JPH0426920A - Production of magnetic disk - Google Patents

Production of magnetic disk

Info

Publication number
JPH0426920A
JPH0426920A JP13057990A JP13057990A JPH0426920A JP H0426920 A JPH0426920 A JP H0426920A JP 13057990 A JP13057990 A JP 13057990A JP 13057990 A JP13057990 A JP 13057990A JP H0426920 A JPH0426920 A JP H0426920A
Authority
JP
Japan
Prior art keywords
substrate
magnetic layer
magnetic
annealing treatment
magnetic disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13057990A
Other languages
Japanese (ja)
Inventor
Shuichi Haga
秀一 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13057990A priority Critical patent/JPH0426920A/en
Publication of JPH0426920A publication Critical patent/JPH0426920A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve the electromagnetic conversion characteristics and recording density by forming a magnetic layer on a rigid substrate, then subjecting the magnetic layer to an annealing treatment at a specific temp. or above and at the temp. at which the substrate is not affected. CONSTITUTION:After the magnetic layer is formed on the rigid substrate, the magnetic layer is subjected to the annealing treatment at >=200 deg.C and at which the substrate is not affected. An Ni-P plated substrate formed by subjecting the surface of an aluminum substrate to Ni-P plating, an alumite substrate formed by anodizing the surface thereof to form an oxide film, etc., are adequate if the aluminum substrate is used as the rigid substrate. The temp. of the annealing treatment is 200 to 300 deg.C with the Ni-P plated substrate, 200 to 400 deg.C with the glass substrate and 200 to 400 deg.C with the alumite substrate. The electromagnetic conversion characteristics and recording density are improved in this way as compared with the untreated substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、いわゆるハードディスクの如き磁気ディスク
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a magnetic disk such as a so-called hard disk.

(従来の技術〕 アルミニウム基板やガラス基板等の剛性基板上に磁性層
を形成した、いわゆるハードディスクは応答性が優れて
いる、記憶容量が大きい、保存性が良好で信頬性が高い
等の特色を有するが、高密度記録化に伴なってさらに電
磁変換特性を改善することか要望されている。
(Prior art) So-called hard disks, in which a magnetic layer is formed on a rigid substrate such as an aluminum substrate or a glass substrate, have characteristics such as excellent responsiveness, large storage capacity, good storage stability, and high reliability. However, with the trend towards higher density recording, there is a need to further improve the electromagnetic conversion characteristics.

そこで従来、ハードディスクの電磁変換特性を向上させ
るために、種々の研究がなされている。
Therefore, various studies have been made in the past in order to improve the electromagnetic conversion characteristics of hard disks.

例えば、強磁性金属薄膜を製膜する際のスパッタ条件の
最適化や、磁性材料の選択、さらに基板表面形状の改良
、フライングハイドの微小化等である。
For example, optimization of sputtering conditions when forming a ferromagnetic metal thin film, selection of magnetic materials, improvement of substrate surface shape, miniaturization of flying hides, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、例えば磁性材料に関しては開発し尽くさ
れた感があり、またフライングハイドの微小化を進める
とヘッドクラッシュの問題が発生する等、いずれの手法
も限界が見えてきた状態にある。また上述の手法では、
技術的に困難なわりには、大幅な効果は望めないのが実
情であり、何らかの新たな技術の開発が望まれている。
However, for example, it seems that magnetic materials have been fully developed, and further miniaturization of flying hides causes the problem of head crushing, so the limits of each method are becoming apparent. Also, in the above method,
Although it is technically difficult, the reality is that no significant effects can be expected, and the development of some new technology is desired.

そこで本発明は、かかる従来の実情に鑑みて提塞された
ものであって、簡便な技術により電磁変換特性の改善を
図ることが可能な磁気ディスクの製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the conventional situation, and an object of the present invention is to provide a method of manufacturing a magnetic disk that can improve electromagnetic conversion characteristics using a simple technique.

〔問題を解決するための手段] 本発明の磁気ディスクの製造方法は、上述の目的を達成
するために、剛性基板上に磁性層を形成した後、200
 ’C以上且つ基板に影響を及ぼさない温度でアニール
処理することを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the method for manufacturing a magnetic disk of the present invention includes forming a magnetic layer on a rigid substrate, and then
The method is characterized in that the annealing treatment is carried out at a temperature of 1.5 C or higher and that does not affect the substrate.

μsり性基板の材料としては、アルミニウム、ガラス、
セラミクス等通常のハードディスクの基板材料として用
いられているものがいずれも使用可能である。特にアル
ミニウム基板の場合には、その表面にN i −Pメツ
キを施したN i −Pメツキ基板や、表面を陽極酸化
して酸化被膜を形成したアルマイト基板等が好適である
Materials for the μs-resistant substrate include aluminum, glass,
Any material used as a substrate material for ordinary hard disks, such as ceramics, can be used. In particular, in the case of an aluminum substrate, a Ni--P plated substrate whose surface is plated with Ni--P, an alumite substrate whose surface is anodized to form an oxide film, etc. are suitable.

一方、磁性層は、磁性粉を結合剤とともに混練した磁性
塗料を塗布することによって形成される磁性塗膜であっ
てもよいし、Co−Cr、Co−Ni、Co−Ni−C
r、Co−Cr−Ta等の強磁性金属材料を蒸着、スパ
ッタ、メツキ等の手法により直接成膜した強磁性金属薄
膜でもよい。
On the other hand, the magnetic layer may be a magnetic coating film formed by applying a magnetic paint made by kneading magnetic powder with a binder, or may be a magnetic coating film formed by applying a magnetic coating material such as Co-Cr, Co-Ni, Co-Ni-C
A ferromagnetic metal thin film formed by directly forming a ferromagnetic metal material such as r, Co-Cr-Ta, etc. by a method such as vapor deposition, sputtering, or plating may be used.

後者の場合、Cr等の下地膜が形成されていてもよい。In the latter case, a base film of Cr or the like may be formed.

また、磁性層の厚さは、通常の範囲とすればよく、特に
限定されるものではない。
Further, the thickness of the magnetic layer may be within a normal range and is not particularly limited.

本発明においてアニール処理を行なうには、剛性基板上
に磁性層を形成した後、大気中または窒素ガスなどの不
活性ガス雰囲気中で、0,5〜3時間加熱処理を行う。
In the present invention, to perform annealing treatment, after forming a magnetic layer on a rigid substrate, heat treatment is performed for 0.5 to 3 hours in the air or in an inert gas atmosphere such as nitrogen gas.

アニール処理の温度は、ディスクの基板に影響を及ぼさ
ずに、最大の効果が得られる温度であることが望ましく
、基板の種類によってその温度は異なる。以下に、基板
によるアニール処理の最適温度を示すと、 N i −Pメツキ基板 200〜300℃ガラス基板
      200〜400 ”Cアルマイト基板  
 200〜400 ℃である。いずれの場合も200℃
未満では、効果は得られない。また、ここでN i −
Pメツキ基板での処理温度の上限が、他の基板より低い
のは、N1−Pメツキ基板に熱により磁性を帯びる性質
があり、磁性層の特性に影響を及ぼす可能性があること
による。
The temperature of the annealing process is preferably a temperature that provides the maximum effect without affecting the substrate of the disk, and the temperature varies depending on the type of substrate. The optimum temperature for annealing treatment depending on the substrate is shown below: Ni-P plated substrate 200~300℃ Glass substrate 200~400''C alumite substrate
The temperature is 200-400°C. 200℃ in both cases
If it is less than that, no effect will be obtained. Also, here N i −
The reason why the upper limit of the processing temperature for the P-plated substrate is lower than for other substrates is that the N1-P-plated substrate has a property of becoming magnetic due to heat, which may affect the characteristics of the magnetic layer.

[作用] 剛性基板上に磁性層を形成した後、200℃以上且つ基
板に影響を及ぼさない温度でアニール処理すると、未処
理のものと比較して電磁変換特性及び記録密度が向上す
る。
[Function] After a magnetic layer is formed on a rigid substrate, annealing treatment at a temperature of 200° C. or higher that does not affect the substrate improves electromagnetic conversion characteristics and recording density compared to an untreated layer.

〔実施例] 以下、本発明を具体的な実験結果に基づいて説明する。〔Example] The present invention will be explained below based on specific experimental results.

実験に使用したサンプルディスクは、N1−Pメツキ膜
を下地とするA、 1基板上にさらにCr下地膜を介し
てCo −Cr系磁性膜をスパック成膜した磁気ディス
クで、保磁力Hcは1300(Oe)程度のものである
The sample disk used in the experiment was a magnetic disk in which a Co-Cr based magnetic film was spun-coated on an A.1 substrate with an N1-P plating film as the base, and a Co-Cr based magnetic film was further deposited via a Cr base film, and the coercive force Hc was 1300. (Oe).

このサンプルディスクを、クリーンオーブン内で、30
0 ’C11時間加熱処理(アニール処理)を行った後
、電磁変換特性及び記録密度の測定を行った。また 比
較のために、アニール未処理のものについても測定を行
った。
This sample disk was heated in a clean oven for 30 minutes.
After heat treatment (annealing) for 11 hours at 0'C, electromagnetic conversion characteristics and recording density were measured. For comparison, we also measured the unannealed material.

測定はメタル・イン・ギャップ(MIG)型のコンポジ
ソトヘンドを使用し、磁気ディスク回転数を3600r
pm、書き込み電流を48Amp−pとして行った。
The measurement was carried out using a metal-in-gap (MIG) type composite magnet at a magnetic disk rotation speed of 3600 r.
pm, and the write current was set to 48 Amp-p.

各サンプルディスクの出力特性及び分解能を表1に、ま
た、オーバーライド特性(0/W)及びCN比の結果を
表2に示す。
Table 1 shows the output characteristics and resolution of each sample disk, and Table 2 shows the results of the override characteristics (0/W) and CN ratio.

なお、表1中、LF及びHFはそれぞれ1.25MHz
、3.33MHzの信号に対する出力、また表2中、I
D及びODはそれぞれトランク半径1B、00mm位置
、30.tOmm位置におけるオーバーライI〜特性を
示している。
In addition, in Table 1, LF and HF are each 1.25 MHz.
, the output for a 3.33MHz signal, and in Table 2, I
D and OD are trunk radius 1B, 00mm position, 30. The overlay I characteristic at the tOmm position is shown.

(以下余白) 表1 表2 ディスクをアニール処理することにより出力特性、分解
能、オーバーライド特性、CN比が改善されることがわ
かる。
(Margins below) Table 1 Table 2 It can be seen that output characteristics, resolution, override characteristics, and CN ratio are improved by annealing the disk.

一方、第1図は記録密度と出力の関係を示している。一
般に全出力の50%の出力まで使用可能であると考えら
れており、その50%出力を示すD50での記録周波数
を比較すると、アニール処理を行った磁気ディスクは、
未処理のものと比べて高い値を示し、アニール処理によ
って磁気ディスクの記録密度が向上することがiI L
Eされた。
On the other hand, FIG. 1 shows the relationship between recording density and output. It is generally considered that it is possible to use up to 50% of the total output, and when comparing the recording frequency at D50, which indicates 50% output, the annealed magnetic disk has
This value is higher than that of the untreated one, indicating that annealing improves the recording density of magnetic disks.
E was given.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明では、磁気デ
ィスクをアニール処理するという簡便な手段で、磁気デ
ィスクの電磁変換特性、記録密度を改善することができ
る。
As is clear from the above description, in the present invention, the electromagnetic conversion characteristics and recording density of a magnetic disk can be improved by a simple means of annealing the magnetic disk.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は記録密度と出力の関係を示す特性図である。 FIG. 1 is a characteristic diagram showing the relationship between recording density and output.

Claims (1)

【特許請求の範囲】[Claims] 剛性基板上に磁性層を形成した後、200℃以上且つ基
板に影響を及ぼさない温度でアニール処理することを特
徴とする磁気ディスクの製造方法。
A method for manufacturing a magnetic disk, which comprises forming a magnetic layer on a rigid substrate and then performing an annealing treatment at a temperature of 200° C. or higher that does not affect the substrate.
JP13057990A 1990-05-21 1990-05-21 Production of magnetic disk Pending JPH0426920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13057990A JPH0426920A (en) 1990-05-21 1990-05-21 Production of magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13057990A JPH0426920A (en) 1990-05-21 1990-05-21 Production of magnetic disk

Publications (1)

Publication Number Publication Date
JPH0426920A true JPH0426920A (en) 1992-01-30

Family

ID=15037598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13057990A Pending JPH0426920A (en) 1990-05-21 1990-05-21 Production of magnetic disk

Country Status (1)

Country Link
JP (1) JPH0426920A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759617A (en) * 1996-05-20 1998-06-02 Fujitsu Limited Production process for a hard disk magnetic recording medium
WO2002049015A1 (en) * 2000-12-13 2002-06-20 Showa Denko K.K. Magnetic-disk substrate, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759617A (en) * 1996-05-20 1998-06-02 Fujitsu Limited Production process for a hard disk magnetic recording medium
WO2002049015A1 (en) * 2000-12-13 2002-06-20 Showa Denko K.K. Magnetic-disk substrate, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
EP0710949B1 (en) Magnetic recording medium and its manufacture
WO2006030961A1 (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording/ reproducing apparatus
JPH0426920A (en) Production of magnetic disk
WO1996027877A1 (en) Magnetic recording medium and method of manufacturing the same
JPS61276116A (en) Magnetic recording medium and its production
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JP2646901B2 (en) Substrates for magnetic recording media
JPS63104214A (en) Magnetic memory body and its production
JPS59171031A (en) Magnetic disk
JPH0450646B2 (en)
JPH03142708A (en) Magnetic recording medium
JPH05159290A (en) Production of magnetic recording medium
JPH03125322A (en) Magnetic recording medium
JPS6035332A (en) Magnetic storage body
JPS6364623A (en) Magnetic recording medium
JPH03171426A (en) Production of magnetic recording medium
JPS61276115A (en) Magnetic recording medium and its production
JPH0751743B2 (en) Method for forming sendust thin film
JPH1011735A (en) Magnetic recording medium
JPH05282668A (en) Substrate for perpendicular magnetic recording, magnetic disk and its production
JPH06349046A (en) Magnetic disk medium and its production
JPH02308419A (en) Production of magnetic recording medium
JPH03205616A (en) Production of magnetic recording medium
JPH05205262A (en) Manufacture of magnetic disk
JPH04268213A (en) Production of magnetic disk