JPH04271173A - Optical semiconductor device - Google Patents
Optical semiconductor deviceInfo
- Publication number
- JPH04271173A JPH04271173A JP3032932A JP3293291A JPH04271173A JP H04271173 A JPH04271173 A JP H04271173A JP 3032932 A JP3032932 A JP 3032932A JP 3293291 A JP3293291 A JP 3293291A JP H04271173 A JPH04271173 A JP H04271173A
- Authority
- JP
- Japan
- Prior art keywords
- region
- epitaxial layer
- photodiode
- semiconductor device
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 21
- 230000003287 optical effect Effects 0.000 title claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000010408 film Substances 0.000 claims description 50
- 238000002955 isolation Methods 0.000 claims description 26
- 238000009792 diffusion process Methods 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 22
- 239000010409 thin film Substances 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 7
- 230000003449 preventive effect Effects 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 72
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 229910020776 SixNy Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はホトダイオードとバイポ
ーラICとを一体化した光半導体装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device that integrates a photodiode and a bipolar IC.
【0002】0002
【従来の技術】受光素子と周辺回路とを一体化してモノ
リシックに形成した光半導体装置は、受光素子と回路素
子とを別個に作ってハイブリッドIC化したものと異な
り、コストダウンが期待でき、また、外部電磁界による
雑音に対して強いというメリットを持つ。[Prior Art] Optical semiconductor devices in which a light-receiving element and peripheral circuitry are integrated and formed monolithically are expected to reduce costs, unlike hybrid ICs in which the light-receiving element and circuit elements are made separately. , which has the advantage of being resistant to noise caused by external electromagnetic fields.
【0003】このような光半導体装置の従来の構造とし
て、例えば特開平1−205564号公報に記載された
ものが公知である。これを図8に示す。同図において、
(1)はP型の半導体基板、(2)はP型のエピタキシ
ャル層、(3)はN型のエピタキシャル層、(4)はP
+型分離領域、(5)はN+型拡散領域、(6)はN+
型埋め込み層、(7)はP型ベース領域、(8)はN+
型エミッタ領域である。ホトダイオード(9)はP型エ
ピタキシャル層(2)とN型エピタキシャル層(3)と
のPN接合で形成し、N+型拡散領域(5)をカソード
取出し、分離領域(4)をアノード取出しとしたもので
ある。NPNトランジスタ(10)はP型エピタキシャ
ル層(2)とN型エピタキシャル層(3)との境界に埋
め込み層(6)を設け、N型エピタキシャル層(3)を
コレクタとしたものである。そして、基板(1)からの
オートドープ層(11)によって加速電界を形成し、空
乏層より深部の領域で発生したキャリアの移動を容易に
したものである。A conventional structure of such an optical semiconductor device is known, for example, as described in Japanese Unexamined Patent Publication No. 1-205564. This is shown in FIG. In the same figure,
(1) is a P-type semiconductor substrate, (2) is a P-type epitaxial layer, (3) is an N-type epitaxial layer, and (4) is a P-type semiconductor substrate.
+ type isolation region, (5) is N+ type diffusion region, (6) is N+ type
Type buried layer, (7) is P type base region, (8) is N+
type emitter region. The photodiode (9) is formed by a PN junction between a P-type epitaxial layer (2) and an N-type epitaxial layer (3), with the N+ type diffusion region (5) taken out as a cathode and the isolation region (4) taken out as an anode. It is. The NPN transistor (10) has a buried layer (6) provided at the boundary between a P-type epitaxial layer (2) and an N-type epitaxial layer (3), and uses the N-type epitaxial layer (3) as a collector. An accelerating electric field is formed by the autodoped layer (11) from the substrate (1) to facilitate the movement of carriers generated in a region deeper than the depletion layer.
【0004】斯る装置は、ホトダイオード(9)部分の
みに選択的に光が当るようにパッシベーションされ、そ
して光信号の波長が通過できる樹脂にてモールドされる
。Such a device is passivated so that light selectively hits only the photodiode (9) portion, and is molded with a resin that allows the wavelength of the optical signal to pass through.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、パッケ
ージを通過した光は、エピタキシャル層のシリコン表面
でかなりの量が反射し、光電流に寄与できない欠点があ
る。その反射量はシリコンの表面を被覆する膜の膜厚と
材質に大きく左右される。例えばシリコン表面をシリコ
ン酸化膜が覆い、その表面をシリコン酸化膜と同じ屈折
率を持つエポキシ樹脂で封止した場合、シリコン表面で
の反射量は光の干渉を考慮せずに済むので次式で表すこ
とができる。However, a considerable amount of the light passing through the package is reflected on the silicon surface of the epitaxial layer, so there is a drawback that it cannot contribute to photocurrent. The amount of reflection largely depends on the thickness and material of the film covering the silicon surface. For example, if a silicon surface is covered with a silicon oxide film and that surface is sealed with an epoxy resin that has the same refractive index as the silicon oxide film, the amount of reflection on the silicon surface can be calculated using the following equation since there is no need to take into account light interference. can be expressed.
【0006】[0006]
【数1】[Math 1]
【0007】即ち、16.4%の光が無効になるのであ
る。このような反射を低減する手段として、シリコン表
面に屈折率の異なる材料を付着して反射防止とする手段
がある。しかしながら、IC内にホトダイオードを組み
込むことから、前記反射防止用の手段を講じることは、
プロセスの複雑化を招く欠点があった。That is, 16.4% of the light becomes ineffective. As a means for reducing such reflection, there is a means for preventing reflection by attaching materials having different refractive indexes to the silicon surface. However, since a photodiode is incorporated into the IC, it is difficult to take the above-mentioned anti-reflection measures.
This had the disadvantage of complicating the process.
【0008】[0008]
【課題を解決するための手段】本発明は上記反射防止手
段を効率良くIC内に組み込むことを目的として成され
、基板(24)上のエピタキシャル層(25)(26)
を分離して形成した複数の島領域(28)(29)(3
0)と、第1の島領域(28)の表面に形成したホトダ
イオード(21)の一方の電極取り出し領域となる拡散
領域(34)と、拡散領域(34)を覆うように付着し
た反射防止膜(36)と、第2の島領域(29)に形成
した容量素子(22)の下部電極領域(37)と、反射
防止膜(36)と同時形成した容量素子(22)の誘電
体薄膜(38)と、容量素子(22)の上部電極(39
)と、第3の島領域(30)に形成したNPNトランジ
スタ(23)とを具備することにより、上記目的を達成
したものである。[Means for Solving the Problems] The present invention has been made for the purpose of efficiently incorporating the above-mentioned antireflection means into an IC.
Multiple island regions (28) (29) (3) formed by separating
0), a diffusion region (34) formed on the surface of the first island region (28) and serving as an electrode extraction region of one of the photodiodes (21), and an antireflection film attached to cover the diffusion region (34). (36), the lower electrode region (37) of the capacitive element (22) formed in the second island region (29), and the dielectric thin film (37) of the capacitive element (22) formed simultaneously with the antireflection film (36). 38) and the upper electrode (39) of the capacitive element (22).
) and an NPN transistor (23) formed in the third island region (30), the above object is achieved.
【0009】[0009]
【作用】本発明によれば、ホトダイオード(21)の反
射防止膜(36)と容量素子(22)の誘電体薄膜(3
8)とを共用化することによって、追加工程無しにバイ
ポーラIC内へホトダイオード(21)の反射防止膜(
36)を内蔵することができる。[Function] According to the present invention, the antireflection film (36) of the photodiode (21) and the dielectric thin film (3) of the capacitive element (22)
8), the anti-reflection coating of the photodiode (21) can be inserted into the bipolar IC without any additional process.
36) can be built-in.
【0010】0010
【実施例】以下に本発明の一実施例を図面を参照しなが
ら詳細に説明する。図1はホトダイオード(21)と容
量素子(22)、およびNPNトランジスタ(23)と
を組み込んだICの断面図である。同図において、(2
4)はP型の単結晶シリコン半導体基板、(25)は基
板(24)上に気相成長法によりノンドープで積層した
厚さ15〜20μの第1のエピタキシャル層、(26)
は第1のエピタキシャル層(25)上に気相成長法によ
りリン(P)ドープで積層した厚さ4〜6μの第2のエ
ピタキシャル層である。基板(24)は一般的なバイポ
ーラICのものより不純物濃度が低い40〜60Ω・c
mの比抵抗のものを用い、第1のエピタキシャル層(2
5)はノンドープで積層することにより、積層時で10
00Ω・cm以上、拡散領域を形成するための熱処理を
与えた後の完成時で200〜1500Ω・cmの比抵抗
を有する。第2のエピタキシャル層(26)は、リン(
P)を1015〜1016cm−3程ドープすることに
より、0.5〜3.0Ω・cmの比抵抗を有する。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view of an IC incorporating a photodiode (21), a capacitor (22), and an NPN transistor (23). In the same figure, (2
4) is a P-type single-crystal silicon semiconductor substrate, (25) is a first epitaxial layer with a thickness of 15 to 20 μm laminated on the substrate (24) in a non-doped manner by vapor phase growth, (26)
is a second epitaxial layer doped with phosphorus (P) and laminated on the first epitaxial layer (25) with a thickness of 4 to 6 μm by vapor phase growth. The substrate (24) has an impurity concentration of 40 to 60Ω・c, which is lower than that of a general bipolar IC.
The first epitaxial layer (2
5) is 10 when laminated by laminating without doping.
It has a specific resistance of 200 to 1,500 Ω·cm when completed after being subjected to heat treatment to form a diffusion region. The second epitaxial layer (26) is composed of phosphorus (
By doping about 1015 to 1016 cm-3 of P), it has a specific resistance of 0.5 to 3.0 Ω·cm.
【0011】第1と第2のエピタキシャル層(25)(
26)は、両者を完全に貫通するP+型分離領域(27
)によってホトダイオード(21)を形成する第1の島
領域(28)と、容量素子(22)を形成する第2の島
領域(29)と、NPNトランジスタ(23)を形成す
る第3の島領域(30)とに電気的に分離される。この
分離領域(27)は、基板(24)表面から上下方向に
拡散した第1の分離領域(31)と、第1と第2のエピ
タキシャル層(25)(26)の境界から上下方向に拡
散した第2の分離領域(32)と、第2のエピタキシャ
ル層(26)表面から形成した第3の分離領域(33)
から成り、3者が連結することで第1と第2のエピタキ
シャル層(25)(26)を島状に分離する。[0011] The first and second epitaxial layers (25) (
26) is a P+ type isolation region (27) that completely penetrates both.
), a first island region (28) forming a photodiode (21), a second island region (29) forming a capacitive element (22), and a third island region forming an NPN transistor (23). (30) and are electrically separated. This isolation region (27) includes a first isolation region (31) that is diffused in the vertical direction from the surface of the substrate (24), and a first isolation region (31) that is diffused in the vertical direction from the boundary between the first and second epitaxial layers (25) and (26). a second isolation region (32) formed from the surface of the second epitaxial layer (26) and a third isolation region (33) formed from the surface of the second epitaxial layer (26)
The three layers are connected to separate the first and second epitaxial layers (25) and (26) into islands.
【0012】ホトダイオード(21)部の第2のエピタ
キシャル層(26)表面には、ホトダイオード(21)
のカソード取出しとなるN+型拡散領域(34)を形成
する。N+型拡散領域(34)を第1の島領域の略全面
に拡大すると、カソードの取出し直列抵抗を低減できる
。N+型拡散領域(34)上の酸化膜(35)は部分的
に開口され、この開口部を覆うようにしてシリコン表面
に直に接触する反射防止膜(36)を形成する。反射防
止膜(36)は膜厚800〜1000Åのシリコン窒化
膜(SiN)から成る。On the surface of the second epitaxial layer (26) of the photodiode (21) section, the photodiode (21)
An N+ type diffusion region (34) from which the cathode is taken out is formed. By expanding the N+ type diffusion region (34) to substantially the entire surface of the first island region, the cathode lead-out series resistance can be reduced. The oxide film (35) on the N+ type diffusion region (34) is partially opened, and an antireflection film (36) is formed in direct contact with the silicon surface so as to cover this opening. The antireflection film (36) is made of a silicon nitride film (SiN) with a thickness of 800 to 1000 Å.
【0013】容量素子(22)を形成する第2の島領域
(29)の表面には、容量素子(22)の一方の電極と
なるN+型の下部電極領域(37)を形成する。下部電
極領域(37)の表面は酸化膜(35)が除去され、表
面を覆うようにして容量素子(22)の誘電体薄膜(3
8)を形成する。誘電体薄膜(38)はホトダイオード
(21)の反射防止膜(36)と共通の工程で形成され
、材質、膜厚が共通である。誘電体薄膜(38)の上部
には下部電極領域(37)と対向するようにAlから成
る上部電極(39)を形成する。尚、(40)は第1と
第2のエピタキシャル層(25)(26)の境界部に埋
め込まれたN+型埋め込み層である。[0013] On the surface of the second island region (29) forming the capacitive element (22), an N+ type lower electrode region (37) which becomes one electrode of the capacitive element (22) is formed. The oxide film (35) is removed from the surface of the lower electrode region (37), and the dielectric thin film (3) of the capacitive element (22) is formed to cover the surface.
8). The dielectric thin film (38) is formed in the same process as the antireflection film (36) of the photodiode (21), and has the same material and film thickness. An upper electrode (39) made of Al is formed on the dielectric thin film (38) so as to face the lower electrode region (37). Note that (40) is an N+ type buried layer buried in the boundary between the first and second epitaxial layers (25) and (26).
【0014】NPNトランジスタ(23)部の第1と第
2のエピタキシャル層(25)(26)の境界部には、
N+型の埋め込み層(41)が埋め込まれている。埋め
込み層(41)上方の第2のエピタキシャル層(26)
表面には、NPNトランジスタ(23)のP型のベース
領域(42)、N+型のエミッタ領域(43)、および
N+型のコレクタコンタクト領域(44)を形成する。At the boundary between the first and second epitaxial layers (25) and (26) of the NPN transistor (23),
An N+ type buried layer (41) is embedded. Second epitaxial layer (26) above buried layer (41)
A P-type base region (42), an N+-type emitter region (43), and an N+-type collector contact region (44) of the NPN transistor (23) are formed on the surface.
【0015】ホトダイオード(21)の反射防止膜(3
6)と容量素子(22)の誘電体薄膜(38)とは再び
シリコン酸化膜(45)で覆われ、これらの酸化膜(3
5)(45)を貫通するコンタクトホールを介して、各
拡散領域上に1stAlによる電極配線(46)がコン
タクトする。容量素子(22)の上部電極(39)は前
記1stAlによるものである。ホトダイオード(21
)においては、分離領域(27)の表面にカソード電極
(図示せず)が配設され、N+型拡散領域(34)の反
射防止膜(36)を除去した部分にカソード電極(図示
せず)が配設される。Anti-reflection coating (3) of photodiode (21)
6) and the dielectric thin film (38) of the capacitive element (22) are again covered with a silicon oxide film (45), and these oxide films (38)
5) An electrode wiring (46) made of 1stAl contacts each diffusion region through a contact hole passing through (45). The upper electrode (39) of the capacitive element (22) is made of the 1st Al. Photodiode (21
), a cathode electrode (not shown) is provided on the surface of the separation region (27), and a cathode electrode (not shown) is provided on the part of the N+ type diffusion region (34) from which the antireflection film (36) is removed. will be placed.
【0016】前記1stAl上はポリイミド系絶縁膜に
よる層間絶縁膜(47)が被覆し、その上に2ndAl
層、ポリイミド系のジャケット・コート(48)が覆う
。ホトダイオード(21)上の層間絶縁膜(47)とジ
ャケット・コート(48)は光入射のために除去される
。1stAlや2ndAlによって各素子が電気接続さ
れ、ホトダイオード(21)が光信号入力部を、NPN
トランジスタ(23)が他の素子と共に信号処理回路を
構成する。そして、全体がシリコン酸化膜(45)と同
じ屈折率を有するエポキシ樹脂にてモールドされる。The 1st Al is covered with an interlayer insulating film (47) made of a polyimide insulating film, and the 2nd Al
The layer is covered by a polyimide jacket coat (48). The interlayer dielectric (47) and jacket coat (48) on the photodiode (21) are removed for light incidence. Each element is electrically connected by 1stAl and 2ndAl, and the photodiode (21) connects the optical signal input section to the NPN
The transistor (23) constitutes a signal processing circuit together with other elements. Then, the entire structure is molded with an epoxy resin having the same refractive index as the silicon oxide film (45).
【0017】次にホトダイオード(21)の作用を説明
する。ホトダイオード(21)は、カソード電極に+5
Vの如きVCC電位を、アノード電極にGND電位を印
加した逆バイアス状態で動作させる。このような逆バイ
アスを与えると、ホトダイオード(21)の第1と第2
のエピタキシャル層(25)(26)の境界から空乏層
が拡がり、第1のエピタキシャル層(25)が高比抵抗
層であることから特に第1のエピタキシャル層(25)
中に大きく拡がる。その空乏層は基板(24)に達する
まで容易に拡がり、厚さ20〜25μの極めて厚い空乏
層を得ることができる。そのため、ホトダイオード(2
1)の接合容量を低減し、高速応答を可能にする。Next, the function of the photodiode (21) will be explained. The photodiode (21) has +5 on the cathode electrode.
The device is operated in a reverse bias state where a VCC potential such as V is applied to the anode electrode and a GND potential is applied. When such a reverse bias is applied, the first and second photodiodes (21)
The depletion layer spreads from the boundary between the epitaxial layers (25) and (26), and since the first epitaxial layer (25) is a high resistivity layer, the first epitaxial layer (25)
It expands greatly inside. The depletion layer easily expands until it reaches the substrate (24), making it possible to obtain an extremely thick depletion layer with a thickness of 20 to 25 μm. Therefore, the photodiode (2
1) Reduces junction capacitance and enables high-speed response.
【0018】尚、本願においても、各拡散領域の熱処理
によって基板(24)中の不純物(ボロン)が第1のエ
ピタキシャル層(25)中に拡散されてP型のオートド
ープ層を形成する。しかしながら、ノンドープ層に重畳
するので不純物濃度はそれ程高くならずに済み、基板(
24)として40〜60Ω・cmの比較的低不純物濃度
のものを用いるとこの効果が倍増される。そのため、熱
拡散によるオートドープ層は空乏層の拡がりを阻害せず
、この点でも厚い空乏層を得ることができる。Also in the present invention, the impurity (boron) in the substrate (24) is diffused into the first epitaxial layer (25) by heat treatment of each diffusion region to form a P-type autodoped layer. However, since the impurity concentration is superimposed on the non-doped layer, the impurity concentration does not become so high, and the substrate (
If a material with a relatively low impurity concentration of 40 to 60 Ω·cm is used as 24), this effect will be doubled. Therefore, the autodoped layer due to thermal diffusion does not inhibit the expansion of the depletion layer, and in this respect as well, a thick depletion layer can be obtained.
【0019】さらに、第1のエピタキシャル層(25)
をノンドープで積層すると、エピタキシャル成長工程中
、エピタキシャル層は基板(24)や第1の分離領域(
31)から飛散したボロン(B)がシリコン原子と再結
合して堆積したり、外界からの予期せぬ不純物(主とし
てボロン)の侵入によって、イントリシック層に極めて
近いP型層となり得る。しかしながら、N型反転するこ
とはまずあり得ないので、N型の第2のエピタキシャル
層(26)を形成することにより空乏層形成に適したP
IN接合又はPN接合を容易に形成できる。Furthermore, a first epitaxial layer (25)
When laminated in a non-doped manner, the epitaxial layer is deposited on the substrate (24) and the first isolation region (24) during the epitaxial growth process.
If boron (B) scattered from 31) recombines with silicon atoms and is deposited, or if unexpected impurities (mainly boron) enter from the outside, the layer can become a P-type layer that is very close to the intrinsic layer. However, since N-type inversion is unlikely, by forming the N-type second epitaxial layer (26), a P layer suitable for forming a depletion layer is formed.
An IN junction or a PN junction can be easily formed.
【0020】また、第1のエピタキシャル層(25)の
厚み以上の厚い空乏層が得られるので、入射光の吸収効
率が高く、その分だけホトダイオード(21)の深部で
発生するキャリア(空乏層外生成キャリア)の割合も減
少し、ホトダイオード(21)の高速化か図れる。また
、光入射によって発生したキャリアは、アノード側では
低抵抗の分離領域(27)を介してアノード電極に達す
るので、ホトダイオード(21)の直列抵抗を小さくで
きる。カソード側は全面を覆うように形成したN+型拡
散領域(34)で回収するので、直列抵抗を小さくでき
る。Furthermore, since a depletion layer thicker than the first epitaxial layer (25) is obtained, the absorption efficiency of incident light is high, and the carriers generated in the deep part of the photodiode (21) (outside the depletion layer) are correspondingly high. The ratio of generated carriers is also reduced, and the speed of the photodiode (21) can be increased. Moreover, since carriers generated by light incidence reach the anode electrode via the low-resistance separation region (27) on the anode side, the series resistance of the photodiode (21) can be reduced. Since the cathode side is recovered by the N+ type diffusion region (34) formed so as to cover the entire surface, the series resistance can be reduced.
【0021】次にホトダイオード(21)の反射防止膜
(36)を説明する。上記実施例においては、ホトダイ
オード(21)の表面が反射防止膜(36)で覆われ、
その上を同じ屈折率を有するシリコン酸化膜(45)と
エポキシ樹脂が覆うことになる。反射防止膜(36)は
光の波長に対して干渉を生じるような厚みであるので、
反射光量Rの算出式は(2)式の如くになる。但し、n
0=シリコン酸化膜の屈折率(=1.42)、n1=シ
リコン窒化膜の屈折率(=2.0)、n2=シリコンの
屈折率(=3.42)である。Next, the antireflection film (36) of the photodiode (21) will be explained. In the above embodiment, the surface of the photodiode (21) is covered with an antireflection film (36),
It is then covered with a silicon oxide film (45) and an epoxy resin having the same refractive index. Since the anti-reflection film (36) has a thickness that causes interference with the wavelength of light,
The formula for calculating the amount of reflected light R is as shown in formula (2). However, n
0=refractive index of silicon oxide film (=1.42), n1=refractive index of silicon nitride film (=2.0), and n2=refractive index of silicon (=3.42).
【0022】[0022]
【数2】[Math 2]
【0023】(2)式において、波長λ=850nmの
光が垂直に入射したとすると、反射防止膜(36)の膜
厚が450Åのとき反射光量R=11%、900Åのと
き反射光量R=2.2%となる。従って反射防止膜(3
6)の膜厚を900Å前後とすることにより、反射光量
を低減し、ホトダイオード(21)の光電流変換効率を
向上できる。In equation (2), if light with a wavelength λ = 850 nm is incident perpendicularly, when the thickness of the antireflection film (36) is 450 Å, the amount of reflected light R = 11%, and when the thickness of the antireflection film (36) is 900 Å, the amount of reflected light R = It becomes 2.2%. Therefore, the antireflection film (3
By setting the film thickness of 6) to around 900 Å, the amount of reflected light can be reduced and the photocurrent conversion efficiency of the photodiode (21) can be improved.
【0024】一方、反射防止膜(36)と材料を共用す
る容量素子(22)にあっては、誘電体薄膜(38)を
膜厚900Å程のシリコン窒化膜にできるので、耐圧と
容量密度のバランスがとれた容量素子(22)とするこ
とができる。図1の構造は以下の製造方法によって達成
することができる。先ずP型基板(24)の表面を熱酸
化して酸化膜を形成し、酸化膜をホトエッチングして選
択マスクとする。そして基板(24)表面に分離領域(
27)の第1の分離領域(31)を形成するボロン(B
)を拡散する(図3)。On the other hand, in the capacitive element (22) that shares the same material as the anti-reflection film (36), the dielectric thin film (38) can be made of a silicon nitride film with a thickness of about 900 Å, so that the breakdown voltage and capacitance density can be improved. A well-balanced capacitive element (22) can be obtained. The structure of FIG. 1 can be achieved by the following manufacturing method. First, the surface of the P-type substrate (24) is thermally oxidized to form an oxide film, and the oxide film is photoetched to serve as a selection mask. Then, on the surface of the substrate (24) there is a separation region (
Boron (B) forming the first isolation region (31) of
) (Figure 3).
【0025】次いで選択マスクとして用いた酸化膜を全
て除去した後、基板(24)をエピタキシャル成長装置
のサセプタ上に配置し、ランプ加熱によって基板(24
)に1140℃程度の高温を与えると共に反応管内にS
iH2Cl2ガスとH2ガスを導入することにより、ノ
ンドープの第1のエピタキシャル層(25)を15〜2
0μ成長させる。この様にノンドープで成長させると、
全工程が終了した完成時で200〜1500Ω・cmの
高比抵抗層に形成できる(図4)。Next, after removing all the oxide film used as a selective mask, the substrate (24) is placed on a susceptor of an epitaxial growth apparatus, and the substrate (24) is heated by lamp heating.
) is heated to a high temperature of approximately 1140°C, and S is added to the reaction tube.
By introducing iH2Cl2 gas and H2 gas, the non-doped first epitaxial layer (25) is
Grow 0μ. When grown in this way without doping,
When all processes are completed, a high resistivity layer of 200 to 1500 Ω·cm can be formed (FIG. 4).
【0026】次いで第1のエピタキシャル層(25)表
面を熱酸化して選択マスクを形成し、NPNトランジス
タ(23)のN+型埋め込み層(41)と容量素子(2
2)のN+型埋め込み層(40)を形成するアンチモン
を拡散する(図5)。この熱処理で第1の分離領域(3
1)も少し拡散される。次いで選択マスクを変更し、分
離領域(27)の第2の分離領域(32)を形成するボ
ロン(B)を拡散する。そして酸化膜付けを行ないなが
ら基板(24)全体に熱処理を与え、第1と第2の分離
領域(31)(32)を拡散することにより両者を連結
する。本工程で第1の分離領域(31)は8〜10μ、
第2の分離領域(32)は6〜8μ拡散される(図6)
。その後、酸化膜を除去して第1のエピタキシャル層(
25)の上に膜厚4〜6μのリンドープの第2のエピタ
キシャル層(26)を形成する。Next, the surface of the first epitaxial layer (25) is thermally oxidized to form a selective mask, and the N+ type buried layer (41) of the NPN transistor (23) and the capacitive element (2
Antimony forming the N+ type buried layer (40) of 2) is diffused (FIG. 5). With this heat treatment, the first separation region (3
1) is also slightly diffused. The selection mask is then changed and boron (B) forming the second isolation region (32) of the isolation region (27) is diffused. Then, the entire substrate (24) is subjected to heat treatment while an oxide film is being formed, and the first and second isolation regions (31) and (32) are connected by diffusion. In this step, the first separation region (31) is 8 to 10μ,
The second isolation region (32) is diffused by 6-8μ (Fig. 6)
. After that, the oxide film is removed and the first epitaxial layer (
A second phosphorus-doped epitaxial layer (26) having a thickness of 4 to 6 μm is formed on the layer 25).
【0027】次いで第2のエピタキシャル層(26)表
面を熱酸化して選択マスクを形成し、分離領域(27)
の第3の分離領域(33)を形成するボロン(B)を拡
散し、熱処理を加えて第2と第3の分離領域(32)(
33)を連結する。この工程で第2の分離領域(32)
は上方向へ4〜5μ、第3の分離領域(33)は1〜3
μ拡散される。そしてベース拡散を行なって第3の島領
域(30)にNPNトランジスタ(23)のベース領域
(42)を形成する(図6)。尚、分離領域(27)の
第3の分離領域(33)とベース領域(42)とを同時
形成しても良い。Next, the surface of the second epitaxial layer (26) is thermally oxidized to form a selective mask, and the isolation region (27) is
Boron (B) forming the third isolation region (33) is diffused and heat treated to form the second and third isolation region (32) (
33). In this step, the second separation region (32)
is 4 to 5 μ in the upward direction, and the third separation region (33) is 1 to 3
μ diffused. Base diffusion is then performed to form the base region (42) of the NPN transistor (23) in the third island region (30) (FIG. 6). Note that the third isolation region (33) of the isolation region (27) and the base region (42) may be formed simultaneously.
【0028】次いでエミッタ拡散を行なって第3の島領
域(30)にNPNトランジスタ(23)のエミッタ領
域(43)とコレクタコンタクト領域(44)を、第2
の島領域(29)に容量素子(22)の下部電極領域(
37)を、第1の島領域(28)にホトダイオード(2
1)のN+型拡散領域(34)を形成する(図7)。
次いでN+型拡散領域(34)と下部電極領域(37)
上の酸化膜(35)を除去し、CVD法によって上記膜
厚のシリコン窒化膜(SixNy)を堆積し、ホトエッ
チングすることでホトダイオード(21)の反射防止膜
(36)と容量素子(22)の誘電体薄膜(38)とを
形成する(図8)。Next, emitter diffusion is performed to form the emitter region (43) and collector contact region (44) of the NPN transistor (23) in the third island region (30), and the second
The lower electrode region (29) of the capacitive element (22) is located in the island region (29) of
37) and a photodiode (2) in the first island region (28).
1) N+ type diffusion region (34) is formed (FIG. 7).
Next, the N+ type diffusion region (34) and the lower electrode region (37)
The upper oxide film (35) is removed, a silicon nitride film (SixNy) of the above thickness is deposited by the CVD method, and photoetched to form the antireflection film (36) of the photodiode (21) and the capacitive element (22). A dielectric thin film (38) is formed (FIG. 8).
【0029】その後、酸化膜(45)の形成、コンタク
トホールの形成、Alの堆積とホトエッチングによる1
stAlの電極(46)の形成、層間絶縁膜(47)と
2ndAl電極の形成、およびパッシベーション被膜(
48)の形成によって図1の構造となる。本発明のホト
ダイオード(21)部の構造は上記実施例に限られたも
のでは無い。例えば単層エピタキシャル構造とし、N+
型拡散領域(34)に代ってベース拡散によるP型領域
を形成したものでも良い。After that, 1 is formed by forming an oxide film (45), forming contact holes, depositing Al, and photoetching
Formation of stAl electrode (46), formation of interlayer insulating film (47) and 2ndAl electrode, and passivation film (
48) results in the structure shown in FIG. The structure of the photodiode (21) portion of the present invention is not limited to the above embodiment. For example, with a single layer epitaxial structure, N+
Instead of the type diffusion region (34), a P-type region may be formed by base diffusion.
【0030】[0030]
【発明の効果】以上に説明した通り、本発明によればホ
トダイオード(21)に反射防止膜(36)を形成する
ことによって、反射光量を低減できるので、光−電流変
換効率を最大にできる利点を有する。さらに、ホトダイ
オード(21)の反射防止膜(36)を容量素子(22
)の誘電体薄膜(38)と同時形成したので、工程を共
用化でき、低コスト化できる利点をも有する。[Effects of the Invention] As explained above, according to the present invention, by forming the antireflection film (36) on the photodiode (21), the amount of reflected light can be reduced, so the advantage is that the light-to-current conversion efficiency can be maximized. has. Furthermore, the anti-reflection film (36) of the photodiode (21) is coated with the capacitive element (22).
) is formed at the same time as the dielectric thin film (38), which has the advantage of being able to share the process and reducing costs.
【0031】さらに上記実施例のようにノンドープの第
1のエピタキシャル層(25)とすることにより、空乏
層を第1のエピタキシャル層(25)中に極めて厚く拡
げることができる。そのため接合容量を小さく、光吸収
率を向上して空乏層外生成キャリアの発生を抑えること
ができるので、応答速度が極めて速いホトダイオード(
21)を提供できる利点を有する。Furthermore, by using the non-doped first epitaxial layer (25) as in the above embodiment, the depletion layer can be extended extremely thickly in the first epitaxial layer (25). Therefore, it is possible to reduce the junction capacitance, improve the light absorption rate, and suppress the generation of carriers generated outside the depletion layer.
21).
【0032】さらに、高濃度低抵抗の分離領域(27)
が基板(24)にまて到達しているので、ホトダイオー
ド(21)の直列抵抗を著しく低減できる他、分離領域
(27)がホトダイオード(21)とNPNトランジス
タ(23)等とを完全に分離しているので、寄生効果等
を防止できる利点を有する。さらに、ノンドープで積層
することにより、不純物濃度の制御が不要であるので、
高比抵抗層が容易に得られる利点を有する他、エピタキ
シャル成長装置を多量のボロン(B)で汚染しないので
、装置の保守が容易である、他機種とのラインの共用化
ができるという利点を有する。Furthermore, a high concentration low resistance isolation region (27)
Since the contact area reaches the substrate (24), the series resistance of the photodiode (21) can be significantly reduced, and the isolation region (27) completely separates the photodiode (21) from the NPN transistor (23), etc. This has the advantage of preventing parasitic effects and the like. Furthermore, by stacking the layers without doping, there is no need to control the impurity concentration.
In addition to having the advantage of easily obtaining a high resistivity layer, it also has the advantage of not contaminating the epitaxial growth device with a large amount of boron (B), making it easy to maintain the device, and allowing the line to be shared with other models. .
【0033】さらに、膜厚の厚い第1のエピタキシャル
層(25)を第1と第2の分離領域(31)(32)で
分離するので、第2の分離領域(32)を浅くできその
分だけ横方向拡散も少なくて済む。そのため、第2の分
離領域(32)とN+型埋め込み層(41)との耐圧が
大きくとれ、NPNトランジスタ(23)の微細化にも
寄与できる利点を有する。Furthermore, since the thick first epitaxial layer (25) is separated by the first and second isolation regions (31) and (32), the second isolation region (32) can be made shallower. However, lateral diffusion can also be reduced. Therefore, the breakdown voltage between the second isolation region (32) and the N+ type buried layer (41) can be increased, which has the advantage of contributing to miniaturization of the NPN transistor (23).
【図1】本発明の光半導体装置を説明するための断面図
である。FIG. 1 is a cross-sectional view for explaining an optical semiconductor device of the present invention.
【図2】図1の製造方法を説明する第1の図面である。FIG. 2 is a first drawing illustrating the manufacturing method of FIG. 1;
【図3】図1の製造方法を説明する第2の図面である。FIG. 3 is a second drawing illustrating the manufacturing method of FIG. 1;
【図4】図1の製造方法を説明する第3の図面である。FIG. 4 is a third drawing illustrating the manufacturing method of FIG. 1;
【図5】図1の製造方法を説明する第4の図面である。FIG. 5 is a fourth drawing illustrating the manufacturing method of FIG. 1;
【図6】図1の製造方法を説明する第5の図面である。FIG. 6 is a fifth drawing illustrating the manufacturing method of FIG. 1;
【図7】図1の製造方法を説明する第6の図面である。7 is a sixth drawing illustrating the manufacturing method of FIG. 1. FIG.
【図8】図1の製造方法を説明する第7の図面である。8 is a seventh drawing illustrating the manufacturing method of FIG. 1. FIG.
【図9】従来例を示す断面図である。FIG. 9 is a sectional view showing a conventional example.
Claims (8)
基板の表面に形成したエピタキシャル層と、前記エピタ
キシャル層を複数の島領域に形成する一導電型の分離領
域と、第1の島領域のエピタキシャル層表面に形成した
ホトダイオードの一方の取り出し領域となる拡散領域と
、前記ホトダイオードを形成する領域のエピタキシャル
層表面を被覆する反射防止膜と、第2の島領域のエピタ
キシャル層表面に形成した容量素子の下部電極領域と、
前記下部電極領域の表面を被覆する前記ホトダイオード
の反射防止膜と同一材料から成る誘電体薄膜と、前記下
部電極と対向するように前記誘電体薄膜上に形成した容
量素子の上部電極と、第3の島領域のエピタキシャル層
表面に形成した一導電型のベース領域と、前記ベース領
域の表面に形成した逆導電型のエミッタ領域とを具備す
ることを特徴とする光半導体装置。1. A semiconductor substrate of one conductivity type, an epitaxial layer formed on a surface of the semiconductor substrate, an isolation region of one conductivity type in which the epitaxial layer is formed into a plurality of island regions, and a first island region. A diffusion region formed on the surface of the epitaxial layer to serve as one extraction region of the photodiode, an antireflection film covering the surface of the epitaxial layer in the region where the photodiode is formed, and a capacitive element formed on the surface of the epitaxial layer in the second island region. a lower electrode area of
a dielectric thin film made of the same material as the antireflection film of the photodiode and covering the surface of the lower electrode region; an upper electrode of a capacitive element formed on the dielectric thin film so as to face the lower electrode; 1. An optical semiconductor device comprising: a base region of one conductivity type formed on the surface of an epitaxial layer of an island region; and an emitter region of opposite conductivity type formed on the surface of the base region.
ることを特徴とする請求項1記載の光半導体装置。2. The optical semiconductor device according to claim 1, wherein the antireflection film is a silicon nitride film.
と前記容量素子の下部電極領域は前記エミッタ領域の形
成と同時的に行なわれたことを特徴とする請求項1記載
の光半導体装置。3. The optical semiconductor device according to claim 1, wherein the high concentration diffusion region of the photodiode and the lower electrode region of the capacitive element are formed at the same time as the formation of the emitter region.
の赤外光であることを特徴とする請求項1記載の光半導
体装置。Claim 4: The optical signal has a wavelength λ=850 to 900 nm.
2. The optical semiconductor device according to claim 1, wherein the infrared light is the infrared light.
基板の表面に積層した高比抵抗の第1のエピタキシャル
層と、前記第1のエピタキシャル層の表面に積層した逆
導電型の第2のエピタキシャル層と、前記第1と第2の
エピタキシャル層を貫通して複数の島領域を形成する一
導電型の分離領域と、第1の島領域の第2のエピタキシ
ャル層表面に形成したホトダイオードの取り出し領域と
なる拡散領域と、前記ホトダイオードを形成する領域の
第1のエピタキシャル層表面を被覆する反射防止膜と、
第2の島領域の第2のエピタキシャル層表面に形成した
容量素子の下部電極領域と、前記下部電極領域の表面を
被覆する前記ホトダイオードの反射防止膜と同一材料か
ら成る誘電体薄膜と、前記下部電極と対向するように前
記誘電体薄膜上に形成した容量素子の上部電極と、第3
の島領域の第2のエピタキシャル層表面に形成した一導
電型のベース領域と、前記ベース領域の表面に形成した
逆導電型のエミッタ領域とを具備することを特徴とする
光半導体装置。5. A semiconductor substrate of one conductivity type, a first epitaxial layer of high specific resistance laminated on the surface of the semiconductor substrate, and a second epitaxial layer of the opposite conductivity type laminated on the surface of the first epitaxial layer. an epitaxial layer, an isolation region of one conductivity type penetrating the first and second epitaxial layers to form a plurality of island regions, and taking out a photodiode formed on the surface of the second epitaxial layer of the first island region. an anti-reflection film covering the surface of the first epitaxial layer in the region where the photodiode is formed;
a lower electrode region of the capacitive element formed on the surface of the second epitaxial layer of the second island region; a dielectric thin film made of the same material as the antireflection film of the photodiode covering the surface of the lower electrode region; an upper electrode of a capacitive element formed on the dielectric thin film so as to face the electrode, and a third
An optical semiconductor device comprising: a base region of one conductivity type formed on the surface of a second epitaxial layer of an island region; and an emitter region of opposite conductivity type formed on the surface of the base region.
Ω・cmであることを特徴とする請求項第4項記載の光
半導体装置。6. The semiconductor substrate has a specific resistance of 40 to 60.
5. The optical semiconductor device according to claim 4, wherein the resistance is Ω·cm.
が200〜1500Ω・cmであることを特徴とする請
求項第4項記載の光半導体装置。7. The optical semiconductor device according to claim 4, wherein the first epitaxial layer has a specific resistance of 200 to 1500 Ω·cm.
ープで積層したものであることを特徴とする請求項第5
項記載の光半導体装置。8. Claim 5, wherein the first epitaxial layer is laminated without doping.
Optical semiconductor device as described in section.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3032932A JP2584353B2 (en) | 1991-02-27 | 1991-02-27 | Optical semiconductor device |
KR1019920002988A KR100208644B1 (en) | 1991-02-27 | 1992-02-26 | Optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3032932A JP2584353B2 (en) | 1991-02-27 | 1991-02-27 | Optical semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04271173A true JPH04271173A (en) | 1992-09-28 |
JP2584353B2 JP2584353B2 (en) | 1997-02-26 |
Family
ID=12372701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3032932A Expired - Lifetime JP2584353B2 (en) | 1991-02-27 | 1991-02-27 | Optical semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2584353B2 (en) |
KR (1) | KR100208644B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791153B2 (en) | 2002-03-08 | 2004-09-14 | Kabushiki Kaisha Toshiba | Photo detector with passivation layer and antireflection layer made of the same material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100755629B1 (en) * | 2001-11-14 | 2007-09-04 | 매그나칩 반도체 유한회사 | Method of manufacturing photo-diode |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6259474A (en) * | 1985-09-09 | 1987-03-16 | Fuji Photo Film Co Ltd | Reading system for ccd sensor |
JPS6449282A (en) * | 1987-08-19 | 1989-02-23 | Mitsubishi Electric Corp | Integrated circuit device with built-in photodiode |
JPH01205462A (en) * | 1988-02-10 | 1989-08-17 | Matsushita Electron Corp | Semiconductor element |
-
1991
- 1991-02-27 JP JP3032932A patent/JP2584353B2/en not_active Expired - Lifetime
-
1992
- 1992-02-26 KR KR1019920002988A patent/KR100208644B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6259474A (en) * | 1985-09-09 | 1987-03-16 | Fuji Photo Film Co Ltd | Reading system for ccd sensor |
JPS6449282A (en) * | 1987-08-19 | 1989-02-23 | Mitsubishi Electric Corp | Integrated circuit device with built-in photodiode |
JPH01205462A (en) * | 1988-02-10 | 1989-08-17 | Matsushita Electron Corp | Semiconductor element |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6791153B2 (en) | 2002-03-08 | 2004-09-14 | Kabushiki Kaisha Toshiba | Photo detector with passivation layer and antireflection layer made of the same material |
US7042059B2 (en) | 2002-03-08 | 2006-05-09 | Kabushiki Kaisha Toshiba | Optical semiconductor device and method for manufacturing optical semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2584353B2 (en) | 1997-02-26 |
KR100208644B1 (en) | 1999-07-15 |
KR920017259A (en) | 1992-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2557750B2 (en) | Optical semiconductor device | |
US5410175A (en) | Monolithic IC having pin photodiode and an electrically active element accommodated on the same semi-conductor substrate | |
JP2557745B2 (en) | Optical semiconductor device | |
JPH0613643A (en) | Optical semiconductor device and its manufacture | |
JPH1145988A (en) | Light-receiving semiconductor device having built-in bicmos | |
JP2584353B2 (en) | Optical semiconductor device | |
JPH04271172A (en) | Optical semiconductor device | |
JP2584360B2 (en) | Optical semiconductor device | |
JP2620655B2 (en) | Optical semiconductor device | |
JP2001237452A (en) | Photodiode and manufacturing method therefor | |
JP2940818B2 (en) | Optical semiconductor device and its manufacturing method | |
JPH09331080A (en) | Semiconductor device with photodetector and its manufacture | |
JP2657120B2 (en) | Optical semiconductor device | |
JP3172253B2 (en) | Optical semiconductor device | |
JP3900552B2 (en) | Manufacturing method of optical sensor | |
JP2001320078A (en) | Optical semiconductor device and method of manufacturing the same | |
JP2657119B2 (en) | Optical semiconductor device | |
JP2557744B2 (en) | Optical semiconductor device | |
JPS61258471A (en) | Semiconductor integrated circuit device | |
JPH04151874A (en) | Semiconductor device | |
JP2557743B2 (en) | Method for manufacturing optical semiconductor device | |
JP4162412B2 (en) | Optical semiconductor integrated circuit device | |
JP2001339094A (en) | Optical semiconductor device | |
JPH05335532A (en) | Optical semiconductor device | |
CN118507502A (en) | Silicon-based CMOS-based optical sensor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091121 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101121 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101121 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 15 |