JPH03205616A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH03205616A
JPH03205616A JP7392490A JP7392490A JPH03205616A JP H03205616 A JPH03205616 A JP H03205616A JP 7392490 A JP7392490 A JP 7392490A JP 7392490 A JP7392490 A JP 7392490A JP H03205616 A JPH03205616 A JP H03205616A
Authority
JP
Japan
Prior art keywords
magnetic
coercive force
layer
heat treatment
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7392490A
Other languages
Japanese (ja)
Inventor
Motoharu Sato
元治 佐藤
Kazuo Muramatsu
一生 村松
Yoshihiko Onishi
良彦 大西
Hidetaka Hayashi
秀高 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7392490A priority Critical patent/JPH03205616A/en
Priority to US07/688,555 priority patent/US5252367A/en
Priority to DE19904091977 priority patent/DE4091977T/de
Priority to PCT/JP1990/001386 priority patent/WO1991006948A1/en
Priority to GB9109659A priority patent/GB2245599B/en
Publication of JPH03205616A publication Critical patent/JPH03205616A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve coercive force by successively forming a Co-alloy magnetic layer and protective lubricating layer on a carbon substrate, and heating the medium at specified temp. CONSTITUTION:A Co-alloy magnetic layer 3 such as Co-Ni-Cr, Co-Ni, etc., and protective lubricating layer 4 are successively formed on a carbon substrate 1. By heating this medium at 250-1,450 deg.C in an atmospheric environment, interfaces of grains in the Co-alloy magnetic layer 3 are selectively oxidated, and segregation of Cr on the interfaces is promoted if the Co-alloy magnetic layer 3 contains Cr. Thereby, each grain of the Co-alloy magnetic layer 3 behave as a single magnetic domain, which increases the coercive force.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、カーボン基板上に磁性体層を有し、磁気デ
ィスク装置などに用いられる磁気記録媒体の製造方法に
係り、詳しくは高い保磁力が得られるようにした、磁気
記録媒体の製造方法に関するものである. 〔従来の技術〕 周知のように、磁気ディスクなどの磁気記録媒体におい
ては、その高記録密度化が進められている。一般に、磁
気記録媒体の性能を決定する因子として、次式■で表さ
れる磁化遷移幅a(μm)がある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a magnetic recording medium that has a magnetic layer on a carbon substrate and is used in magnetic disk devices, etc. The present invention relates to a method of manufacturing a magnetic recording medium that allows for the production of magnetic recording media. [Prior Art] As is well known, the recording density of magnetic recording media such as magnetic disks is increasing. Generally, a factor that determines the performance of a magnetic recording medium is the magnetization transition width a (μm) expressed by the following equation (2).

accδ・Br/ (m−Hc)      −■但し
、δは磁性体層膜厚(μm)、Brは残留磁束密度(G
) 、mは角形性に関する因子、Hcは保磁力(Oe)
である. 記録密度を向上させるには、上記の式ので表される磁化
遷移幅aの値を小さくする必要があり、磁性体層の薄膜
化とともに保磁力の向上が有効な手段となっている.そ
のため、従来、保磁力を増大させる方法としては以下に
説明する方法が採られている, すなわち、7−Fe.Os針状磁性粒子とAltos粉
及びバインダとを混練し、これをアルミニウム合金基板
上にスピンコート法により塗布した塗布型媒体において
は、1−Fe20.針状粒子を微細化したり、あるいは
γ一Fezesの表面にCoを被着したりするようにし
ている。
accδ・Br/ (m-Hc) −■ However, δ is the magnetic layer thickness (μm), and Br is the residual magnetic flux density (G
), m is a factor related to squareness, Hc is coercive force (Oe)
It is. In order to improve the recording density, it is necessary to reduce the value of the magnetization transition width a expressed by the above equation, and effective means include making the magnetic layer thinner and increasing the coercive force. Therefore, conventionally, the method described below has been adopted as a method for increasing the coercive force. Namely, 7-Fe. In a coating type medium in which Os acicular magnetic particles, Altos powder, and a binder are kneaded and coated on an aluminum alloy substrate by a spin coating method, 1-Fe20. The acicular particles are made finer, or Co is deposited on the surface of the γ-Fezes.

また、アルミニウム合金基板の表面にNiPめっき層が
施された基板(以下、NiPめっき基板という)上に、
Co−P, Co−Ni−Pなどの磁性体層を無電解め
っき法により形成しためっき薄膜型媒体においては、め
っき浴組或の改善が行われている。
In addition, on a substrate having a NiP plating layer on the surface of an aluminum alloy substrate (hereinafter referred to as a NiP plating substrate),
In plated thin film media in which a magnetic layer of Co--P, Co--Ni--P, etc. is formed by electroless plating, certain improvements have been made in the plating bath structure.

さらに、NiPめっき基板上にCo−Ni−Cr, C
o−Niなどの磁性体層をスパッタ法により形成したス
パノタ薄膜型媒体においては、磁性体組成の改善が行わ
れている.また、基板を高温にした状態で磁性体を戒膜
する方法(例えば、石川ら、第11回日本応用磁気学会
学術講演概要集、P18、l987、11)や、基板に
逆ハイアス電圧を印加して磁性体層の形戒条件を最適化
するようにした方法(例えば、橋本ら、第35回応用物
理学関係連合講演予稿集、p57、1988、10)が
提案されている.このような方法により保磁力を増大さ
せて、高記録密度化が進められているが、塗布型媒体で
の薄膜化の困難性などの点から、磁性体層をスパッタ法
により形成してなる磁気記録媒体が高密度磁気記録媒体
として期待されている。
Furthermore, Co-Ni-Cr, C
In Supanota thin film media in which a magnetic layer such as o-Ni is formed by sputtering, the magnetic composition has been improved. In addition, there are methods for coating magnetic materials with the substrate heated to a high temperature (for example, Ishikawa et al., 11th Japanese Society of Applied Magnetics, Abstracts of Academic Conferences, P18, 1987, 11), and methods for applying a reverse high-ass voltage to the substrate. A method has been proposed in which the shape conditions of the magnetic layer are optimized (for example, Hashimoto et al., Proceedings of the 35th Applied Physics Association Conference, p. 57, 1988, 10). This method is used to increase the coercive force and increase the recording density, but due to the difficulty of thinning the film in coated media, magnetic layers formed by sputtering the magnetic material layer have been developed. The recording medium is expected to be used as a high-density magnetic recording medium.

一方、高記録密度化を達或するため、上記した保磁力の
向上などの他に、基板としては、表面粗さが小で表面欠
陥のない表面性状であること、磁性体層の下地として化
学的に安定であること、ヘッドとの接触による耐久性を
確保し得る硬度や強度を備えていること、などが要求さ
れる。また、基板材料に要求される特性としては、非磁
性、高硬度、耐熱性、軽量、強度・剛性などがある。
On the other hand, in order to achieve high recording density, in addition to improving the coercive force mentioned above, the substrate must have a surface texture with low surface roughness and no surface defects, and chemical It is required to be physically stable, and to have hardness and strength that can ensure durability in contact with the head. Further, properties required of the substrate material include non-magnetism, high hardness, heat resistance, light weight, strength and rigidity.

このような基板に関する要求に応えるため、最近、基板
としてカーボン基板(ガラス状カーボン基板)を使用し
た磁気記録媒体が提案されており、例えば特開昭62−
234232号公報にはガラス状カーボン基板上に磁性
薄膜を形成してなる磁気ディスクが示されている.また
、本出願人もガラス状カーボン基板の上にCo基合金薄
膜を形成してなる磁気記録媒体を提案している(特願平
1−188225号). 〔発明が解決しようとする課題〕 上記従来技術において、スパッタ薄膜型媒体における磁
性体組戒の改善による方法では、磁性材料としてCo−
Cr−Ptといった貴金属を用いるようにしているので
、経済的に好ましくない.一方、基板を高温にした状態
で磁性体層をスパッタ法により形成する高温成膜方法で
{よ、保磁力が向上した磁気記録媒体が得られているが
、基板を保持するためのキャリアが加熱により変形し易
くなる等の或膜装X上の問題から、研究レベルではなく
量産を行う場合には、基板加熱温度が250℃を超えた
状態での磁性体層の形戒は容易でない。さらに、NiP
めっき基板を使用する場合には、280゜C以上になる
とNiPめっき層が仕様限界値を超えて磁化して磁性体
層に悪影響を与えるとともに、300℃以上に加熱され
ると基板の変形が生しるという問題がある。
In order to meet such demands regarding substrates, magnetic recording media using carbon substrates (glassy carbon substrates) as substrates have recently been proposed.
No. 234232 discloses a magnetic disk in which a magnetic thin film is formed on a glassy carbon substrate. The present applicant has also proposed a magnetic recording medium in which a Co-based alloy thin film is formed on a glassy carbon substrate (Japanese Patent Application No. 1-188225). [Problems to be Solved by the Invention] In the above-mentioned prior art, in the method of improving the magnetic composition in the sputtered thin film type medium, Co-
Since noble metals such as Cr-Pt are used, this is not economically desirable. On the other hand, magnetic recording media with improved coercive force have been obtained by high-temperature film formation methods in which a magnetic layer is formed by sputtering while the substrate is heated to a high temperature, but the carrier for holding the substrate is heated. Due to problems with the film assembly, such as the possibility of deformation, it is not easy to control the shape of the magnetic layer when the substrate heating temperature exceeds 250° C. when mass production is performed rather than at a research level. Furthermore, NiP
When using a plated substrate, if the temperature exceeds 280°C, the NiP plating layer will magnetize beyond the specification limit, which will have an adverse effect on the magnetic layer, and if it is heated to above 300°C, the substrate will deform. There is a problem with that.

また、基板に逆ハイアス電圧を印加した状態で磁性体層
を形戒する方法では、保磁力が向上した磁気記録媒体が
得られているが、逆バイアス電圧を印加する必要がある
ため、威膜装lの構造が複雑になるという欠点がある. こうした状況のもとで、本発明者らは、前述したカーボ
ン基板の持つ特性、特にその耐熱性に着目して磁気記録
媒体の高保磁力化の研究を重ねた結果、カーボン基板上
にCo基合金磁性体層などを形成した後、これを高温加
熱することにより保磁力を向上し得ることを見出し、こ
の発明に到達したのである。
In addition, magnetic recording media with improved coercive force have been obtained by forming the magnetic layer while applying a reverse bias voltage to the substrate, but since it is necessary to apply a reverse bias voltage, The disadvantage is that the structure of the device is complicated. Under these circumstances, the present inventors have repeatedly conducted research on increasing the coercive force of magnetic recording media, focusing on the characteristics of the carbon substrate described above, especially its heat resistance. It was discovered that the coercive force could be improved by forming a magnetic layer and the like and then heating it to a high temperature, leading to the present invention.

すなわち、この発明は、カーボン基板を用いた磁気記録
媒体の製造にあたり、保磁力を向上させることができる
磁気記録媒体の製造方法を提供することを目的とするも
のである。
That is, an object of the present invention is to provide a method for manufacturing a magnetic recording medium that can improve coercive force when manufacturing a magnetic recording medium using a carbon substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、請求項1の発明による磁
気記録媒体の製造方法は、カーボン基板上に順にCo基
合金からなる磁性体層と、保護潤滑層とを有する磁気記
録媒体の製造方法において、カーボン基板上に前記両層
を形成した後、これを250〜1450℃の温度で加熱
処理することを特徴としている. また、請求項2の発明による磁気記録媒体の製造方法は
、カーボン基板上に順にCrからなる下地層、Co基合
金からなる磁性体層、及び保護潤滑層を有する磁気記録
媒体の製造方法において、カーボン基板上に前記各層を
形成した後、これを250〜1450℃の温度で加熱処
理することを特徴としている。
In order to achieve the above object, a method for manufacturing a magnetic recording medium according to the invention of claim 1 is a method for manufacturing a magnetic recording medium having a magnetic layer made of a Co-based alloy and a protective lubricant layer in this order on a carbon substrate. The method is characterized in that after forming both the layers on the carbon substrate, this is heat-treated at a temperature of 250 to 1450°C. Further, a method for manufacturing a magnetic recording medium according to the invention of claim 2 is a method for manufacturing a magnetic recording medium having a base layer made of Cr, a magnetic layer made of a Co-based alloy, and a protective lubricant layer in this order on a carbon substrate. The method is characterized in that after each layer is formed on a carbon substrate, it is heat-treated at a temperature of 250 to 1450°C.

〔作 用〕[For production]

この出願の発明において上記構戒の加熱処理により保磁
力が向上するその作用機構自体は必ずしも明確ではない
が、以下のように推定される。
In the invention of this application, the mechanism by which the coercive force is improved by the heat treatment described above is not necessarily clear, but it is presumed as follows.

請求項1の発明による磁気記録媒体の製造方法において
、カーボン基板上に、Co−Ni−CrSCo−Ni、
Co−Ni−Pt, Go−Cr 、あるいはCo−C
r−Ta等のCO基合金からなる磁性体層と、保護潤滑
層とを順次形成した後、これを大気雰囲気中で高温加熱
する場合には、Co基合金磁性体層の粒界が選択的に酸
化され、さらにCrを含むCo基合金磁性体層ではCr
の粒界への偏析が促進される.その結果、CO基合金磁
性体層の結晶粒自体が単磁区粒子として振る舞うことに
より保磁力が向上するものと考えられる.また、真空中
、あるいは不活性ガス雰囲気中で高温加熱する場合には
、Co基合金磁性体層における上記のCrの粒界への偏
析が促進されることにより保磁力が向上するものと考え
られる. これに対して請求項2の発明による磁気記録媒体の製造
方法では、カーボン基板上にCr下地層、CO基合金磁
性体層、及び保護潤滑層を順次形成した後、これを加熱
処理すると、上述した保磁力向上作用に加えて、Cr下
地層の結晶格子の(110)面が加熱処理により戒長し
、Co基合金磁性体層の磁化容易軸(C軸)が面内に配
向され易くなり保磁力が向上するものと考えられる。
In the method for manufacturing a magnetic recording medium according to the invention of claim 1, Co-Ni-CrSCo-Ni, Co-Ni-CrSCo-Ni,
Co-Ni-Pt, Go-Cr, or Co-C
When a magnetic layer made of a CO-based alloy such as r-Ta and a protective lubricant layer are sequentially formed and then heated at high temperature in the air, the grain boundaries of the Co-based alloy magnetic layer are selectively formed. In a Co-based alloy magnetic layer that further contains Cr, Cr
The segregation of particles to grain boundaries is promoted. As a result, it is thought that the coercive force is improved because the crystal grains of the CO-based alloy magnetic layer themselves behave as single-domain grains. Furthermore, when heating at high temperatures in vacuum or in an inert gas atmosphere, it is thought that coercive force is improved by promoting the segregation of Cr to the grain boundaries in the Co-based alloy magnetic layer. .. On the other hand, in the method for manufacturing a magnetic recording medium according to the invention of claim 2, after sequentially forming a Cr underlayer, a CO-based alloy magnetic layer, and a protective lubricant layer on a carbon substrate, this is heat-treated. In addition to the effect of improving the coercive force, the (110) plane of the crystal lattice of the Cr underlayer is lengthened by the heat treatment, and the easy axis of magnetization (C axis) of the Co-based alloy magnetic layer is easily oriented in-plane. It is thought that the coercive force is improved.

また、この発明においては加熱処理温度の範囲は250
〜1450℃、好ましくは350〜800゜C程度が最
適である.250℃より低い温度では保磁力向上効果が
十分発揮されず、l450゜Cを超えるとCo基合金磁
性体層そのものが熱により破壊される恐れがあるためで
ある. 〔実施例〕 以下、実施例に基づいてこの発明を説明する。
Further, in this invention, the range of heat treatment temperature is 250°C.
The optimal temperature is about 1450°C, preferably about 350 to 800°C. This is because at a temperature lower than 250°C, the effect of improving coercive force is not sufficiently exhibited, and at a temperature exceeding 1450°C, the Co-based alloy magnetic layer itself may be destroyed by heat. [Examples] The present invention will be described below based on Examples.

玉土工豊班 まず、磁気ディスク用のカーボン基板の作製について説
明すると、炭化焼或後にガラス質炭素となる熱硬化性樹
脂であるフェノール・フォルムアルデヒド樹脂を磁気デ
ィスク形状に或形した後、N2ガス雰囲気中で1000
〜l500゜Cの温度で予備焼成する。次いで、これを
熱間静水圧加圧装置(HIP)を使用して2500゜C
に加熱しつつ2000気圧の等方的圧力を加えてHIP
処理する.この得られた戒形体に所定の周端面加工、表
面研磨を施して、厚さ1.27mmの3.5インチの磁
気ディスク用基板とした. そして、下記の条件にて、第1図(a)に示す構戒のよ
うに、上記カーボン基板1上にCr下地層2、CoNi
Cr磁性体層3、C保護潤滑層4の3層をスバッタ法に
より順次連続して形成したものと、第1図(b)に示す
構戒のようなCr下地層2を有しないものとを作製した
後、これらを大気雰囲気中にて250〜450℃×2時
間の条件で加熱処理して磁気ディスクを作製した. ′−゛ス 戒膜装置: D.C.マグネトロンスパッタ装置基板温
度:250℃ 構或:カーボン基板/ C r層(厚み:0、500人
、1000人、2000人、3000人)/CO&!.
 sNiaocrt. s層(厚み二600人)/C層
(厚み=300人) 加熱処理条件=250〜450℃×2時間次に得られた
磁気ディスクの保磁力Hcを振動試料型磁力計(VSM
)により測定した.結果を第2図に示す.なお、第2図
において符号^Sは加熱処理なしを意味する.また、比
較のため、3.5インチ用のカーボン基板と同サイズの
NiPめっき基板(AI−Mg合金基板上に厚み約15
μmのNiPめっきを施した後、表面研磨したもの)と
において、加熱処理条件と磁化量との関係をvSMによ
り測定した結果を第1表に示すとともに、加熱温度と基
板変形量との関係を面歪み計(商品名:NIDEK,ニ
デック社製)により測定した結果を第3図に示す。
Toyoha Tamadoko: First, to explain the production of carbon substrates for magnetic disks, phenol-formaldehyde resin, a thermosetting resin that becomes vitreous carbon after carbonization, is shaped into the shape of a magnetic disk, and then N2 gas is applied. 1000 in the atmosphere
Pre-fire at a temperature of ~1500°C. This was then heated to 2500°C using a hot isostatic presser (HIP).
HIP by applying isotropic pressure of 2000 atm while heating to
Process. The obtained cylindrical body was subjected to predetermined peripheral edge processing and surface polishing to obtain a 3.5-inch magnetic disk substrate with a thickness of 1.27 mm. Then, under the following conditions, as shown in FIG. 1(a), a Cr underlayer 2, a CoNi
There are two types: one in which three layers, Cr magnetic layer 3 and C protective lubricant layer 4, are successively formed by the sputtering method, and one without Cr underlayer 2 as shown in Figure 1(b). After producing these, they were heat-treated in an air atmosphere at 250 to 450°C for 2 hours to produce magnetic disks. '-゛Scape device: D. C. Magnetron sputtering device substrate temperature: 250°C Structure: Carbon substrate/Cr layer (thickness: 0, 500, 1000, 2000, 3000)/CO&! ..
sNiaocrt. S layer (thickness: 2,600 layers)/C layer (thickness: 300 layers) Heat treatment conditions: 250 to 450°C x 2 hours Next, the coercive force Hc of the obtained magnetic disk was measured using a vibrating sample magnetometer (VSM).
) was measured. The results are shown in Figure 2. In addition, in FIG. 2, the symbol ^S means no heat treatment. In addition, for comparison, a NiP plated substrate of the same size as a 3.5-inch carbon substrate (approximately 15 mm thick on an AI-Mg alloy substrate) was prepared.
Table 1 shows the results of measuring the relationship between the heat treatment conditions and the amount of magnetization using vSM, and also shows the relationship between the heating temperature and the amount of substrate deformation. The results of measurement using a surface strain meter (trade name: NIDEK, manufactured by NIDEK) are shown in FIG.

(以下、余白) 第1表 備考(1)Br:残留磁束密度(G)、Bs:飽和磁束
密度(G)(2)  NiPめっき基板の場合にはBs
<10(G)が要求されている。
(Hereafter, blank space) Table 1 Notes (1) Br: Residual magnetic flux density (G), Bs: Saturation magnetic flux density (G) (2) Bs in the case of NiP plated substrate
<10 (G) is required.

第2図から判るように、大気雰囲気中にて加熱処理を行
うことにより、第1図(a)及び(ロ)に示す両構成の
ものとも高保磁力化された磁気ディスクを得ることがで
きた。また、第1表、第3図に示すように、従来のNi
Pめっき基板が250℃程度からすでに磁化され、また
、300℃を超えると変形が生じるのに対して、カーボ
ン基板は、250゜C以上で加熱しても磁化されたり、
変形したりすることがない。なお、この実施例のように
大気雰囲気中にて加熱処理を行う場合には、CO基合金
磁性体層、この場合CoNiCr磁性体N3の酸化の進
行により他の磁気特性である飽和磁束密度Bs、残留磁
束密度Brが低下する傾向があるので、同一保磁力Hc
を得ようとするときは、高温、短時間で加熱処理するこ
とが望ましい。
As can be seen from Fig. 2, magnetic disks with high coercive force could be obtained for both configurations shown in Fig. 1 (a) and (b) by performing heat treatment in an atmospheric atmosphere. . Furthermore, as shown in Table 1 and Figure 3, conventional Ni
Whereas P-plated substrates are already magnetized at around 250°C and deform when heated above 300°C, carbon substrates do not become magnetized even when heated above 250°C.
It will not be deformed. In addition, when the heat treatment is performed in the air atmosphere as in this example, the progress of oxidation of the CO-based alloy magnetic layer, in this case CoNiCr magnetic material N3, causes other magnetic properties such as saturation magnetic flux density Bs, Since the residual magnetic flux density Br tends to decrease, the same coercive force Hc
When trying to obtain a high temperature, it is desirable to perform heat treatment at a high temperature and in a short time.

星11隻貫 この実施例では、第1実施例とは異なり、真空中で加熱
処理を行い磁気ディスクを作製した。
In this example, unlike the first example, a magnetic disk was fabricated by performing heat treatment in a vacuum.

すなわち、第1実施例と同様にして準備したカーボン基
板l上に、厚み3000人のCr下地層2と厚み600
人のCoNiCr磁性体層3(組fi:Co*t.sN
isoCrt.s )とC保護潤滑層4とをスパッタ装
置を用いて順次形成した後、これを真空中にて第4図(
a)に示す温度、時間の条件で加熱処理して磁気ディス
クを作製した。なお、真空度は30mTorrである. 次に、得られた磁気ディスクの保磁力Hc、飽和磁束密
度Bs、角形比S (=B r/B s ) 、及び保
磁力角形比S本(■式のmに相当)をVSMによりそれ
ぞれ測定した。これらの結果の一例を第4図(a)〜第
4図(イ)にそれぞれ示す。第4図(a)は加熱処理条
件と保磁力Hcとの関係を示す図、第4図(b)は加熱
処理条件と飽和磁束密度Bsとの関係を示す図、第4図
(C)は加熱処理条件と角形比Sとの関係を示す図、及
び第4図(イ)は加熱処理条件と保磁力角形比S*との
関係を示す図である.なお、各図において符号ASは加
熱処理なしの場合の測定値を示す. このように真空中にて加熱処理を行うことによっても、
第4図(a)から判るように、この実施例の条件では5
00〜550゜Cの加熱温度範囲において、保磁力He
が向上した磁気ディスクが得られた。この場合、第4図
(ロ)乃至第4図(イ)から判るように、大気中加熱処
理により起こり易いCoNiCr磁性体層3の過度の酸
化現象がないので、高記録密度化を達戒するために必要
な他の磁気特性要因である残留磁束密度Br、保磁力角
形比SIは加熱処理なしの場合の値をほぼ維持しており
、これらを低下させることなく保磁力Hcを向上させる
ことができた。
That is, on a carbon substrate l prepared in the same manner as in the first embodiment, a Cr base layer 2 with a thickness of 3000 mm and a Cr base layer 2 with a thickness of 600 mm
Human CoNiCr magnetic layer 3 (set fi: Co*t.sN
isoCrt. After sequentially forming the C protective lubricant layer 4 and C protective lubricant layer 4 using a sputtering device, this is deposited in a vacuum as shown in FIG.
A magnetic disk was produced by heat treatment under the conditions of temperature and time shown in a). The degree of vacuum is 30 mTorr. Next, the coercive force Hc, saturation magnetic flux density Bs, squareness ratio S (=Br/Bs), and coercive force squareness ratio S (corresponding to m in formula ■) of the obtained magnetic disk were measured using VSM. did. Examples of these results are shown in FIGS. 4(a) to 4(a), respectively. FIG. 4(a) is a diagram showing the relationship between heat treatment conditions and coercive force Hc, FIG. 4(b) is a diagram showing the relationship between heat treatment conditions and saturation magnetic flux density Bs, and FIG. 4(C) is a diagram showing the relationship between heat treatment conditions and coercive force Hc. A diagram showing the relationship between the heat treatment conditions and the squareness ratio S, and FIG. 4(a) are diagrams showing the relationship between the heat treatment conditions and the coercive force squareness ratio S*. In each figure, the symbol AS indicates the measured value without heat treatment. By performing heat treatment in a vacuum in this way,
As can be seen from FIG. 4(a), under the conditions of this example, 5
In the heating temperature range of 00 to 550°C, the coercive force He
A magnetic disk with improved performance was obtained. In this case, as can be seen from FIGS. 4(B) and 4(A), there is no excessive oxidation phenomenon of the CoNiCr magnetic layer 3 that is likely to occur due to heat treatment in the atmosphere, so high recording density can be achieved. The residual magnetic flux density Br and coercive force squareness ratio SI, which are other necessary magnetic characteristic factors, maintain almost the values without heat treatment, and it is possible to improve the coercive force Hc without reducing these. did it.

玉1実蓬貞 この実施例では、真空中で加熱処理を行いCr下地層2
を有しない磁気ディスクを作製した。
In this example, the Cr base layer 2 was heat treated in a vacuum.
A magnetic disk without this was fabricated.

すなわち、第1実施例と同様にして準備したカーボン基
板l上に、厚み600λのCoNiCr磁性体13(&
II戒: Coav. sNisocrt. s )と
C保護潤滑層4とをスパッタ装置を用いて順次形成した
後、これを真空度30mTorrの真空中にて第5図(
a)に示す温度、時間の条件で加熱処理して磁気ディス
クを作製した。
That is, a CoNiCr magnetic body 13 (&
II Precept: Coav. sNisocrt. s) and the C protective lubricant layer 4 are sequentially formed using a sputtering device, and then deposited in a vacuum at a vacuum degree of 30 mTorr as shown in Fig. 5 (
A magnetic disk was produced by heat treatment under the conditions of temperature and time shown in a).

次いで、得られた磁気ディスクの保磁カHeと飽和磁束
密度BsとをVSMにより測定した。これらの結果を、
加熱処理条件と保磁カHcとの関係の一例を示す図の第
5図(a)、加熱処理条件と飽和磁束密度Bsとの関係
の一例を示す図の第5図(ロ)に示す。なお、各図にお
いて符号ASは加熱処理なしの場合の測定値を示す。
Next, the coercivity He and saturation magnetic flux density Bs of the obtained magnetic disk were measured by VSM. These results,
FIG. 5(a) is a diagram showing an example of the relationship between heat treatment conditions and coercive force Hc, and FIG. 5(b) is a diagram showing an example of the relationship between heat treatment conditions and saturation magnetic flux density Bs. Note that in each figure, the symbol AS indicates a measured value without heat treatment.

このように真空中にてカーボン基板1上にCr下地層2
のないものを加熱処理することによっても、第5図(a
)から判るように、この実施例の条件においては加熱温
度を高めることにともなって保磁力Hcが増大した磁気
ディスクを得ることができた。
In this way, the Cr underlayer 2 is formed on the carbon substrate 1 in vacuum.
Figure 5 (a) can also be achieved by heat treating a material without
), under the conditions of this example, it was possible to obtain a magnetic disk whose coercive force Hc increased as the heating temperature was raised.

次に、不活性ガス雰囲気中にて加熱処理を行って磁気デ
ィスクを作製した実施例について以下に説明する. 星11旌員 第1実施例と同様にして準備したカーボン基板l上に、
厚み30ooλのCr下地層2と厚み600人のCoN
 icr磁性体層3 (&Il戒: Cog. sNi
,Iocr7.,)とC保護潤滑層4とをスパンタ装置
を用いて順次形成した後、これをArガス雰囲気中(大
気圧状B)にて第6図(a)に示す温度、時間の条件で
加熱処理して磁気ディスクを作製した.次に、得られた
磁気ディスクの保磁力Hc、飽和磁束密度Bs、角形比
S、及び保磁力角形比S本をVSMによりそれぞれ測定
した。これらの結果の一例を第6図(a)〜第6図(d
)に示す.第6図{句は加熱処理条件と保磁力Hcとの
関係を示す図、第6図(b)は加熱処理条件と飽和磁束
密度Bsとの関係を示す図、第6図(C)は加熱処理条
件と角形比Sとの関係を示す図、及び第6図(イ)は加
熱処理条件と保磁力角形比S本との関係を示す図である
。なお、各図において符号ASは加熱処理なしの場合の
測定値を示す。
Next, an example in which a magnetic disk was manufactured by performing heat treatment in an inert gas atmosphere will be described below. Star 11 members On a carbon substrate l prepared in the same manner as in the first example,
Cr base layer 2 with a thickness of 30ooλ and CoN with a thickness of 600mm
icr magnetic layer 3 (&Il precept: Cog. sNi
, Iocr7. , ) and the C protective lubricant layer 4 are sequentially formed using a spunter device, and then heat-treated in an Ar gas atmosphere (atmospheric pressure state B) under the temperature and time conditions shown in FIG. 6(a). A magnetic disk was created using the following steps. Next, the coercive force Hc, saturation magnetic flux density Bs, squareness ratio S, and coercive force squareness ratio S of the obtained magnetic disk were measured by VSM. Examples of these results are shown in Figures 6(a) to 6(d).
) is shown. Figure 6 {phrase is a diagram showing the relationship between heat treatment conditions and coercive force Hc, Figure 6 (b) is a diagram showing the relationship between heat treatment conditions and saturation magnetic flux density Bs, and Figure 6 (C) is a diagram showing the relationship between heat treatment conditions and coercive force Hc. FIG. 6A is a diagram showing the relationship between the processing conditions and the squareness ratio S, and FIG. 6A is a diagram showing the relationship between the heat treatment conditions and the coercive force squareness ratio S. Note that in each figure, the symbol AS indicates a measured value without heat treatment.

このようにArガス雰囲気中にて加熱処理を行うことに
よっても、上記各図から判るように、残留磁束密度Br
、保磁力角形比S率を低下させることなく、保磁力Hc
が向上した磁気ディスクが得られた。
Even by performing heat treatment in an Ar gas atmosphere in this way, as can be seen from the above figures, the residual magnetic flux density Br
, without reducing the coercive force squareness ratio S ratio, the coercive force Hc
A magnetic disk with improved performance was obtained.

また、この実施例ではArガス雰囲気中にて加熱処理を
行うようにしたが、この発明による方法では、Arガス
雰囲気に代えて、N.ガス雰囲気中で加熱処理を行うこ
とによっても保磁力Heを増大させることができること
を確認している。
Further, in this embodiment, the heat treatment was performed in an Ar gas atmosphere, but in the method according to the present invention, the heat treatment was performed in an Ar gas atmosphere instead of the Ar gas atmosphere. It has been confirmed that the coercive force He can also be increased by performing heat treatment in a gas atmosphere.

なお、上記各実施例ではCr下地層、Co基合金磁性体
層をスパッタ法により形成してなる磁気ディスクの例を
示したが、この発明は、これらを蒸着、めっき等の方法
で形戒したカーボン基板を用いた磁気ディスクにも適用
できる。
In addition, in each of the above embodiments, an example of a magnetic disk in which a Cr underlayer and a Co-based alloy magnetic layer are formed by a sputtering method is shown, but in this invention, these can be formed by a method such as vapor deposition or plating. It can also be applied to magnetic disks using carbon substrates.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、請求項1の発明による磁気記録媒
体の製造方法では、カーボン基板上に順にCo基合金磁
性体層と保護潤滑層とを形成した後、これを250−1
450℃の温度で加熱処理することよって、Co基合金
磁性体層の結晶粒自体が単磁区粒子として振舞うように
なり、保磁力を向上させた磁気記録媒体が得られる.ま
た、請求項2の発明による磁気記録媒体の製造方法では
、上記の保磁力向上作用に加え、力一ボン基板とCo基
合金磁性体層との間に形成されたCr下地層の結晶格子
の(110)面が加熱処理されることより戒長してCO
基合金磁性体層の磁化容易軸が面内に配向され易くなり
、保磁力をより向上させた磁気記録媒体が得られる.し
たがって、この発明によれば、加熱処理という簡易な手
段を用いて従来より高い保磁力を有する高記録密度化に
適した磁気記録媒体を提供でき、これにより、広く使用
されているスパッタ装置などの或膜装置がそのまま使用
できるという経済的効果を奏するとともに、磁気ディス
ク装置の大型化を招くことなくその大容量化に寄与する
ことができる。
As explained above, in the method for manufacturing a magnetic recording medium according to the invention of claim 1, after forming a Co-based alloy magnetic layer and a protective lubricant layer on a carbon substrate in order,
By heat-treating at a temperature of 450°C, the crystal grains of the Co-based alloy magnetic layer themselves behave as single-domain grains, resulting in a magnetic recording medium with improved coercive force. In addition to the above-mentioned coercive force improvement effect, the method for manufacturing a magnetic recording medium according to the invention of claim 2 also improves the crystal lattice of the Cr underlayer formed between the force-bonded substrate and the Co-based alloy magnetic layer. Since the (110) surface is heat treated, CO
The axis of easy magnetization of the base alloy magnetic layer is more likely to be oriented in-plane, and a magnetic recording medium with improved coercive force can be obtained. Therefore, according to the present invention, it is possible to provide a magnetic recording medium that has a higher coercive force than the conventional one and is suitable for increasing recording density by using a simple means of heat treatment. This has the economical effect that a certain film device can be used as is, and also contributes to increasing the capacity of a magnetic disk device without increasing its size.

【図面の簡単な説明】[Brief explanation of drawings]

第F図(a)、(b)はこの発明に係る磁気ディスクの
断面構威説明図、第2図は第l実施例における加熱処理
条件と保磁力との関係の一例を示す図、第3図はこの発
明に係るカーボン基板と従来のNiPめっき基板とにお
いて加熱温度と基板変形量との関係の一例を示す図、第
4図(a)〜第4図(d)は第2実施例における磁気デ
ィスクの加熱処理条件に対する磁気特性の一例を示す図
、第5図(a)及び第5図(ロ)は第3実施例における
磁気ディスクの加熱処理条件に対する磁気特性の一例を
示す図、第6′vlJ(a)〜第6図(山は第4実施例
における磁気ディスクの加熱処理条件に対する磁気特性
の一例を示す図である。 1・一カーボン基板、’l−Cr下地層、3 −−−C
oN iCr磁性体層、4−C保護潤滑層。
Figures F (a) and (b) are explanatory diagrams of the cross-sectional structure of the magnetic disk according to the present invention; Figure 2 is a diagram showing an example of the relationship between heat treatment conditions and coercive force in the first embodiment; The figure shows an example of the relationship between the heating temperature and the amount of substrate deformation in a carbon substrate according to the present invention and a conventional NiP plated substrate. Figures 5(a) and 5(b) are diagrams showing an example of the magnetic properties of the magnetic disk with respect to the heat treatment conditions; FIGS. 6′vlJ(a) to FIG. 6 (The crests are diagrams showing an example of magnetic characteristics with respect to the heat treatment conditions of the magnetic disk in the fourth embodiment. 1.1 Carbon substrate, 'l-Cr underlayer, 3- --C
oN iCr magnetic layer, 4-C protective lubricant layer.

Claims (2)

【特許請求の範囲】[Claims] (1)カーボン基板上に順にCo基合金からなる磁性体
層と、保護潤滑層とを有する磁気記録媒体の製造方法に
おいて、 前記カーボン基板上に前記両層を形成した後、これを2
50〜1450℃の温度で加熱処理することを特徴とす
る磁気記録媒体の製造方法。
(1) In a method for manufacturing a magnetic recording medium having a magnetic layer made of a Co-based alloy and a protective lubricant layer on a carbon substrate in this order, after forming both the layers on the carbon substrate,
A method for manufacturing a magnetic recording medium, comprising heat treatment at a temperature of 50 to 1450°C.
(2)カーボン基板上に順にCrからなる下地層、Co
基合金からなる磁性体層、及び保護潤滑層を有する磁気
記録媒体の製造方法において、前記カーボン基板上に前
記各層を形成した後、これを250〜1450℃の温度
で加熱処理することを特徴とする磁気記録媒体の製造方
法。
(2) An underlayer made of Cr and Co on the carbon substrate in this order.
A method for manufacturing a magnetic recording medium having a magnetic layer made of a base alloy and a protective lubricant layer, characterized in that after each layer is formed on the carbon substrate, it is heat-treated at a temperature of 250 to 1450°C. A method for manufacturing a magnetic recording medium.
JP7392490A 1989-10-27 1990-03-23 Production of magnetic recording medium Pending JPH03205616A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7392490A JPH03205616A (en) 1989-10-27 1990-03-23 Production of magnetic recording medium
US07/688,555 US5252367A (en) 1989-10-27 1990-10-26 Method of manufacturing a magnetic recording medium
DE19904091977 DE4091977T (en) 1989-10-27 1990-10-26
PCT/JP1990/001386 WO1991006948A1 (en) 1989-10-27 1990-10-26 Method of producing magnetic recording medium
GB9109659A GB2245599B (en) 1989-10-27 1991-05-02 Method of manufacturing a magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-280480 1989-10-27
JP28048089 1989-10-27
JP7392490A JPH03205616A (en) 1989-10-27 1990-03-23 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03205616A true JPH03205616A (en) 1991-09-09

Family

ID=26415066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7392490A Pending JPH03205616A (en) 1989-10-27 1990-03-23 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03205616A (en)

Similar Documents

Publication Publication Date Title
US5733370A (en) Method of manufacturing a bicrystal cluster magnetic recording medium
JPH10188278A (en) Production of high-performance low-noise isotropic magnetic medium having chromium lower layer
US5252367A (en) Method of manufacturing a magnetic recording medium
JPH03216811A (en) Magnetic recording medium of cobalt alloy with high saturated coercive force and low noise
US5830584A (en) Bicrystal cluster magnetic recording medium
JPH09259418A (en) Magnetic recording medium and its production
JP2697227B2 (en) Magnetic recording medium and method of manufacturing the same
WO2006030961A1 (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and magnetic recording/ reproducing apparatus
JPS61253622A (en) Magnetic recording medium and its production
JPH03205616A (en) Production of magnetic recording medium
JPH0719372B2 (en) Method of manufacturing magnetic recording medium
JPH03235218A (en) Production of magnetic recording medium
JP2819839B2 (en) Magnetic disk substrate and magnetic recording medium using the same
JPS6044813B2 (en) Manufacturing method of alloy thin film for magnetic recording
JPH03273528A (en) Production of magnetic disk
JP2935606B2 (en) Manufacturing method of magnetic disk
JPH0817032A (en) Magnetic recording medium and its production
JPS61246914A (en) Magnetic recording medium and its production
JPS6313256B2 (en)
JPS61216125A (en) Production of magnetic recording medium
JPH0423223A (en) Production of magnetic recording medium
JPH0757237A (en) Magnetic recording medium and its production
JPH03268225A (en) Production of magnetic disk
JPH05205262A (en) Manufacture of magnetic disk
JP2000030234A (en) Magnetic recording medium