JPH04270174A - Composite sintered ceramic and its production - Google Patents

Composite sintered ceramic and its production

Info

Publication number
JPH04270174A
JPH04270174A JP3032269A JP3226991A JPH04270174A JP H04270174 A JPH04270174 A JP H04270174A JP 3032269 A JP3032269 A JP 3032269A JP 3226991 A JP3226991 A JP 3226991A JP H04270174 A JPH04270174 A JP H04270174A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon nitride
sic
surface layer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3032269A
Other languages
Japanese (ja)
Other versions
JP2738596B2 (en
Inventor
Saburo Nagano
三郎 永野
Shuichi Tateno
周一 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3032269A priority Critical patent/JP2738596B2/en
Priority to DE1992623528 priority patent/DE69223528T2/en
Priority to EP19920101552 priority patent/EP0497345B1/en
Publication of JPH04270174A publication Critical patent/JPH04270174A/en
Priority to US08/162,796 priority patent/US5462813A/en
Priority to US08/466,930 priority patent/US5571611A/en
Application granted granted Critical
Publication of JP2738596B2 publication Critical patent/JP2738596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the toughness of a molded article composed mainly of SiC by baking the article under specific condition. CONSTITUTION:The objective composite sintered ceramic material is composed mainly of Si3N4 at the surface layer and SiC and Si3N4 at the core part and has a compositional gradient continuously increasing the SiC/(SiC+Si3N4) ratio from the surface layer toward the core part. It can be produced by mixing (A) SiC powder having an average particle diameter of 0.1-2mum with (B) <=10wt.% of carbon powder or a substance capable of forming carbon by baking, e.g. a phenolic resin, coal tar pitch or a boron-containing compound and (C) a binder, forming the mixture, calcining at 200-800 deg.C and baking the calcined article in an atmosphere capable of forming Si3N4 and carbon by the reaction of SiC and nitrogen.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭化珪素および窒化珪
素を主成分とするセラミックス複合焼結体に関し、特に
炭化珪素質焼結体において靱性を向上させるために表層
部を改質したセラミックスおよびその製法に関する。
[Field of Industrial Application] The present invention relates to a ceramic composite sintered body mainly composed of silicon carbide and silicon nitride, and in particular to a ceramic composite sintered body whose surface layer has been modified to improve the toughness of the silicon carbide sintered body. Regarding its manufacturing method.

【0002】0002

【従来技術】炭化珪素や窒化珪素に代表される非酸化物
系セラミックスは、他のセラミックスや金属に比較して
、硬度、強度、靱性および化学的安定性等に優れる材料
として注目され、あらゆる構造用材料、耐摩耗材料とし
てすでに実用化され、最近に至っては、ガスタービン等
の熱機関構造材料としての開発が進められている。
[Prior Art] Non-oxide ceramics, represented by silicon carbide and silicon nitride, have attracted attention as materials with superior hardness, strength, toughness, and chemical stability compared to other ceramics and metals, and are suitable for any structure. It has already been put into practical use as a wear-resistant material and has recently been developed as a structural material for heat engines such as gas turbines.

【0003】炭化珪素は、B4 C等の硼素含有化合物
やや炭素を焼結助剤として添加し、1800〜2200
℃の不活性雰囲気中で焼成することにより得られ、強度
、硬度、耐摩耗性に優れ、高温での強度劣化がほとんど
ないという優れた特性を有することから、高温用構造材
料としての応用が進められている。
[0003] Silicon carbide is produced by adding a boron-containing compound such as B4C or carbon as a sintering agent, and
It is obtained by firing in an inert atmosphere at ℃ and has excellent properties such as strength, hardness, and abrasion resistance, and almost no strength deterioration at high temperatures, so its application as a high-temperature structural material is progressing. It is being

【0004】これに対して、窒化珪素はそれ自体難焼結
性であるためにAl2 O3 や周期律表第3a族元素
酸化物等を焼結助剤として添加し1600〜2000℃
の窒素雰囲気中で焼成することにより高密度化されるも
ので、炭化珪素に比較して高温において強度が劣化する
という欠点を有しているものの靱性や耐熱衝撃性に優れ
るという特性を有している。
On the other hand, since silicon nitride itself is difficult to sinter, Al2O3 and oxides of Group 3a elements of the periodic table are added as sintering aids to sinter the silicon nitride at 1600 to 2000°C.
It is densified by firing in a nitrogen atmosphere, and although it has the disadvantage that its strength deteriorates at high temperatures compared to silicon carbide, it has excellent toughness and thermal shock resistance. There is.

【0005】そこで、従来から窒化珪素と炭化珪素とを
複合化するという観点から、炭化珪素質焼結体と窒化珪
素質焼結体を接合したり、あるいは炭化珪素と窒化珪素
とを混合し焼成したり、反応焼結法を用いて炭化珪素質
焼結体内に金属Siを存在せしめ、これを窒素雰囲気中
で窒化させることにより少なくとも表層部に窒化珪素と
炭化珪素との混合層を形成せしめる方法等が特開昭60
−264364号等に提案されている。
Therefore, from the viewpoint of compounding silicon nitride and silicon carbide, it has been conventionally attempted to bond a silicon carbide sintered body and a silicon nitride sintered body, or to mix and sinter silicon carbide and silicon nitride. Or, a method in which metal Si is made to exist in a silicon carbide sintered body using a reaction sintering method, and this is nitrided in a nitrogen atmosphere to form a mixed layer of silicon nitride and silicon carbide at least in the surface layer. etc. are published in 1986.
-264364 etc.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、焼結
体同士を接合する方法によれば、焼結体同士を接合する
ために適当な接合剤を必要とし、しかもその接合部自体
の強度が焼結体自体の強度に比較して弱いことから、接
合によりそれぞれの焼結体本来の特性を発揮するに至っ
ておらず、また、単純混合法においても均一に分散させ
ることが難しく、しかも焼結性が低下するために改良が
必要である。
[Problems to be Solved by the Invention] However, the method of joining sintered bodies requires a suitable bonding agent to join the sintered bodies, and furthermore, the strength of the joint itself is low due to sintering. Since the strength of the compact is weak compared to the strength of the compact itself, the original characteristics of each sintered compact cannot be exhibited by joining, and even with a simple mixing method, it is difficult to uniformly disperse the compact, and the sinterability is poor. Improvement is necessary to reduce the

【0007】また、反応焼結による方法においても金属
Siの窒化反応を完全に行う事自体困難であり、焼結体
の内部に金属Siが残存するために強度の劣化を招く結
果となる。また、得られる焼結体の表層部も炭化珪素と
窒化珪素との混合相からなるもので、窒化珪素の本来の
特性が発揮され得ないという欠点があった。
[0007] Furthermore, even in the method using reactive sintering, it is difficult to completely carry out the nitriding reaction of metal Si, and the metal Si remains inside the sintered body, resulting in deterioration of the strength. Moreover, the surface layer of the obtained sintered body also consists of a mixed phase of silicon carbide and silicon nitride, which has the disadvantage that the original characteristics of silicon nitride cannot be exhibited.

【0008】[0008]

【問題点を解決するための手段】本発明者等は、上記問
題点に対して検討を重ねた結果、炭化珪素を主成分とす
る成形体を作成し、これを窒素ガス加圧雰囲気下で焼成
すること、この焼成と同時に炭化珪素の窒化珪素への変
換反応を進行させること、さらにその変換反応を制御し
、最終焼結体として、その表層部が窒化珪素を主体とし
てなり、内部が炭化珪素あるいは炭化珪素と窒化珪素か
らなるとともに、炭化珪素の窒化珪素に対する比率が連
続的に大きくなるような組成勾配を形成させることによ
り、炭化珪素の特性を有しつつ窒化珪素の特性が十分に
発揮されることにより、高靱性、高耐熱衝撃性および高
温強度に優れた焼結体となることを見出したのである。
[Means for Solving the Problems] As a result of repeated studies on the above problems, the inventors of the present invention have created a molded body mainly composed of silicon carbide, and have created a molded body containing silicon carbide as a main component. At the same time as this firing, the conversion reaction of silicon carbide to silicon nitride proceeds, and the conversion reaction is controlled to produce a final sintered body whose surface layer is mainly made of silicon nitride and whose interior is made of carbide. It is made of silicon or silicon carbide and silicon nitride, and by forming a composition gradient in which the ratio of silicon carbide to silicon nitride increases continuously, it has the characteristics of silicon carbide while fully exhibiting the characteristics of silicon nitride. They have discovered that by doing so, a sintered body with excellent toughness, high thermal shock resistance, and high-temperature strength can be obtained.

【0009】以下本発明をさらに詳述すると、本発明の
よれば、まず原料粉末として、炭化珪素粉末を準備する
。炭化珪素粉末としてはα−SiC、β−SiCのいず
れか、または混合して使用することもできる。粉末の平
均粒径は0.1〜2μm が適当である。また上記炭化
珪素粉末に対し、カーボンブラックやグラファイト等の
炭素粉末あるいは焼成により炭素を生成しうるフェノー
ル樹脂やコールタールピッチ等や、B4 C等の硼素含
有化合物を10重量%以下の割合で添加することができ
る。
The present invention will be described in more detail below. According to the present invention, silicon carbide powder is first prepared as a raw material powder. As the silicon carbide powder, either α-SiC or β-SiC, or a mixture thereof can be used. The average particle size of the powder is suitably 0.1 to 2 μm. Further, to the above silicon carbide powder, carbon powder such as carbon black or graphite, phenol resin or coal tar pitch that can generate carbon by firing, or a boron-containing compound such as B4C is added in a proportion of 10% by weight or less. be able to.

【0010】次に上記粉末にバインダー等を添加し、周
知の成形方法、たとえばプレス成形、押出成形、鋳込み
成形、冷間静水圧成形等により所望の形状に成形後、所
望により200〜800℃で仮焼後、焼成する。
Next, a binder or the like is added to the above powder, and after molding into a desired shape by a well-known molding method such as press molding, extrusion molding, casting molding, cold isostatic pressing, etc., the powder is heated at 200 to 800°C if desired. After calcination, it is fired.

【0011】本発明によれば、この焼成を下記数1According to the present invention, this firing is performed according to the following equation 1.

【数
1】    3SiC+2N2   →  Si3 N
4 +3Cで示されるように炭化珪素と窒素の反応によ
り窒化珪素および炭素が生成可能な雰囲気中で性で焼成
する。具体的には、1000℃以上、特に1500℃以
上の温度にて、雰囲気中に窒素ガスを必須成分として含
むとともに該窒素ガス圧力が500気圧以上の加圧下で
焼成することにより十分に数1の反応を進行させること
ができる。
[Math. 1] 3SiC+2N2 → Si3 N
4 +3C, the material is fired in an atmosphere where silicon nitride and carbon can be produced by the reaction between silicon carbide and nitrogen. Specifically, firing is performed at a temperature of 1000°C or higher, especially 1500°C or higher, with nitrogen gas as an essential component in the atmosphere, and the nitrogen gas pressure is 500 atmospheres or higher. The reaction can proceed.

【0012】なお、この時の焼成条件において上記温度
および圧力を逸脱すると、前記窒化反応が進行しないか
または進行しにくくなる。
[0012] If the firing conditions at this time deviate from the above-mentioned temperature and pressure, the nitriding reaction will not proceed or will be difficult to proceed.

【0013】この焼成によれば、内部および表層部とも
に高緻密化が達成されるとともに、焼結体の表層部にお
いて特に上記反応が活発に生じ、焼結体の表層部に窒化
珪素が内部よりも多くなるという特異的焼結体が形成さ
れる。
[0013] According to this firing, high densification is achieved in both the internal and surface layers, and the above reaction occurs particularly actively in the surface layer of the sintered body, so that silicon nitride is deposited in the surface layer of the sintered body from the inside. A specific sintered body is formed in which the number of particles increases.

【0014】この焼結のメカニズムについては定かでは
ないが、高温高圧の窒素雰囲気下で炭化珪素粒子の表面
から窒化珪素への反応が進行し、それに伴い体積膨張が
生じるために、ある程度緻密化が進行し、一旦焼結体の
表面に緻密質層が形成されると焼結体内部への窒素ガス
の進入が抑制されるために、結果として表層部、内部と
もに気孔率10%以下の緻密体が形成されるが、組成的
には表層部と内部において組成がほぼ連続的に変化する
ような組織が形成されると考えられる。
Although the mechanism of this sintering is not clear, the reaction from the surface of silicon carbide particles to silicon nitride progresses under a high temperature and high pressure nitrogen atmosphere, resulting in volumetric expansion, which leads to some degree of densification. As the process progresses, once a dense layer is formed on the surface of the sintered body, the entry of nitrogen gas into the interior of the sintered body is suppressed, resulting in a dense body with a porosity of 10% or less both on the surface and inside. However, it is thought that a structure is formed in which the composition changes almost continuously between the surface layer and the interior.

【0015】本発明のよれば、上記焼成における焼成温
度、焼成時間等を制御し、焼結体の表層部に存在する炭
化珪素成分をすべて窒化珪素に変換させる一方、内部に
は、炭化珪素が残存するように内部を炭化珪素あるいは
炭化珪素と窒化珪素を主体として構成する。また、図1
の窒素の分布図によれば、表層部において窒素が非常に
多量に存在し、内部に向かうに従い、窒素量は表層部よ
り低減していることからも明らかなように、表層部から
内部にかけて炭化珪素/(炭化珪素+窒化珪素)で表さ
れる組成比が大きくなるような組成勾配を有するような
組成勾配を形成させることができる。
According to the present invention, the firing temperature, firing time, etc. in the firing are controlled so that all the silicon carbide components present in the surface layer of the sintered body are converted into silicon nitride, while the silicon carbide inside is controlled. The interior is mainly composed of silicon carbide or silicon carbide and silicon nitride so that it remains. Also, Figure 1
According to the nitrogen distribution diagram of It is possible to form a composition gradient such that the composition ratio expressed by silicon/(silicon carbide+silicon nitride) increases.

【0016】このような構成によれば、内部は炭化珪素
的性質を有しつつ、表層部は窒化珪素的な特性、即ち靱
性に優れた特性を有する。また、通常の窒化珪素質焼結
体によれば、窒化珪素結晶粒子間に焼結助剤として用い
られた金属酸化物が粒界相として存在するが、この焼結
体の表層部では、窒化珪素結晶粒子間に金属酸化物が実
質的に存在しないことも大きな特徴であり、これにより
高温における粒界相の存在による強度劣化が小さくなる
。なお、表層部における炭化珪素/(炭化珪素+窒化珪
素)で表される組成比は0.1以下であることが望まし
い。なお、内部は、炭化珪素あるいは炭化珪素と窒化珪
素を主体として構成されるが、炭化珪素/(炭化珪素+
窒化珪素)の組成比率は0.2以上であることが望まし
い。
[0016] According to this structure, while the interior has properties similar to silicon carbide, the surface layer portion has properties similar to silicon nitride, that is, excellent toughness. Furthermore, in a normal silicon nitride sintered body, a metal oxide used as a sintering aid exists between silicon nitride crystal grains as a grain boundary phase, but in the surface layer of this sintered body, nitride Another major feature is that substantially no metal oxide exists between silicon crystal grains, which reduces strength deterioration due to the presence of grain boundary phases at high temperatures. Note that the composition ratio expressed by silicon carbide/(silicon carbide+silicon nitride) in the surface layer portion is desirably 0.1 or less. The interior is mainly composed of silicon carbide or silicon carbide and silicon nitride, but silicon carbide/(silicon carbide +
The composition ratio of silicon nitride (silicon nitride) is preferably 0.2 or more.

【0017】[0017]

【作  用】本発明によれば、表層部が窒化珪素を主体
とし、内部が炭化珪素あるいは炭化珪素と窒化珪素を主
体として構成されることにより、炭化珪素の優れた特性
を生かしつつ、焼結体の表層部のみに窒化珪素の特性を
合わせ持つことができる。また、表層部から内部にかけ
て炭化珪素と窒化珪素の組成が徐々に変化するために、
表層部と内部間での熱的特性の相違による応力の発生等
が緩和することができる。
[Function] According to the present invention, the surface layer is mainly composed of silicon nitride, and the interior is mainly composed of silicon carbide or silicon carbide and silicon nitride. Only the surface layer of the body can have the characteristics of silicon nitride. In addition, since the composition of silicon carbide and silicon nitride gradually changes from the surface layer to the inside,
The generation of stress due to the difference in thermal characteristics between the surface layer and the inside can be alleviated.

【0018】また、本発明の製造方法によれば、表層部
から徐々に窒化反応が進行するために、焼結体表層部と
内部の組成を任意に制御することができるとともに、炭
化珪素と窒化珪素との共存域では、炭化珪素と窒化珪素
とが均一に相互分散した組織が形成される。
Furthermore, according to the manufacturing method of the present invention, since the nitriding reaction proceeds gradually from the surface layer, the composition of the surface layer and the inside of the sintered body can be controlled as desired, and the composition of silicon carbide and nitride can be controlled as desired. In the coexistence region with silicon, a structure in which silicon carbide and silicon nitride are uniformly dispersed in each other is formed.

【0019】[0019]

【実施例】β−SiC粉末(平均粒径0.4μm 、酸
素含有量0.2重量%)に対して、成形用バインダーと
してレゾール型フェノール樹脂20%溶液を適量添加し
、さらに溶媒としてアセトンを適量添加し、混練乾燥後
、篩を通して成形用顆粒を得た。この顆粒を金型プレス
を用いて外径20mm、厚み10mmの円板状成形体を
作成した。
[Example] To β-SiC powder (average particle size 0.4 μm, oxygen content 0.2% by weight), an appropriate amount of a 20% solution of resol type phenolic resin was added as a molding binder, and acetone was added as a solvent. After adding an appropriate amount and kneading and drying, the mixture was passed through a sieve to obtain moldable granules. A disk-shaped molded body having an outer diameter of 20 mm and a thickness of 10 mm was prepared from the granules using a mold press.

【0020】次に成形体を600℃の不活性雰囲気(N
2 気流中)で仮焼し、フェノール樹脂を炭化させた後
、仮焼体の組成の分析を行った。そして、この仮焼体を
N2 圧力、焼成温度、焼成時間を表1に示した条件に
設定し焼成を行った。
Next, the molded body is placed in an inert atmosphere (N
2 in an air stream) to carbonize the phenol resin, the composition of the calcined body was analyzed. Then, this calcined body was fired under the conditions shown in Table 1: N2 pressure, firing temperature, and firing time.

【0021】得られた焼結体に対して、アルキメデス法
により密度を測定し、また焼結体の表層部に対してX線
回折法により解析するとともに、焼結体を粉砕し粉末X
線回折にて焼結体の組成を解析した。また、焼結体より
試料を切り出し、その切断面における窒素原子の分布を
EPMA分析により調査し図1に示した。結果は表2に
示した。
The density of the obtained sintered body was measured by the Archimedes method, and the surface layer of the sintered body was analyzed by X-ray diffraction method, and the sintered body was crushed and powdered
The composition of the sintered body was analyzed using line diffraction. In addition, a sample was cut out from the sintered body, and the distribution of nitrogen atoms on the cut surface was investigated by EPMA analysis, which is shown in FIG. The results are shown in Table 2.

【0022】機械的特性の評価として、得られた焼結体
の平面を100μm 研磨し、ポリッシュした後、その
鏡面を用いてインデンテーション法(IF法)にて靱性
(K1c)を測定した。なお計算には新原の式を用いた
To evaluate the mechanical properties, the flat surface of the obtained sintered body was polished by 100 μm, and the toughness (K1c) was measured using the mirror surface by the indentation method (IF method). In addition, Niihara's formula was used for the calculation.

【0023】比較例として、β−SiC粉末(平均粒径
0.4μm )100重量部にB4 C粉末を0.4重
量部添加混合する以外は前記方法と同様にして成形体を
作成し、その後、1気圧のアルゴン雰囲気中で2050
℃で1時間焼成を行い、緻密な炭化珪素質焼結体(表中
、試料No,1)を作成し、前記と同様に特性の測定お
よび評価を行った。
As a comparative example, a molded body was prepared in the same manner as above except that 0.4 parts by weight of B4C powder was added to 100 parts by weight of β-SiC powder (average particle size 0.4 μm), and then , 2050 in an argon atmosphere of 1 atm.
C. for 1 hour to produce a dense silicon carbide sintered body (Sample No. 1 in the table), and its properties were measured and evaluated in the same manner as above.

【0024】[0024]

【表1】[Table 1]

【0025】[0025]

【表2】[Table 2]

【0026】[0026]

【発明の効果】以上、詳述した通り、本発明によれば、
簡単な方法により、炭化珪素と窒化珪素とを接合等の手
法を用いることなく、複合化することができ、また焼結
体として、内部に炭化珪素の優れた特性を有しつつ、焼
結体の表層部を窒化珪素の高靱性を付与することができ
る。これにより、構造用材料あるいは高温材料としての
用途をさらに拡大することができる。
[Effects of the Invention] As detailed above, according to the present invention,
By a simple method, silicon carbide and silicon nitride can be composited without using methods such as bonding, and the sintered body has the excellent characteristics of silicon carbide inside. The high toughness of silicon nitride can be imparted to the surface layer. This makes it possible to further expand the use of the material as a structural material or a high-temperature material.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のセラミックス複合焼結体の断面におけ
るEPMA分析による窒素分布を示す図である。
FIG. 1 is a diagram showing nitrogen distribution in a cross section of a ceramic composite sintered body of the present invention, as determined by EPMA analysis.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  表層部が窒化珪素を主体としてなり、
中心部が炭化珪素または炭化珪素と窒化珪素を主体とし
てなり、前記表層部から中心部にかけて炭化珪素/(炭
化珪素+窒化珪素)で表される組成比がほぼ連続的に大
きくなるような組成勾配を有することを特徴とするセラ
ミックス複合焼結体。
Claim 1: The surface layer is mainly made of silicon nitride,
A composition gradient in which the center part is mainly composed of silicon carbide or silicon carbide and silicon nitride, and the composition ratio expressed by silicon carbide/(silicon carbide + silicon nitride) increases almost continuously from the surface part to the center part. A ceramic composite sintered body characterized by having.
【請求項2】  炭化珪素粉末を主成分とする粉末成形
体を炭化珪素が窒化珪素へ窒化されうる条件下で焼成し
、表層部が窒化珪素を主体としてなり、中心部が炭化珪
素または炭化珪素と窒化珪素を主体としてなり、前記表
層部から中心部になるに従い、炭化珪素/(炭化珪素+
窒化珪素)で表される組成比が大きくなるような組成勾
配が形成される程度に前記炭化珪素を窒化珪素に変換す
ることを特徴とするセラミックス複合焼結体の製法。
2. A powder compact containing silicon carbide powder as a main component is fired under conditions where silicon carbide can be nitrided to silicon nitride, so that the surface layer is mainly silicon nitride and the center is silicon carbide or silicon carbide. and silicon nitride, and from the surface layer to the center, silicon carbide/(silicon carbide +
A method for producing a ceramic composite sintered body, characterized in that the silicon carbide is converted to silicon nitride to such an extent that a composition gradient is formed such that the composition ratio expressed by silicon nitride increases.
JP3032269A 1991-01-31 1991-01-31 Ceramic composite sintered body and its manufacturing method Expired - Lifetime JP2738596B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3032269A JP2738596B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and its manufacturing method
DE1992623528 DE69223528T2 (en) 1991-01-31 1992-01-30 Sintered, ceramic composite material, process for its production and the same slide valve
EP19920101552 EP0497345B1 (en) 1991-01-31 1992-01-30 Composite ceramic sintered material, process for producing the same, and slider member using the same
US08/162,796 US5462813A (en) 1991-01-31 1993-12-07 Composite ceramic sintered material
US08/466,930 US5571611A (en) 1991-01-31 1995-06-06 Composite ceramic sintered material and slider member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032269A JP2738596B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH04270174A true JPH04270174A (en) 1992-09-25
JP2738596B2 JP2738596B2 (en) 1998-04-08

Family

ID=12354283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032269A Expired - Lifetime JP2738596B2 (en) 1991-01-31 1991-01-31 Ceramic composite sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2738596B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417674A (en) * 2022-10-14 2022-12-02 郴州市拓道新材料科技有限公司 Wear-resistant silicon nitride/silicon carbide composite ceramic and preparation method and application thereof
CN115466125A (en) * 2022-08-03 2022-12-13 鄂尔多斯市西金矿冶有限责任公司 Preparation method of multifunctional C/SiC gradient furnace eye brick for ferrosilicon ore furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115466125A (en) * 2022-08-03 2022-12-13 鄂尔多斯市西金矿冶有限责任公司 Preparation method of multifunctional C/SiC gradient furnace eye brick for ferrosilicon ore furnace
CN115417674A (en) * 2022-10-14 2022-12-02 郴州市拓道新材料科技有限公司 Wear-resistant silicon nitride/silicon carbide composite ceramic and preparation method and application thereof
CN115417674B (en) * 2022-10-14 2023-06-09 湖南省拓道新材料科技有限公司 Wear-resistant silicon nitride/silicon carbide composite ceramic and preparation method and application thereof

Also Published As

Publication number Publication date
JP2738596B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
JPS5924751B2 (en) Sintered shaped body
JP5528749B2 (en) Boron carbide-silicon carbide composite ceramic and method for producing the ceramic
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
Chew et al. Processing Aluminum Nitride‐Silicon Carbide Composites via Polymer Infiltration and Pyrolysis of Polymethylsilane, a Precursor to Stoichiometric Silicon Carbide
Semen et al. Structural ceramics derived from a preceramic polymer
JPH0157075B2 (en)
JPH04270174A (en) Composite sintered ceramic and its production
JPS6212663A (en) Method of sintering b4c base fine body
JP2631115B2 (en) Manufacturing method of silicon nitride sintered body
JPH04254473A (en) Production of ceramic composite sintered body
JP2784280B2 (en) Ceramic composite sintered body, method for producing the same, and sliding member
JP2004256339A (en) Manufacturing method of silicon nitride sintered compact
JP2006347806A (en) High rigidity ceramic material, and method for producing the same
JPS6121964A (en) Alumina sintered body and manufacture
JPS60255672A (en) Manufacture of silicon carbide sintered body
JP2742620B2 (en) Boride-aluminum oxide sintered body and method for producing the same
EP0241514A1 (en) Dense ceramics containing a solid solution and method for making the same
JPH09268062A (en) Silicon carbide sintered compact and its production
JPS63252966A (en) Manufacture of silicon nitride base ceramic composite body
JPH07115927B2 (en) SiC-based ceramics and method for producing the same
JP2631109B2 (en) Method for producing silicon nitride composite sintered body
JPS58130165A (en) Silicon carbide sliding material
JPH0585506B2 (en)
JPH06287007A (en) Partially crystallized multicomponent powder and its production