケイ素膜13をプラスマCVD法により形成したが、プラズマCVD法に限らず、スパッタリングや蒸着法などのPVD法、ゾル・ゲル法など、熱酸化酸化ケイ素膜より低密度の酸化ケイ素膜を形成する方法であればいずれの方法も適用することができる。また、上記実施形態では、基板として単結晶シリコン基板を用いたが、これに限らず、他の結晶、セラミック、樹脂などを用いることができる。   In the above embodiment, in the film forming step, the heat-shrinkable silicon oxide film 13 is formed by plasma CVD, but not limited to plasma CVD, PVD such as sputtering or vapor deposition, sol / gel, etc. Any method can be applied as long as it is a method of forming a silicon oxide film having a density lower than that of the silicon oxide film. In the above embodiment, a single crystal silicon substrate is used as the substrate. However, the present invention is not limited to this, and other crystals, ceramics, resins, and the like can be used.

また、上記実施形態では、中空状かつ平坦性に優れたメンブレンの製作の容易さから、膜形成工程、加熱処理工程、素子形成工程、除去工程の順に各工程を実施したが、素子形成工程は除去工程より前であればよく、酸化ケイ素膜上に配線素子を形成した後、さらに配線素子の上に酸化ケイ素膜を形成し、酸化ケイ素膜で配線素子を包み込む(素子の上下に膜が存在する)構成とすることもできる。また、素子工程を実施しない場合は加熱処理工程と除去工程とを入れ替えて実施してもよい。   Moreover, in the said embodiment, although each process was implemented in order of the film formation process, the heat treatment process, the element formation process, and the removal process from the ease of manufacture of a hollow and excellent flatness membrane, the element formation process Before the removal step, after the wiring element is formed on the silicon oxide film, a silicon oxide film is further formed on the wiring element, and the wiring element is wrapped with the silicon oxide film (the films exist above and below the element). Can be configured. Further, when the element process is not performed, the heat treatment process and the removal process may be interchanged.

本発明の実施形態にかかるメンブレン構造素子の製造工程を示す説明図である。It is explanatory drawing which shows the manufacturing process of the membrane structure element concerning embodiment of this invention. 本発明の実施形態にかかるメンブレン構造素子の(1) 断面図および(2) 平面図である。(1) は(2) のA−A線断面である。FIG. 2 is a (1) cross-sectional view and (2) a plan view of a membrane structure element according to an embodiment of the present invention. (1) is a cross section taken along line AA of (2). プラスマCVDの投入電力と酸化ケイ素膜の応力との関係を示すグラフ図である。It is a graph which shows the relationship between the input electric power of plasma CVD, and the stress of a silicon oxide film. プラスマCVDにより成膜した酸化ケイ素膜の加熱温度と膜応力との関係を示すグラフ図である。It is a graph which shows the relationship between the heating temperature and film | membrane stress of the silicon oxide film formed into a film by plasma CVD. 加熱処理前及び加熱処理後における酸化ケイ素膜の赤外吸収スペクトルである。It is an infrared absorption spectrum of a silicon oxide film before heat treatment and after heat treatment.

符号の説明Explanation of symbols

1 メンブレン 2 基板
3 酸化ケイ素膜 6 Pt/Ti配線素子(電子素子)
13 熱収縮可能な酸化ケイ素膜
DESCRIPTION OF SYMBOLS 1 Membrane 2 Substrate 3 Silicon oxide film 6 Pt / Ti wiring element (electronic element)
13 Heat-shrinkable silicon oxide film

Claims (10)

酸化ケイ素膜で形成されたメンブレンと、前記メンブレンの周辺の一部を支持することによってメンブレンを中空状態で支持する基板とを備えたメンブレン構造素子の製造方法であって、
酸化ケイ素よりも熱膨張係数が大きい材料で形成された基板の表面側に、熱収縮可能な酸化ケイ素膜を形成する膜形成工程と、
前記熱収縮可能な酸化ケイ素膜を加熱して熱収縮させる加熱処理工程と、
前記酸化ケイ素膜のメンブレン対応部をメンブレンとして基板に対して中空状態で支持されるように前記基板の一部を凹状に除去する除去工程
を備えた、メンブレン構造素子の製造方法。
A membrane structure element manufacturing method comprising a membrane formed of a silicon oxide film, and a substrate that supports the membrane in a hollow state by supporting a part of the periphery of the membrane,
A film forming step of forming a heat-shrinkable silicon oxide film on the surface side of a substrate formed of a material having a larger thermal expansion coefficient than silicon oxide;
A heat treatment step of heating and thermally shrinking the heat-shrinkable silicon oxide film;
A method for manufacturing a membrane structure element, comprising a removal step of removing a part of the substrate in a concave shape so that the membrane-corresponding portion of the silicon oxide film is supported in a hollow state with respect to the substrate as a membrane.
前記酸化ケイ素膜の表面に所定パターンの金属配線を形成する素子形成工程を有する請求項1に記載したメンプレン構造素子の製造方法。   The method for producing a membrane structure element according to claim 1, further comprising an element forming step of forming a metal wiring having a predetermined pattern on the surface of the silicon oxide film. 前記熱収縮可能な酸化ケイ素膜は、プラズマCVD法で形成された請求項1又は2に記載したメンブレン構造素子の製造方法。   The membrane structure element manufacturing method according to claim 1, wherein the heat-shrinkable silicon oxide film is formed by a plasma CVD method. 成膜原料ガスとしてシランガスを用い、成膜時における基板温度を200℃以下とし、投入電力を0.21W/cm2 以下とする、請求項3に記載したメンブレン構造素子の製造方法。 The method for manufacturing a membrane structure element according to claim 3, wherein a silane gas is used as a film forming raw material gas, a substrate temperature during film formation is set to 200 ° C or lower, and input power is set to 0.21 W / cm 2 or lower. 前記加熱処理工程において、400℃以上の温度で加熱する請求項1から4のいずれか1項に記載したメンブレン構造素子の製造方法。   The method for manufacturing a membrane structure element according to any one of claims 1 to 4, wherein heating is performed at a temperature of 400 ° C or higher in the heat treatment step. 前記加熱処理工程において、前記熱収縮可能な酸化ケイ素膜を前記基板とともに加熱して、前記酸化ケイ素膜に内在する応力を引張り(+)100MPaから圧縮(−)100MPaの応力範囲とする、請求項1から5のいずれか1項に記載したメンブレン構造素子の製造方法。   In the heat treatment step, the heat-shrinkable silicon oxide film is heated together with the substrate, and the stress inherent in the silicon oxide film is in a stress range from tensile (+) 100 MPa to compression (-) 100 MPa. The manufacturing method of the membrane structure element described in any one of 1 to 5. 前記基板は単結晶シリコンからなり、前記除去工程において、シリコン異方性エッチングにより前記基板の一部を除去する請求項1から6のいずれか1項に記載したメンブレン構造素子の製造方法。   The method for manufacturing a membrane structure element according to any one of claims 1 to 6, wherein the substrate is made of single crystal silicon, and a part of the substrate is removed by silicon anisotropic etching in the removing step. 酸化ケイ素膜で形成されたメンブレンと、前記メンブレンの周辺の一部を支持することによってメンブレンを中空状態で支持する基板とを備えたメンブレン構造素子であって、請求項1から7のいずれか1項に記載した製造方法より製造された、メンブレン構造素子。   A membrane structure element comprising a membrane formed of a silicon oxide film and a substrate that supports the membrane in a hollow state by supporting a part of the periphery of the membrane. The membrane structure element manufactured by the manufacturing method described in the item. 酸化ケイ素膜で形成されたメンブレンと、前記メンブレンの周辺の一部を支持することによってメンブレンを中空状態で支持する基板とを備え、前記酸化ケイ素膜は熱収縮により平坦状に支持された、メンブレン構造素子。   A membrane comprising a membrane formed of a silicon oxide film and a substrate for supporting the membrane in a hollow state by supporting a part of the periphery of the membrane, wherein the silicon oxide film is supported flat by heat shrinkage. Structural element. 前記基板の表面に形成された、前記メンブレンと同一構成の酸化ケイ素膜の表面を基準面としてメンブレンの最大撓み量がメンブレンの最大幅の0.1%以下とされた、請求項9に記載したメンブレン構造素子。   The maximum deflection amount of the membrane is 0.1% or less of the maximum width of the membrane with the surface of the silicon oxide film having the same configuration as the membrane formed on the surface of the substrate as a reference plane. Membrane structure element.
JP2007057956A 2006-03-28 2007-03-08 Membrane structure element and manufacturing method thereof Expired - Fee Related JP4780671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057956A JP4780671B2 (en) 2006-03-28 2007-03-08 Membrane structure element and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006087090 2006-03-28
JP2006087090 2006-03-28
JP2007057956A JP4780671B2 (en) 2006-03-28 2007-03-08 Membrane structure element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007294889A true JP2007294889A (en) 2007-11-08
JP4780671B2 JP4780671B2 (en) 2011-09-28

Family

ID=38765151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057956A Expired - Fee Related JP4780671B2 (en) 2006-03-28 2007-03-08 Membrane structure element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4780671B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164411A (en) * 2008-01-08 2009-07-23 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor optical element
JP2013539914A (en) * 2010-09-28 2013-10-28 ケーエルエー−テンカー コーポレイション Etch-resistant coating on sensor wafer for IN-SITU measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286122A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Forming method for insulating film
JPH08264844A (en) * 1995-03-24 1996-10-11 Nippondenso Co Ltd Floating membrane
JP2005308698A (en) * 2004-04-26 2005-11-04 Denso Corp Flowrate sensor and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286122A (en) * 1991-03-15 1992-10-12 Fujitsu Ltd Forming method for insulating film
JPH08264844A (en) * 1995-03-24 1996-10-11 Nippondenso Co Ltd Floating membrane
JP2005308698A (en) * 2004-04-26 2005-11-04 Denso Corp Flowrate sensor and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164411A (en) * 2008-01-08 2009-07-23 Sumitomo Electric Ind Ltd Method for manufacturing semiconductor optical element
JP2013539914A (en) * 2010-09-28 2013-10-28 ケーエルエー−テンカー コーポレイション Etch-resistant coating on sensor wafer for IN-SITU measurement
JP2016178331A (en) * 2010-09-28 2016-10-06 ケーエルエー−テンカー コーポレイション Sensor wafer and method for manufacturing sensor wafer
US10720350B2 (en) 2010-09-28 2020-07-21 Kla-Tencore Corporation Etch-resistant coating on sensor wafers for in-situ measurement

Also Published As

Publication number Publication date
JP4780671B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
KR100849570B1 (en) Thin film structure body and formation method thereof, vibrating sensor, pressure sensor and degree of acceleration sensor
US8057882B2 (en) Membrane structure element and method for manufacturing same
JP2006281766A (en) Structure and method for thermal stress compensation
JP2004518119A (en) Micromechanical flow sensor with extensible coating
JP2005246601A (en) Micro-machining type component and suitable manufacturing method
JP2007258680A (en) Isolation scheme for reducing film stress in mems device
JP4888908B2 (en) Membrane structure element and manufacturing method thereof
JP4780671B2 (en) Membrane structure element and manufacturing method thereof
JP2008203102A (en) Method for manufacturing cantilever beam and force sensor
JP5529053B2 (en) Micromachine device manufacturing method and micromachine device
WO2013080239A1 (en) Thermal airflow sensor
JP2015525679A (en) MEMS chip and manufacturing method thereof
Pinto et al. Amorphous silicon self‐rolling micro electromechanical systems: from residual stress control to complex 3D structures
CN216698280U (en) Low stress dielectric composite film
JP5547413B2 (en) Hollow structure element for thermal sensor
JP2001057358A (en) Method of fabricating sensor with thin film
US20140091422A1 (en) Thin Film with Improved Temperature Range
JPH04271179A (en) Flexible board with thin film
Wimalananda et al. Characteristics of Highly Area‐Mismatched Graphene‐to‐Substrate Transfers and the Predictability of Wrinkle Formation in Graphene for Stretchable Electronics
Cheng et al. Ultralow-stress silicon-rich nitride films for microstructure fabrication
JPH08181329A (en) Pressure sensor and manufacture of pressure sensor
TW202345369A (en) Infrared device and method for manufacturing the same
JPH04192566A (en) Semiconductor device and its manufacture
JPH01235824A (en) Pressure sensor
JPH08293615A (en) Vibrating pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees